mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Add new MP scheme to GPU ILU and DILU
This commit is contained in:
parent
119282bd6d
commit
d1e5a69476
@ -254,6 +254,7 @@ if (HAVE_CUDA)
|
||||
ADD_CUDA_OR_HIP_FILE(MAIN_SOURCE_FILES opm/simulators/linalg detail/preconditionerKernels/DILUKernels.cu)
|
||||
ADD_CUDA_OR_HIP_FILE(MAIN_SOURCE_FILES opm/simulators/linalg detail/preconditionerKernels/ILU0Kernels.cu)
|
||||
ADD_CUDA_OR_HIP_FILE(MAIN_SOURCE_FILES opm/simulators/linalg detail/preconditionerKernels/JacKernels.cu)
|
||||
ADD_CUDA_OR_HIP_FILE(MAIN_SOURCE_FILES opm/simulators/linalg detail/kernel_enums.hpp)
|
||||
ADD_CUDA_OR_HIP_FILE(MAIN_SOURCE_FILES opm/simulators/linalg GpuVector.cpp)
|
||||
ADD_CUDA_OR_HIP_FILE(MAIN_SOURCE_FILES opm/simulators/linalg GpuView.cpp)
|
||||
ADD_CUDA_OR_HIP_FILE(MAIN_SOURCE_FILES opm/simulators/linalg detail/vector_operations.cu)
|
||||
|
@ -357,10 +357,10 @@ struct StandardPreconditioners {
|
||||
F::addCreator("GPUDILU", [](const O& op, [[maybe_unused]] const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
|
||||
const bool split_matrix = prm.get<bool>("split_matrix", true);
|
||||
const bool tune_gpu_kernels = prm.get<bool>("tune_gpu_kernels", true);
|
||||
const bool store_factorization_as_float = prm.get<bool>("store_factorization_as_float", false);
|
||||
const int mixed_precision_scheme = prm.get<int>("mixed_precision_scheme", 0);
|
||||
using field_type = typename V::field_type;
|
||||
using GpuDILU = typename gpuistl::GpuDILU<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
|
||||
auto gpuDILU = std::make_shared<GpuDILU>(op.getmat(), split_matrix, tune_gpu_kernels, store_factorization_as_float);
|
||||
auto gpuDILU = std::make_shared<GpuDILU>(op.getmat(), split_matrix, tune_gpu_kernels, mixed_precision_scheme);
|
||||
|
||||
auto adapted = std::make_shared<gpuistl::PreconditionerAdapter<V, V, GpuDILU>>(gpuDILU);
|
||||
auto wrapped = std::make_shared<gpuistl::GpuBlockPreconditioner<V, V, Comm>>(adapted, comm);
|
||||
@ -370,10 +370,10 @@ struct StandardPreconditioners {
|
||||
F::addCreator("OPMGPUILU0", [](const O& op, [[maybe_unused]] const P& prm, const std::function<V()>&, std::size_t, const C& comm) {
|
||||
const bool split_matrix = prm.get<bool>("split_matrix", true);
|
||||
const bool tune_gpu_kernels = prm.get<bool>("tune_gpu_kernels", true);
|
||||
const bool store_factorization_as_float = prm.get<bool>("store_factorization_as_float", false);
|
||||
const int mixed_precision_scheme = prm.get<int>("mixed_precision_scheme", 0);
|
||||
using field_type = typename V::field_type;
|
||||
using OpmGpuILU0 = typename gpuistl::OpmGpuILU0<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
|
||||
auto gpuilu0 = std::make_shared<OpmGpuILU0>(op.getmat(), split_matrix, tune_gpu_kernels, store_factorization_as_float);
|
||||
auto gpuilu0 = std::make_shared<OpmGpuILU0>(op.getmat(), split_matrix, tune_gpu_kernels, mixed_precision_scheme);
|
||||
|
||||
auto adapted = std::make_shared<gpuistl::PreconditionerAdapter<V, V, OpmGpuILU0>>(gpuilu0);
|
||||
auto wrapped = std::make_shared<gpuistl::GpuBlockPreconditioner<V, V, Comm>>(adapted, comm);
|
||||
@ -650,27 +650,27 @@ struct StandardPreconditioners<Operator, Dune::Amg::SequentialInformation> {
|
||||
F::addCreator("OPMGPUILU0", [](const O& op, [[maybe_unused]] const P& prm, const std::function<V()>&, std::size_t) {
|
||||
const bool split_matrix = prm.get<bool>("split_matrix", true);
|
||||
const bool tune_gpu_kernels = prm.get<bool>("tune_gpu_kernels", true);
|
||||
const bool store_factorization_as_float = prm.get<bool>("store_factorization_as_float", false);
|
||||
const int mixed_precision_scheme = prm.get<int>("mixed_precision_scheme", 0);
|
||||
|
||||
using field_type = typename V::field_type;
|
||||
using GPUILU0 = typename gpuistl::OpmGpuILU0<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
