Refactored ImpesTPFAAD to use BlackoilPropsAd interface.

Not yet tested, but compiles and runs. Stops on error message
due to lack of viscosity derivatives.
This commit is contained in:
Atgeirr Flø Rasmussen 2013-05-16 16:05:47 +02:00
parent 37677fe032
commit cc1f8ed21a
2 changed files with 113 additions and 31 deletions

View File

@ -23,6 +23,7 @@
#define HACK_INCOMPRESSIBLE_GRAVITY 1
#include <opm/autodiff/ImpesTPFAAD.hpp>
#include <opm/autodiff/BlackoilPropsAd.hpp>
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
@ -99,6 +100,10 @@ namespace {
};
}
int
main(int argc, char* argv[])
{
@ -107,12 +112,14 @@ main(int argc, char* argv[])
const UnstructuredGrid* g = gm.c_grid();
const int nc = g->number_of_cells;
const Opm::BlackoilPropertiesBasic props(param, 2, nc);
const Opm::BlackoilPropertiesBasic oldprops(param, 2, nc);
const Opm::BlackoilPropsAd props(oldprops);
typedef AutoDiff::ForwardBlock<double> ADB;
typedef Opm::BlackoilPropertiesInterface Geology;
typedef DerivedGeology<Geology, ADB::V> GeoProps;
typedef Opm::BlackoilPropertiesInterface BOFluid;
// typedef Opm::BlackoilPropertiesInterface BOFluid;
typedef Opm::BlackoilPropsAd BOFluid;
typedef Opm::ImpesTPFAAD<BOFluid, GeoProps> PSolver;
Wells* wells = create_wells(2, 2, 2);
@ -130,13 +137,13 @@ main(int argc, char* argv[])
}
double grav[] = { 1.0, 0.0 };
GeoProps geo(*g, props, grav);
GeoProps geo(*g, oldprops, grav);
Opm::LinearSolverFactory linsolver(param);
PSolver ps (*g, props, geo, *wells, linsolver);
Opm::BlackoilState state;
initStateBasic(*g, props, param, 0.0, state);
initBlackoilSurfvol(*g, props, state);
initStateBasic(*g, oldprops, param, 0.0, state);
initBlackoilSurfvol(*g, oldprops, state);
Opm::WellState well_state;
well_state.init(wells, state);

