improved documentation for tutorial decoupled

This commit is contained in:
Benjamin Faigle 2010-10-05 08:04:16 +00:00 committed by Andreas Lauser
parent e49d8dd6ec
commit cff0aaf797

View File

@ -18,23 +18,21 @@
#ifndef DUMUX_TUTORIALPROBLEM_DECOUPLED_HH
#define DUMUX_TUTORIALPROBLEM_DECOUPLED_HH
// the grid includes
#if HAVE_UG
#include <dune/grid/uggrid.hh>
#endif
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/sgrid.hh>
// fluid properties
#include <dumux/material/fluidsystems/2p_system.hh>
#include <dumux/decoupled/2p/impes/impesproblem2p.hh>
// dumux 2p-decoupled environment
#include <dumux/decoupled/2p/impes/impesproblem2p.hh> /*@\label{tutorial-decoupled:parent-problem}@*/
#include <dumux/decoupled/2p/diffusion/fv/fvvelocity2p.hh>
#include <dumux/decoupled/2p/transport/fv/fvsaturation2p.hh>
#include <dumux/decoupled/2p/transport/fv/capillarydiffusion.hh>
#include <dumux/decoupled/2p/transport/fv/gravitypart.hh>
#include "tutorialspatialparameters_decoupled.hh"
// assign parameters dependent on space (e.g. spatial parameters)
#include "tutorialspatialparameters_decoupled.hh" /*@\label{tutorial-decoupled:spatialparameters}@*/
namespace Dumux
{
@ -47,13 +45,21 @@ class TutorialProblemDecoupled;
//////////
namespace Properties
{
NEW_TYPE_TAG(TutorialProblemDecoupled, INHERITS_FROM(DecoupledTwoP, Transport));
// create a new type tag for the problem
NEW_TYPE_TAG(TutorialProblemDecoupled, INHERITS_FROM(DecoupledTwoP)); /*@\label{tutorial-decoupled:create-type-tag}@*/
// Set the problem property
SET_PROP(TutorialProblemDecoupled, Problem) /*@\label{tutorial-decoupled:set-problem}@*/
{
public:
typedef Dumux::TutorialProblemDecoupled<TTAG(TutorialProblemDecoupled)> type;
};
// Set the grid type
SET_PROP(TutorialProblemDecoupled, Grid)
SET_PROP(TutorialProblemDecoupled, Grid) /*@\label{tutorial-decoupled:grid-begin}@*/
{
typedef Dune::SGrid<2, 2> type;
static type *create() /*@\label{tutorial-coupled:create-grid-method}@*/
static type *create() /*@\label{tutorial-decoupled:create-grid-method}@*/
{
typedef typename type::ctype ctype;
Dune::FieldVector<int, 2> cellRes;
@ -69,37 +75,13 @@ SET_PROP(TutorialProblemDecoupled, Grid)
} /*@\label{tutorial-decoupled:grid-end}@*/
};
// Set the problem property
SET_PROP(TutorialProblemDecoupled, Problem)
{
public:
typedef Dumux::TutorialProblemDecoupled<TTAG(TutorialProblemDecoupled)> type;
};
// Set the model properties
SET_PROP(TutorialProblemDecoupled, TransportModel)
{
typedef Dumux::FVSaturation2P<TTAG(TutorialProblemDecoupled)> type;
};
SET_PROP(TutorialProblemDecoupled, PressureModel)
{
typedef Dumux::FVVelocity2P<TTAG(TutorialProblemDecoupled)> type;
};
SET_INT_PROP(TutorialProblemDecoupled, VelocityFormulation,
GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices))::velocityW);
//SET_INT_PROP(TutorialProblemDecoupled, PressureFormulation,
// GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices))::pressureGlobal);
// Set the wetting phase
SET_PROP(TutorialProblemDecoupled, WettingPhase)
SET_PROP(TutorialProblemDecoupled, WettingPhase) /*@\label{tutorial-decoupled:2p-system-start}@*/
{
private:
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public:
typedef Dumux::LiquidPhase<Scalar, Dumux::H2O<Scalar> > type;
typedef Dumux::LiquidPhase<Scalar, Dumux::H2O<Scalar> > type; /*@\label{tutorial-decoupled:wettingPhase}@*/
};
// Set the non-wetting phase
@ -108,11 +90,11 @@ SET_PROP(TutorialProblemDecoupled, NonwettingPhase)
private:
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public:
typedef Dumux::LiquidPhase<Scalar, Dumux::Oil<Scalar> > type;
};
typedef Dumux::LiquidPhase<Scalar, Dumux::Oil<Scalar> > type; /*@\label{tutorial-decoupled:nonwettingPhase}@*/