|
||||
|
||||
return std::make_shared<gpuistl::PreconditionerAdapter<V, V, GPUILU0>>(std::make_shared<GPUILU0>(op.getmat(), split_matrix, tune_gpu_kernels, store_factorization_as_float));
|
||||
return std::make_shared<gpuistl::PreconditionerAdapter<V, V, GPUILU0>>(std::make_shared<GPUILU0>(op.getmat(), split_matrix, tune_gpu_kernels, mixed_precision_scheme));
|
||||
});
|
||||
|
||||
F::addCreator("GPUDILU", [](const O& op, [[maybe_unused]] const P& prm, const std::function<V()>&, std::size_t) {
|
||||
const bool split_matrix = prm.get<bool>("split_matrix", true);
|
||||
const bool tune_gpu_kernels = prm.get<bool>("tune_gpu_kernels", true);
|
||||
const bool store_factorization_as_float = prm.get<bool>("store_factorization_as_float", false);
|
||||
const int mixed_precision_scheme = prm.get<int>("mixed_precision_scheme", 0);
|
||||
using field_type = typename V::field_type;
|
||||
using GPUDILU = typename gpuistl::GpuDILU<M, gpuistl::GpuVector<field_type>, gpuistl::GpuVector<field_type>>;
|
||||
return std::make_shared<gpuistl::PreconditionerAdapter<V, V, GPUDILU>>(std::make_shared<GPUDILU>(op.getmat(), split_matrix, tune_gpu_kernels, store_factorization_as_float));
|
||||
return std::make_shared<gpuistl::PreconditionerAdapter<V, V, GPUDILU>>(std::make_shared<GPUDILU>(op.getmat(), split_matrix, tune_gpu_kernels, mixed_precision_scheme));
|
||||
});
|
||||
|
||||
F::addCreator("GPUDILUFloat", [](const O& op, [[maybe_unused]] const P& prm, const std::function<V()>&, std::size_t) {
|
||||
const bool split_matrix = prm.get<bool>("split_matrix", true);
|
||||
const bool tune_gpu_kernels = prm.get<bool>("tune_gpu_kernels", true);
|
||||
const bool store_factorization_as_float = prm.get<bool>("store_factorization_as_float", false);
|
||||
const int mixed_precision_scheme = prm.get<int>("mixed_precision_scheme", 0);
|
||||
|
||||
using block_type = typename V::block_type;
|
||||
using VTo = Dune::BlockVector<Dune::FieldVector<float, block_type::dimension>>;
|
||||
@ -679,7 +679,7 @@ struct StandardPreconditioners<Operator, Dune::Amg::SequentialInformation> {
|
||||
using Adapter = typename gpuistl::PreconditionerAdapter<VTo, VTo, GpuDILU>;
|
||||
using Converter = typename gpuistl::PreconditionerConvertFieldTypeAdapter<Adapter, M, V, V>;
|
||||
auto converted = std::make_shared<Converter>(op.getmat());
|
||||
auto adapted = std::make_shared<Adapter>(std::make_shared<GpuDILU>(converted->getConvertedMatrix(), split_matrix, tune_gpu_kernels, store_factorization_as_float));
|
||||
auto adapted = std::make_shared<Adapter>(std::make_shared<GpuDILU>(converted->getConvertedMatrix(), split_matrix, tune_gpu_kernels, mixed_precision_scheme));
|
||||
converted->setUnderlyingPreconditioner(adapted);
|
||||
return converted;
|
||||
});
|
||||
|
@ -41,7 +41,7 @@ namespace Opm::gpuistl
|
||||
{
|
||||
|
||||
template <class M, class X, class Y, int l>
|
||||
GpuDILU<M, X, Y, l>::GpuDILU(const M& A, bool splitMatrix, bool tuneKernels, bool storeFactorizationAsFloat)
|
||||
GpuDILU<M, X, Y, l>::GpuDILU(const M& A, bool splitMatrix, bool tuneKernels, int mixedPrecisionScheme)
|
||||
: m_cpuMatrix(A)
|
||||
, m_levelSets(Opm::getMatrixRowColoring(m_cpuMatrix, Opm::ColoringType::LOWER))
|
||||
, m_reorderedToNatural(detail::createReorderedToNatural(m_levelSets))
|
||||
@ -52,8 +52,7 @@ GpuDILU<M, X, Y, l>::GpuDILU(const M& A, bool splitMatrix, bool tuneKernels, boo
|
||||
, m_gpuDInv(m_gpuMatrix.N() * m_gpuMatrix.blockSize() * m_gpuMatrix.blockSize())
|
||||
, m_splitMatrix(splitMatrix)
|
||||
, m_tuneThreadBlockSizes(tuneKernels)
|
||||
, m_storeFactorizationAsFloat(storeFactorizationAsFloat)
|
||||
|
||||
, m_mixedPrecisionScheme(makeMatrixStorageMPScheme(mixedPrecisionScheme))
|
||||
{
|
||||
// TODO: Should in some way verify that this matrix is symmetric, only do it debug mode?