View File

@ -100,7 +100,7 @@ namespace {
namespace Opm {
#if 0
template <typename Scalar, class BOFluid>
class PressureDependentFluidData {
public:
@ -248,6 +248,10 @@ namespace Opm {
const typename ADB::V zero_;
const typename ADB::V one_ ;
};
#endif
template <class BOFluid, class GeoProps>
class ImpesTPFAAD {
@ -258,10 +262,11 @@ namespace Opm {
const Wells& wells,
const LinearSolverInterface& linsolver)
: grid_ (grid)
, fluid_ (fluid)
, geo_ (geo)
, wells_ (wells)
, linsolver_(linsolver)
, pdepfdata_(grid.number_of_cells, fluid)
// , pdepfdata_(grid.number_of_cells, fluid)
, ops_ (grid)
, grav_ (gravityOperator(grid_, ops_, geo_))
, cell_residual_ (ADB::null())
@ -274,7 +279,12 @@ namespace Opm {
BlackoilState& state,
WellState& well_state)
{
pdepfdata_.computeSatQuant(state);
// pdepfdata_.computeSatQuant(state);
const int nc = grid_.number_of_cells;
const int np = state.numPhases();
DataBlock s = Eigen::Map<const DataBlock>(state.saturation().data(), nc, np);
ASSERT(np == 2);
kr_ = fluid_.relperm(s.col(0), s.col(1), V::Zero(nc,1), buildAllCells(nc));
const double atol = 1.0e-15;
const double rtol = 5.0e-10;
@ -310,37 +320,46 @@ namespace Opm {
ImpesTPFAAD(const ImpesTPFAAD& rhs);
ImpesTPFAAD& operator=(const ImpesTPFAAD& rhs);
typedef PressureDependentFluidData<double, BOFluid> PDepFData;
typedef typename PDepFData::ADB ADB;
typedef typename ADB::V V;
typedef typename ADB::M M;
// typedef PressureDependentFluidData<double, BOFluid> PDepFData;
// typedef typename PDepFData::ADB ADB;
typedef AutoDiff::ForwardBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
const UnstructuredGrid& grid_;
const BOFluid& fluid_;
const GeoProps& geo_ ;
const Wells& wells_;
const LinearSolverInterface& linsolver_;
PDepFData pdepfdata_;
// PDepFData pdepfdata_;
HelperOps ops_;
const M grav_;
ADB cell_residual_;
ADB well_residual_;
std::vector<V> kr_;
enum { Water = BOFluid::Water,
Oil = BOFluid::Oil,
Gas = BOFluid::Gas };
void
assemble(const double dt,
const BlackoilState& state,
const WellState& well_state)
{
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
const V& pv = geo_.poreVolume();
const int nc = grid_.number_of_cells;
const int np = state.numPhases();
const int nw = wells_.number_of_wells;
pdepfdata_.computePressQuant(state);
// pdepfdata_.computePressQuant(state);
const std::vector<int> cells = buildAllCells(nc);
const Eigen::Map<const DataBlock> z0all(&state.surfacevol()[0], nc, np);
const DataBlock qall = DataBlock::Zero(nc, np);
@ -391,29 +410,33 @@ namespace Opm {
ADB divcontrib_sum = ADB::constant(V::Zero(nc,1), bpat);
#endif
for (int phase = 0; phase < np; ++phase) {
const ADB cell_B = pdepfdata_.fvf(phase, p);
const ADB cell_rho = pdepfdata_.phaseDensity(phase, p);
// const ADB cell_B = pdepfdata_.fvf(phase, p);
// const ADB cell_rho = pdepfdata_.phaseDensity(phase, p);
// const V kr = pdepfdata_.phaseRelPerm(phase);
// const ADB mu = pdepfdata_.phaseViscosity(phase, p);
const ADB cell_b = fluidFvf(phase, p, cells);
const ADB cell_rho = fluidRho(phase, p, cells);
const V kr = fluidKr(phase);
const ADB mu = fluidMu(phase, p, cells);
const V kr = pdepfdata_.phaseRelPerm(phase);
const ADB mu = pdepfdata_.phaseViscosity(phase, p);
const ADB mf = upwind.select(kr / mu);
const ADB flux = mf * (nkgradp + (grav_ * cell_rho));
const ADB face_B = upwind.select(cell_B);
const ADB face_b = upwind.select(cell_b);
const V z0 = z0all.block(0, phase, nc, 1);
const V q = qall .block(0, phase, nc, 1);
#if COMPENSATE_FLOAT_PRECISION
const ADB divcontrib = delta_t * (ops_.div * (flux / face_B));
const ADB divcontrib = delta_t * (ops_.div * (flux * face_b));
const V qcontrib = delta_t * q;
const ADB pvcontrib = ADB::constant(pv*z0, bpat);
const ADB component_contrib = pvcontrib + qcontrib;
divcontrib_sum = divcontrib_sum - cell_B*divcontrib;
cell_residual_ = cell_residual_ - (cell_B * component_contrib);
divcontrib_sum = divcontrib_sum - divcontrib/cell_b;
cell_residual_ = cell_residual_ - (component_contrib/cell_b);
#else
const ADB component_contrib = pv*z0 + delta_t*(q - (ops_.div * (flux / face_B)));
cell_residual_ = cell_residual_ - (cell_B * component_contrib);
const ADB component_contrib = pv*z0 + delta_t*(q - (ops_.div * (flux * face_b)));
cell_residual_ = cell_residual_ - (component_contrib / cell_b);
#endif
}
#if COMPENSATE_FLOAT_PRECISION
@ -456,6 +479,8 @@ namespace Opm {
const int nc = grid_.number_of_cells;
const int np = state.numPhases();
const std::vector<int> cells = buildAllCells(nc);
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
const ADB p = ADB::constant(p0, cell_residual_.blockPattern());
@ -466,14 +491,17 @@ namespace Opm {
V flux = V::Zero(ops_.internal_faces.size(), 1);
for (int phase = 0; phase < np; ++phase) {
const ADB cell_rho = pdepfdata_.phaseDensity(phase, p);
// const ADB cell_rho = pdepfdata_.phaseDensity(phase, p);
const ADB cell_rho = fluidRho(phase, p, cells);
const V head = nkgradp +
(grav_ * cell_rho.value().matrix()).array();
const UpwindSelector<double> upwind(grid_, ops_, head);
const V kr = pdepfdata_.phaseRelPerm(phase);
const ADB mu = pdepfdata_.phaseViscosity(phase, p);
// const V kr = pdepfdata_.phaseRelPerm(phase);
// const ADB mu = pdepfdata_.phaseViscosity(phase, p);
const V kr = fluidKr(phase);
const ADB mu = fluidMu(phase, p, cells);
const V mf = upwind.select(kr / mu.value());
flux += mf * head;
@ -481,6 +509,53 @@ namespace Opm {
V all_flux = superset(flux, ops_.internal_faces, grid_.number_of_faces);
std::copy(all_flux.data(), all_flux.data() + grid_.number_of_faces, state.faceflux().data());
}
ADB fluidMu(const int phase, const ADB& p, const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.muWat(p, cells);
case Oil: {
ADB dummy_rs = V::Zero(p.size(), 1) * p;
return fluid_.muOil(p, dummy_rs, cells);
}
case Gas:
return fluid_.muGas(p, cells);
default:
THROW("Unknown phase index " << phase);
}
}
ADB fluidFvf(const int phase, const ADB& p, const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.bWat(p, cells);
case Oil: {
ADB dummy_rs = V::Zero(p.size(), 1) * p;
return fluid_.bOil(p, dummy_rs, cells);
}
case Gas:
return fluid_.bGas(p, cells);
default:
THROW("Unknown phase index " << phase);
}
}
ADB fluidRho(const int phase, const ADB& p, const std::vector<int>& cells) const
{
const double* rhos = fluid_.surfaceDensity();
ADB b = fluidFvf(phase, p, cells);
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
return rho;
}
V fluidKr(const int phase) const
{
return kr_[phase];
}
};
} // namespace Opm