}; /*@\label{tutorial-decoupled:2p-system-end}@*/
// Set the spatial parameters
SET_PROP(TutorialProblemDecoupled, SpatialParameters)
SET_PROP(TutorialProblemDecoupled, SpatialParameters) /*@\label{tutorial-decoupled:set-spatialparameters}@*/
{
private:
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
@ -122,19 +104,36 @@ public:
typedef Dumux::TutorialSpatialParametersDecoupled<TypeTag> type;
};
SET_TYPE_PROP(TutorialProblemDecoupled, DiffusivePart, Dumux::CapillaryDiffusion<TypeTag>);
// Set the model properties
SET_PROP(TutorialProblemDecoupled, TransportModel) /*@\label{tutorial-decoupled:TransportModel}@*/
{
typedef Dumux::FVSaturation2P<TTAG(TutorialProblemDecoupled)> type;
};
SET_PROP(TutorialProblemDecoupled, PressureModel) /*@\label{tutorial-decoupled:PressureModel}@*/
{
typedef Dumux::FVVelocity2P<TTAG(TutorialProblemDecoupled)> type;
};
// model-specific settings
SET_INT_PROP(TutorialProblemDecoupled, VelocityFormulation,
GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices))::velocityW); /*@\label{tutorial-decoupled:velocityFormulation}@*/
SET_TYPE_PROP(TutorialProblemDecoupled, DiffusivePart,
Dumux::CapillaryDiffusion<TypeTag>); /*@\label{tutorial-decoupled:DiffusivePart}@*/
SET_SCALAR_PROP(TutorialProblemDecoupled, CFLFactor, 0.3); /*@\label{tutorial-decoupled:cfl}@*/
// Disable gravity
SET_BOOL_PROP(TutorialProblemDecoupled, EnableGravity, false);
SET_SCALAR_PROP(TutorialProblemDecoupled, CFLFactor, 0.3);
}
SET_BOOL_PROP(TutorialProblemDecoupled, EnableGravity, false); /*@\label{tutorial-decoupled:gravity}@*/
} /*@\label{tutorial-decoupled:propertysystem-end}@*/
/*!
* \ingroup DecoupledProblems
*/
template<class TypeTag = TTAG(TutorialProblemDecoupled)>
class TutorialProblemDecoupled: public IMPESProblem2P<TypeTag, TutorialProblemDecoupled<TypeTag> >
class TutorialProblemDecoupled: public IMPESProblem2P<TypeTag, TutorialProblemDecoupled<TypeTag> > /*@\label{tutorial-decoupled:def-problem}@*/
{
typedef TutorialProblemDecoupled<TypeTag> ThisType;
typedef IMPESProblem2P<TypeTag, ThisType> ParentType;
@ -163,54 +162,82 @@ class TutorialProblemDecoupled: public IMPESProblem2P<TypeTag, TutorialProblemDe
typedef Dune::FieldVector<Scalar, dim> LocalPosition;
public:
TutorialProblemDecoupled(const GridView &gridView, const GlobalPosition lowerLeft = GlobalPosition(0.), const GlobalPosition upperRight = GlobalPosition(0.)) :
ParentType(gridView), lowerLeft_(lowerLeft), upperRight_(upperRight)
{
}
/*!
* \name Problem parameters
*/
// \{
TutorialProblemDecoupled(const GridView &gridView, const GlobalPosition lowerLeft = GlobalPosition(0.),
const GlobalPosition upperRight = GlobalPosition(0.)) : ParentType(gridView) /*@\label{tutorial-decoupled:constructor-problem}@*/
{ }
/*!
* \brief The problem name.
*
* This is used as a prefix for files generated by the simulation.
*/
const char *name() const
const char *name() const /*@\label{tutorial-decoupled:name}@*/
{
return "tutorial_decoupled";
}
bool shouldWriteRestartFile() const
/*!
* \brief Returns true if a restart file should be written.
*
* The default behaviour is to write no restart file.
*/
bool shouldWriteRestartFile() const /*@\label{tutorial-decoupled:restart}@*/
{
return false;
}
/*!
* \brief Returns true if the current solution should be written to
* disk (i.e. as a VTK file)
*
* The default behaviour is to write out every the solution for
* very time step. Else, change divisor.
*/
bool shouldWriteOutput() const /*@\label{tutorial-decoupled:output}@*/
{
return this->timeManager().timeStepIndex() > 0 &&
(this->timeManager().timeStepIndex() % 1 == 0);
}
/*!
* \brief Returns the temperature within the domain.
*
* This problem assumes a temperature of 10 degrees Celsius.