|
||||
// Some sanity check
|
||||
@ -82,14 +81,16 @@ GpuDILU<M, X, Y, l>::GpuDILU(const M& A, bool splitMatrix, bool tuneKernels, boo
|
||||
m_cpuMatrix, m_reorderedToNatural);
|
||||
}
|
||||
|
||||
if (m_storeFactorizationAsFloat) {
|
||||
if (m_mixedPrecisionScheme != MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG) {
|
||||
if (!m_splitMatrix){
|
||||
OPM_THROW(std::runtime_error, "Matrix must be split when storing as float.");
|
||||
}
|
||||
m_gpuMatrixReorderedLowerFloat = std::make_unique<FloatMat>(m_gpuMatrixReorderedLower->getRowIndices(), m_gpuMatrixReorderedLower->getColumnIndices(), blocksize_);
|
||||
m_gpuMatrixReorderedUpperFloat = std::make_unique<FloatMat>(m_gpuMatrixReorderedUpper->getRowIndices(), m_gpuMatrixReorderedUpper->getColumnIndices(), blocksize_);
|
||||
m_gpuMatrixReorderedDiagFloat = std::make_unique<FloatVec>(m_gpuMatrix.N() * m_gpuMatrix.blockSize() * m_gpuMatrix.blockSize());
|
||||
m_gpuDInvFloat = std::make_unique<FloatVec>(m_gpuMatrix.N() * m_gpuMatrix.blockSize() * m_gpuMatrix.blockSize());
|
||||
|
||||
if (m_mixedPrecisionScheme == MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG) {
|
||||
m_gpuDInvFloat = std::make_unique<FloatVec>(m_gpuMatrix.N() * m_gpuMatrix.blockSize() * m_gpuMatrix.blockSize());
|
||||
}
|
||||
}
|
||||
|
||||
computeDiagAndMoveReorderedData(m_moveThreadBlockSize, m_DILUFactorizationThreadBlockSize);
|
||||
@ -123,8 +124,8 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
|
||||
for (int level = 0; level < m_levelSets.size(); ++level) {
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
if (m_splitMatrix) {
|
||||
if (m_storeFactorizationAsFloat) {
|
||||
detail::DILU::solveLowerLevelSetSplit<blocksize_, field_type, float>(
|
||||
if (m_mixedPrecisionScheme == MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG) {
|
||||
detail::DILU::solveLowerLevelSetSplit<blocksize_, field_type, float, float>(
|
||||
m_gpuMatrixReorderedLowerFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLowerFloat->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLowerFloat->getColumnIndices().data(),
|
||||
@ -135,8 +136,20 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
|
||||
d.data(),
|
||||
v.data(),
|
||||
lowerSolveThreadBlockSize);
|
||||
} else if (m_mixedPrecisionScheme == MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG) {
|
||||
detail::DILU::solveLowerLevelSetSplit<blocksize_, field_type, float, field_type>(
|
||||
m_gpuMatrixReorderedLowerFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLowerFloat->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLowerFloat->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data(),
|
||||
d.data(),
|
||||
v.data(),
|
||||
lowerSolveThreadBlockSize);
|
||||
} else {
|
||||
detail::DILU::solveLowerLevelSetSplit<blocksize_, field_type, field_type>(
|
||||
detail::DILU::solveLowerLevelSetSplit<blocksize_, field_type, field_type, field_type>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
@ -170,7 +183,7 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
levelStartIdx -= numOfRowsInLevel;
|
||||
if (m_splitMatrix) {
|
||||
if (m_storeFactorizationAsFloat){
|
||||
if (m_mixedPrecisionScheme == MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG){
|
||||
detail::DILU::solveUpperLevelSetSplit<blocksize_, field_type, float>(
|
||||
m_gpuMatrixReorderedUpperFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getRowIndices().data(),
|
||||
@ -181,6 +194,17 @@ GpuDILU<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, int
|
||||
m_gpuDInvFloat->data(),
|
||||
v.data(),
|
||||
upperSolveThreadBlockSize);
|
||||
} else if (m_mixedPrecisionScheme == MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG){
|
||||
detail::DILU::solveUpperLevelSetSplit<blocksize_, field_type, float>(
|
||||
m_gpuMatrixReorderedUpperFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data(),
|
||||
v.data(),
|
||||
upperSolveThreadBlockSize);
|
||||
} else {
|
||||
detail::DILU::solveUpperLevelSetSplit<blocksize_, field_type, field_type>(
|
||||
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
@ -271,8 +295,8 @@ GpuDILU<M, X, Y, l>::computeDiagAndMoveReorderedData(int moveThreadBlockSize, in
|
||||
for (int level = 0; level < m_levelSets.size(); ++level) {
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
if (m_splitMatrix) {
|
||||
if (m_storeFactorizationAsFloat) {
|
||||
detail::DILU::computeDiluDiagonalSplit<blocksize_, field_type, float, true>(
|
||||
if (m_mixedPrecisionScheme == MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG) {
|
||||
detail::DILU::computeDiluDiagonalSplit<blocksize_, field_type, float, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
@ -289,9 +313,27 @@ GpuDILU<M, X, Y, l>::computeDiagAndMoveReorderedData(int moveThreadBlockSize, in
|
||||
m_gpuMatrixReorderedLowerFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getNonZeroValues().data(),
|
||||
factorizationBlockSize);
|
||||
} else if (m_mixedPrecisionScheme == MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG) {
|
||||
detail::DILU::computeDiluDiagonalSplit<blocksize_, field_type, float, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpper->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedDiag->data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
m_gpuNaturalToReorder.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuDInv.data(),
|
||||
nullptr,
|
||||
m_gpuMatrixReorderedLowerFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getNonZeroValues().data(),
|
||||
factorizationBlockSize);
|
||||
} else {
|
||||
// TODO: should this be field type twice or field type then float in the template?
|
||||
detail::DILU::computeDiluDiagonalSplit<blocksize_, field_type, float, false>(
|
||||
detail::DILU::computeDiluDiagonalSplit<blocksize_, field_type, float, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
|
@ -23,6 +23,7 @@
|
||||
#include <opm/grid/utility/SparseTable.hpp>
|
||||
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
|
||||
#include <opm/simulators/linalg/gpuistl/GpuSparseMatrix.hpp>
|
||||
#include <opm/simulators/linalg/gpuistl/detail/kernel_enums.hpp>
|
||||
#include <vector>
|
||||
|
||||
|
||||
@ -62,7 +63,7 @@ public:
|
||||
//! \param A The matrix to operate on.
|
||||
//! \param w The relaxation factor.
|
||||
//!
|
||||
explicit GpuDILU(const M& A, bool splitMatrix, bool tuneKernels, bool storeFactorizationAsFloat);
|
||||
explicit GpuDILU(const M& A, bool splitMatrix, bool tuneKernels, int mixedPrecisionScheme);
|
||||
|
||||
//! \brief Prepare the preconditioner.
|
||||
//! \note Does nothing at the time being.
|
||||
@ -144,8 +145,8 @@ private:
|
||||
bool m_splitMatrix;
|
||||
//! \brief Bool storing whether or not we will tune the threadblock sizes. Only used for AMD cards
|
||||
bool m_tuneThreadBlockSizes;
|
||||
//! \brief Bool storing whether or not we will store the factorization as float. Only used for mixed precision
|
||||
bool m_storeFactorizationAsFloat;
|
||||
//! \brief Enum describing how we should store the factorized matrix
|
||||
const MatrixStorageMPScheme m_mixedPrecisionScheme;
|
||||
//! \brief variables storing the threadblocksizes to use if using the tuned sizes and AMD cards
|
||||
//! The default value of -1 indicates that we have not calibrated and selected a value yet
|
||||
int m_upperSolveThreadBlockSize = -1;
|
||||
|
@ -41,7 +41,7 @@ namespace Opm::gpuistl
|
||||
{
|
||||
|
||||
template <class M, class X, class Y, int l>
|
||||
OpmGpuILU0<M, X, Y, l>::OpmGpuILU0(const M& A, bool splitMatrix, bool tuneKernels, bool storeFactorizationAsFloat)
|
||||
OpmGpuILU0<M, X, Y, l>::OpmGpuILU0(const M& A, bool splitMatrix, bool tuneKernels, int mixedPrecisionScheme)
|
||||
: m_cpuMatrix(A)
|
||||
, m_levelSets(Opm::getMatrixRowColoring(m_cpuMatrix, Opm::ColoringType::LOWER))
|
||||
, m_reorderedToNatural(detail::createReorderedToNatural(m_levelSets))
|
||||
@ -56,8 +56,9 @@ OpmGpuILU0<M, X, Y, l>::OpmGpuILU0(const M& A, bool splitMatrix, bool tuneKernel
|
||||
, m_gpuDInv(m_gpuMatrix.N() * m_gpuMatrix.blockSize() * m_gpuMatrix.blockSize())
|
||||
, m_splitMatrix(splitMatrix)
|
||||
, m_tuneThreadBlockSizes(tuneKernels)
|
||||
, m_storeFactorizationAsFloat(storeFactorizationAsFloat)
|
||||
, m_mixedPrecisionScheme(makeMatrixStorageMPScheme(mixedPrecisionScheme))
|
||||
{
|
||||
|
||||
// TODO: Should in some way verify that this matrix is symmetric, only do it debug mode?