*/
Scalar temperature(const GlobalPosition& globalPos, const Element& element) const
Scalar temperature(const GlobalPosition& globalPos, const Element& element) const /*@\label{tutorial-decoupled:temperature}@*/
{
return 273.15 + 10; // -> 10°C
}
// \}
Scalar referencePressure(const GlobalPosition& globalPos, const Element& element) const
/*!
* \brief Returns a constant pressure to enter material laws
*
* For incrompressible simulations, a constant pressure is necessary
* to enter the material laws to gain a constant density etc.
*/
Scalar referencePressure(const GlobalPosition& globalPos, const Element& element) const /*@\label{tutorial-decoupled:refPressure}@*/
{
return 1e5; // -> 10°C
return 2e5;
}
std::vector<Scalar> source(const GlobalPosition& globalPos, const Element& element)
/*!
* \brief Source of mass \f$ [\frac{kg}{m^3 \cdot s}] \f$
*
* Evaluate the source term for all phases within a given
* volume. The method returns the mass generated (positive) or
* annihilated (negative) per volume unit.
*/
std::vector<Scalar> source(const GlobalPosition& globalPos, const Element& element) /*@\label{tutorial-decoupled:source}@*/
{
return std::vector<Scalar>(2, 0.0);
return std::vector<Scalar>(2, 0.);
}
typename BoundaryConditions::Flags bctypePress(const GlobalPosition& globalPos, const Intersection& intersection) const
/*!
* \brief Type of pressure boundary condition.
*
* Defines the type the boundary condition for the pressure equation,
* either pressure (dirichlet) or flux (neumann).
*/
typename BoundaryConditions::Flags bctypePress(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:bctypePress}@*/
{
if ((globalPos[0] < lowerLeft_[0] + eps_))
return BoundaryConditions::dirichlet;
@ -218,31 +245,50 @@ public:
return BoundaryConditions::neumann;
}
BoundaryConditions::Flags bctypeSat(const GlobalPosition& globalPos, const Intersection& intersection) const
/*!
* \brief Type of Transport boundary condition.
*
* Defines the type the boundary condition for the transport equation,
* either saturation (dirichlet) or flux (neumann).
*/
BoundaryConditions::Flags bctypeSat(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:bctypeSat}@*/
{
if (globalPos[0] < lowerLeft_[0] + eps_)
return Dumux::BoundaryConditions::dirichlet;
else
return Dumux::BoundaryConditions::neumann;
}
Scalar dirichletPress(const GlobalPosition& globalPos, const Intersection& intersection) const
/*!
* \brief Value for dirichlet pressure boundary condition \f$ [Pa] \f$.
*
* In case of a dirichlet BC for the pressure equation, the pressure
* have to be defined on boundaries.
*/
Scalar dirichletPress(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:dirichletPress}@*/
{
if (globalPos[0] < lowerLeft_[0] + eps_)
return 2e5;
// all other boundaries
return 0;
}
Scalar dirichletSat(const GlobalPosition& globalPos, const Intersection& intersection) const
/*!
* \brief Value for transport dirichlet boundary condition (dimensionless).
*
* In case of a dirichlet BC for the transport equation, a saturation
* have to be defined on boundaries.
*/
Scalar dirichletSat(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:dirichletSat}@*/
{
if (globalPos[0] < lowerLeft_[0] + eps_)
return 1;
// all other boundaries
return 0;
}
std::vector<Scalar> neumannPress(const GlobalPosition& globalPos, const Intersection& intersection) const
//! Value for pressure neumann boundary condition \f$ [\frac{kg}{m^3 \cdot s}] \f$.
/** In case of a neumann boundary condition, the flux of matter
* is returned as a vector.
*/
std::vector<Scalar> neumannPress(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:neumannPress}@*/
{
std::vector<Scalar> neumannFlux(2,0.0);
if (globalPos[0] > upperRight_[0] - eps_)
@ -251,13 +297,20 @@ public:
}
return neumannFlux;
}
Scalar neumannSat(const GlobalPosition& globalPos, const Intersection& intersection, Scalar factor) const
//! Value for transport neumann boundary condition \f$ [\frac{kg}{m^3 \cdot s}] \f$.
/** In case of a neumann boundary condition for the transport equation
* the flux of matter for the primary variable is returned as a scalar.
*/
Scalar neumannSat(const GlobalPosition& globalPos, const Intersection& intersection, Scalar factor) const /*@\label{tutorial-decoupled:neumannSat}@*/
{
return 0;
}
Scalar initSat(const GlobalPosition& globalPos, const Element& element) const
//! Saturation initial condition (dimensionless)
/*
* @param element reference to the cell for which the function is to be evaluated
* @param localPos local coordinates inside element
*/
Scalar initSat(const GlobalPosition& globalPos, const Element& element) const /*@\label{tutorial-decoupled:initSat}@*/
{
return 0;
}