|
||||
// Some sanity check
|
||||
OPM_ERROR_IF(A.N() != m_gpuMatrix.N(),
|
||||
@ -85,13 +86,16 @@ OpmGpuILU0<M, X, Y, l>::OpmGpuILU0(const M& A, bool splitMatrix, bool tuneKernel
|
||||
m_cpuMatrix, m_reorderedToNatural);
|
||||
}
|
||||
|
||||
if (m_storeFactorizationAsFloat){
|
||||
if (m_mixedPrecisionScheme != MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG){
|
||||
OPM_ERROR_IF(!m_splitMatrix, "Mixed precision GpuILU0 is currently only supported when using split_matrix=true");
|
||||
|
||||
// initialize mixed precision datastructures
|
||||
m_gpuMatrixReorderedLowerFloat = std::make_unique<FloatMat>(m_gpuMatrixReorderedLower->getRowIndices(), m_gpuMatrixReorderedLower->getColumnIndices(), blocksize_);
|
||||
m_gpuMatrixReorderedUpperFloat = std::make_unique<FloatMat>(m_gpuMatrixReorderedUpper->getRowIndices(), m_gpuMatrixReorderedUpper->getColumnIndices(), blocksize_);
|
||||
m_gpuMatrixReorderedDiagFloat.emplace(GpuVector<float>(m_gpuMatrix.N() * m_gpuMatrix.blockSize() * m_gpuMatrix.blockSize()));
|
||||
// The MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG does not need to allocate this float vector
|
||||
if (m_mixedPrecisionScheme == MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG) {
|
||||
m_gpuMatrixReorderedDiagFloat.emplace(GpuVector<float>(m_gpuMatrix.N() * m_gpuMatrix.blockSize() * m_gpuMatrix.blockSize()));
|
||||
}
|
||||
}
|
||||
|
||||
LUFactorizeAndMoveData(m_moveThreadBlockSize, m_ILU0FactorizationThreadBlockSize);
|
||||
@ -128,7 +132,7 @@ OpmGpuILU0<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, i
|
||||
for (int level = 0; level < m_levelSets.size(); ++level) {
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
if (m_splitMatrix) {
|
||||
if (m_storeFactorizationAsFloat){
|
||||
if (m_mixedPrecisionScheme != MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG) {
|
||||
detail::ILU0::solveLowerLevelSetSplit<blocksize_, field_type, float>(
|
||||
m_gpuMatrixReorderedLowerFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLowerFloat->getRowIndices().data(),
|
||||
@ -171,8 +175,8 @@ OpmGpuILU0<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, i
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
levelStartIdx -= numOfRowsInLevel;
|
||||
if (m_splitMatrix) {
|
||||
if (m_storeFactorizationAsFloat) {
|
||||
detail::ILU0::solveUpperLevelSetSplit<blocksize_, field_type, float>(
|
||||
if (m_mixedPrecisionScheme == MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG) {
|
||||
detail::ILU0::solveUpperLevelSetSplit<blocksize_, field_type, float, float>(
|
||||
m_gpuMatrixReorderedUpperFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getColumnIndices().data(),
|
||||
@ -183,8 +187,20 @@ OpmGpuILU0<M, X, Y, l>::apply(X& v, const Y& d, int lowerSolveThreadBlockSize, i
|
||||
v.data(),
|
||||
upperSolveThreadBlockSize);
|
||||
}
|
||||
else if (m_mixedPrecisionScheme == MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG) {
|
||||
detail::ILU0::solveUpperLevelSetSplit<blocksize_, field_type, float, field_type>(
|
||||
m_gpuMatrixReorderedUpperFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getColumnIndices().data(),
|
||||
m_gpuReorderToNatural.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
m_gpuMatrixReorderedDiag.value().data(),
|
||||
v.data(),
|
||||
upperSolveThreadBlockSize);
|
||||
}
|
||||
else{
|
||||
detail::ILU0::solveUpperLevelSetSplit<blocksize_, field_type, field_type>(
|
||||
detail::ILU0::solveUpperLevelSetSplit<blocksize_, field_type, field_type, field_type>(
|
||||
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpper->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getColumnIndices().data(),
|
||||
@ -272,8 +288,8 @@ OpmGpuILU0<M, X, Y, l>::LUFactorizeAndMoveData(int moveThreadBlockSize, int fact
|
||||
const int numOfRowsInLevel = m_levelSets[level].size();
|
||||
|
||||
if (m_splitMatrix) {
|
||||
if (m_storeFactorizationAsFloat){
|
||||
detail::ILU0::LUFactorizationSplit<blocksize_, field_type, float, true>(
|
||||
if (m_mixedPrecisionScheme == MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG){
|
||||
detail::ILU0::LUFactorizationSplit<blocksize_, field_type, float, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
@ -290,8 +306,26 @@ OpmGpuILU0<M, X, Y, l>::LUFactorizeAndMoveData(int moveThreadBlockSize, int fact
|
||||
numOfRowsInLevel,
|
||||
factorizationThreadBlockSize);
|
||||
}
|
||||
else if (m_mixedPrecisionScheme == MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG){
|
||||
detail::ILU0::LUFactorizationSplit<blocksize_, field_type, float, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpper->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedUpper->getColumnIndices().data(),
|
||||
m_gpuMatrixReorderedDiag.value().data(),
|
||||
m_gpuMatrixReorderedLowerFloat->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedUpperFloat->getNonZeroValues().data(),
|
||||
nullptr,
|
||||
m_gpuReorderToNatural.data(),
|
||||
m_gpuNaturalToReorder.data(),
|
||||
levelStartIdx,
|
||||
numOfRowsInLevel,
|
||||
factorizationThreadBlockSize);
|
||||
}
|
||||
else{
|
||||
detail::ILU0::LUFactorizationSplit<blocksize_, field_type, float, false>(
|
||||
detail::ILU0::LUFactorizationSplit<blocksize_, field_type, float, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>(
|
||||
m_gpuMatrixReorderedLower->getNonZeroValues().data(),
|
||||
m_gpuMatrixReorderedLower->getRowIndices().data(),
|
||||
m_gpuMatrixReorderedLower->getColumnIndices().data(),
|
||||
|
@ -24,6 +24,7 @@
|
||||
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
|
||||
#include <opm/simulators/linalg/gpuistl/GpuSparseMatrix.hpp>
|
||||
#include <opm/simulators/linalg/gpuistl/GpuVector.hpp>
|
||||
#include <opm/simulators/linalg/gpuistl/detail/kernel_enums.hpp>
|
||||
#include <optional>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
@ -64,7 +65,7 @@ public:
|
||||
//! \param A The matrix to operate on.
|
||||
//! \param w The relaxation factor.
|
||||
//!
|
||||
explicit OpmGpuILU0(const M& A, bool splitMatrix, bool tuneKernels, bool storeFactorizationAsFloat);
|
||||
explicit OpmGpuILU0(const M& A, bool splitMatrix, bool tuneKernels, int mixedPrecisionScheme);
|
||||
|
||||
//! \brief Prepare the preconditioner.
|
||||
//! \note Does nothing at the time being.
|
||||
@ -143,9 +144,8 @@ private:
|
||||
bool m_splitMatrix;
|
||||
//! \brief Bool storing whether or not we will tune the threadblock sizes. Only used for AMD cards
|
||||
bool m_tuneThreadBlockSizes;
|
||||
//! \brief Bool storing whether or not we should store the ILU factorization in a float datastructure.
|
||||
//! This uses a mixed precision preconditioner to trade numerical accuracy for memory transfer speed.
|
||||
bool m_storeFactorizationAsFloat;
|
||||
//! \brief Enum storing how we should store the factorized matrix
|
||||
const MatrixStorageMPScheme m_mixedPrecisionScheme;
|
||||
//! \brief variables storing the threadblocksizes to use if using the tuned sizes and AMD cards
|
||||
//! The default value of -1 indicates that we have not calibrated and selected a value yet
|
||||
int m_upperSolveThreadBlockSize = -1;
|
||||
|
109
opm/simulators/linalg/gpuistl/detail/kernel_enums.hpp
Normal file
109
opm/simulators/linalg/gpuistl/detail/kernel_enums.hpp
Normal file
@ -0,0 +1,109 @@
|
||||
/*
|
||||
Copyright 2024 Equinor ASA
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_GPUISTL_KERNEL_ENUMS_HPP
|
||||
#define OPM_GPUISTL_KERNEL_ENUMS_HPP
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
/*
|
||||
This file organizes a growing amount of different mixed precision options for the preconditioners.
|
||||
*/
|
||||
|
||||
namespace Opm::gpuistl {
|
||||
// Mixed precision schemes used for storing the matrix in GPU memory
|
||||
enum class MatrixStorageMPScheme {
|
||||
DOUBLE_DIAG_DOUBLE_OFFDIAG = 0, // full precision should be default
|
||||
FLOAT_DIAG_FLOAT_OFFDIAG = 1,
|
||||
DOUBLE_DIAG_FLOAT_OFFDIAG = 2
|
||||
};
|
||||
|
||||
namespace detail {
|
||||
bool isValidMatrixStorageMPScheme(int scheme);
|
||||
}
|
||||
|
||||
inline MatrixStorageMPScheme makeMatrixStorageMPScheme(int scheme) {
|
||||
if (!detail::isValidMatrixStorageMPScheme(scheme)) {
|
||||
OPM_THROW(std::invalid_argument,
|
||||
fmt::format("Invalid matrix storage mixed precision scheme chosen: {}.\n"
|
||||
"Valid Schemes:\n"
|
||||
"\t0: DOUBLE_DIAG_DOUBLE_OFFDIAG\n"
|
||||
"\t1: FLOAT_DIAG_FLOAT_OFFDIAG\n"
|
||||
"\t2: DOUBLE_DIAG_FLOAT_OFFDIAG",
|
||||
scheme));
|
||||
}
|
||||
return static_cast<MatrixStorageMPScheme>(scheme);
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
|
||||
__host__ __device__ constexpr bool storeDiagonalAsFloat(MatrixStorageMPScheme scheme) {
|
||||
switch (scheme) {
|
||||
case MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG:
|
||||
return false;
|
||||
case MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG:
|
||||
return true;
|
||||
case MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG:
|
||||
return false;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
__host__ __device__ constexpr bool storeOffDiagonalAsFloat(MatrixStorageMPScheme scheme) {
|
||||
switch (scheme) {
|
||||
case MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG:
|
||||
return false;
|
||||
case MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG:
|
||||
return true;
|
||||
case MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// returns true if we use anything else that the the default double precision for everything
|
||||
__host__ __device__ constexpr bool usingMixedPrecision(MatrixStorageMPScheme scheme) {
|
||||
switch (scheme) {
|
||||
case MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG:
|
||||
return false;
|
||||
case MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG:
|
||||
return true;
|
||||
case MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
inline bool isValidMatrixStorageMPScheme(int scheme) {
|
||||
switch (static_cast<MatrixStorageMPScheme>(scheme)) {
|
||||
case MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG:
|
||||
case MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG:
|
||||
case MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // OPM_GPUISTL_KERNEL_ENUMS_HPP
|
@ -59,14 +59,14 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar, class DiagonalScalar>
|
||||
__global__ void cuSolveLowerLevelSetSplit(MatrixScalar* mat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const MatrixScalar* dInv,
|
||||
const DiagonalScalar* dInv,
|
||||
const LinearSolverScalar* d,
|
||||
LinearSolverScalar* v)
|
||||
{
|
||||
@ -88,7 +88,7 @@ namespace
|
||||
mmvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&mat[block * blocksize * blocksize], &v[col * blocksize], rhs);
|
||||
}
|
||||
|
||||
mvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
|
||||
mvMixedGeneral<blocksize, DiagonalScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -118,14 +118,14 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar, class DiagonalScalar>
|
||||
__global__ void cuSolveUpperLevelSetSplit(MatrixScalar* mat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const MatrixScalar* dInv,
|
||||
const DiagonalScalar* dInv,
|
||||
LinearSolverScalar* v)
|
||||
{
|
||||
const auto reorderedRowIdx = startIdx + (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
@ -140,7 +140,7 @@ namespace
|
||||
umvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&mat[block * blocksize * blocksize], &v[col * blocksize], rhs);
|
||||
}
|
||||
|
||||
mmvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
|
||||
mmvMixedGeneral<blocksize, DiagonalScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(&dInv[reorderedRowIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -213,7 +213,7 @@ namespace
|
||||
|
||||
// TODO: rewrite such that during the factorization there is a dInv of InputScalar type that stores intermediate results
|
||||
// TOOD: The important part is to only cast after that is fully computed
|
||||
template <int blocksize, class InputScalar, class OutputScalar, bool copyResultToOtherMatrix>
|
||||
template <int blocksize, class InputScalar, class OutputScalar, MatrixStorageMPScheme mixedPrecisionScheme>
|
||||
__global__ void cuComputeDiluDiagonalSplit(const InputScalar* srcReorderedLowerMat,
|
||||
int* lowerRowIndices,
|
||||
int* lowerColIndices,
|
||||
@ -255,7 +255,7 @@ namespace
|
||||
|
||||
const int symOppositeBlock = symOppositeIdx;
|
||||
|
||||
if constexpr (copyResultToOtherMatrix) {
|
||||
if constexpr (detail::storeOffDiagonalAsFloat(mixedPrecisionScheme)) {
|
||||
// TODO: think long and hard about whether this performs only the wanted memory transfers
|
||||
moveBlock<blocksize, InputScalar, OutputScalar>(&srcReorderedLowerMat[block * blocksize * blocksize], &dstLowerMat[block * blocksize * blocksize]);
|
||||
moveBlock<blocksize, InputScalar, OutputScalar>(&srcReorderedUpperMat[symOppositeBlock * blocksize * blocksize], &dstUpperMat[symOppositeBlock * blocksize * blocksize]);
|
||||
@ -268,14 +268,9 @@ namespace
|
||||
}
|
||||
|
||||
invBlockInPlace<InputScalar, blocksize>(dInvTmp);
|
||||
|
||||
// for (int i = 0; i < blocksize; ++i) {
|
||||
// for (int j = 0; j < blocksize; ++j) {
|
||||
// dInv[reorderedRowIdx * blocksize * blocksize + i * blocksize + j] = dInvTmp[i * blocksize + j];
|
||||
// }
|
||||
// }
|
||||
moveBlock<blocksize, InputScalar, InputScalar>(dInvTmp, &dInv[reorderedRowIdx * blocksize * blocksize]);
|
||||
if constexpr (copyResultToOtherMatrix) {
|
||||
|
||||
if constexpr (detail::storeDiagonalAsFloat(mixedPrecisionScheme)) {
|
||||
moveBlock<blocksize, InputScalar, OutputScalar>(dInvTmp, &dstDiag[reorderedRowIdx * blocksize * blocksize]); // important!
|
||||
}
|
||||
}
|
||||
@ -304,7 +299,7 @@ solveLowerLevelSet(T* reorderedMat,
|
||||
}
|
||||
|
||||
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar, class DiagonalScalar>
|
||||
void
|
||||
solveLowerLevelSetSplit(MatrixScalar* reorderedMat,
|
||||
int* rowIndices,
|
||||
@ -312,15 +307,15 @@ solveLowerLevelSetSplit(MatrixScalar* reorderedMat,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const MatrixScalar* dInv,
|
||||
const DiagonalScalar* dInv,
|
||||
const LinearSolverScalar* d,
|
||||
LinearSolverScalar* v,
|
||||
int thrBlockSize)
|
||||
{
|
||||
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
|
||||
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar>, thrBlockSize);
|
||||
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>, thrBlockSize);
|
||||
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
|
||||
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar><<<nThreadBlocks, threadBlockSize>>>(
|
||||
cuSolveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar><<<nThreadBlocks, threadBlockSize>>>(
|
||||
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, d, v);
|
||||
}
|
||||
// perform the upper solve for all rows in the same level set
|
||||
@ -343,7 +338,7 @@ solveUpperLevelSet(T* reorderedMat,
|
||||
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, v);
|
||||
}
|
||||
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar, class DiagonalScalar>
|
||||
void
|
||||
solveUpperLevelSetSplit(MatrixScalar* reorderedMat,
|
||||
int* rowIndices,
|
||||
@ -351,14 +346,14 @@ solveUpperLevelSetSplit(MatrixScalar* reorderedMat,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const MatrixScalar* dInv,
|
||||
const DiagonalScalar* dInv,
|
||||
LinearSolverScalar* v,
|
||||
int thrBlockSize)
|
||||
{
|
||||
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
|
||||
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar>, thrBlockSize);
|
||||
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>, thrBlockSize);
|
||||
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
|
||||
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar><<<nThreadBlocks, threadBlockSize>>>(
|
||||
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar><<<nThreadBlocks, threadBlockSize>>>(
|
||||
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, v);
|
||||
}
|
||||
|
||||
@ -391,7 +386,7 @@ computeDiluDiagonal(T* reorderedMat,
|
||||
}
|
||||
}
|
||||
|
||||
template <int blocksize, class InputScalar, class OutputScalar, bool copyResultToOtherMatrix>
|
||||
template <int blocksize, class InputScalar, class OutputScalar, MatrixStorageMPScheme scheme>
|
||||
void
|
||||
computeDiluDiagonalSplit(const InputScalar* srcReorderedLowerMat,
|
||||
int* lowerRowIndices,
|
||||
@ -412,9 +407,9 @@ computeDiluDiagonalSplit(const InputScalar* srcReorderedLowerMat,
|
||||
{
|
||||
if (blocksize <= 3) {
|
||||
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
|
||||
cuComputeDiluDiagonalSplit<blocksize, InputScalar, OutputScalar, copyResultToOtherMatrix>, thrBlockSize);
|
||||
cuComputeDiluDiagonalSplit<blocksize, InputScalar, OutputScalar, scheme>, thrBlockSize);
|
||||
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
|
||||
cuComputeDiluDiagonalSplit<blocksize, InputScalar, OutputScalar, copyResultToOtherMatrix><<<nThreadBlocks, threadBlockSize>>>(srcReorderedLowerMat,
|
||||
cuComputeDiluDiagonalSplit<blocksize, InputScalar, OutputScalar, scheme><<<nThreadBlocks, threadBlockSize>>>(srcReorderedLowerMat,
|
||||
lowerRowIndices,
|
||||
lowerColIndices,
|
||||
srcReorderedUpperMat,
|
||||
@ -437,13 +432,17 @@ computeDiluDiagonalSplit(const InputScalar* srcReorderedLowerMat,
|
||||
// TODO: format
|
||||
#define INSTANTIATE_KERNEL_WRAPPERS(T, blocksize) \
|
||||
template void computeDiluDiagonal<T, blocksize>(T*, int*, int*, int*, int*, const int, int, T*, int); \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, double, false>( \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
|
||||
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, double*, double*, double*, int); \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, float, false>( \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
|
||||
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, float*, float*, float*, int); \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, float, true>( \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, float, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
|
||||
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, float*, float*, float*, int); \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, double, true>( \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, double, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
|
||||
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, double*, double*, double*, int); \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
|
||||
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, float*, float*, float*, int); \
|
||||
template void computeDiluDiagonalSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
|
||||
const T*, int*, int*, const T*, int*, int*, const T*, int*, int*, const int, int, T*, double*, double*, double*, int); \
|
||||
template void solveUpperLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, T*, int); \
|
||||
template void solveLowerLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, const T*, T*, int);
|
||||
@ -461,29 +460,26 @@ INSTANTIATE_KERNEL_WRAPPERS(double, 4);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(double, 5);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(double, 6);
|
||||
|
||||
#define INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, LinearSolverScalar, MatrixScalar) \
|
||||
template void solveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar>( \
|
||||
MatrixScalar*, int*, int*, int*, int, int, const MatrixScalar*, LinearSolverScalar*, int); \
|
||||
template void solveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar>( \
|
||||
MatrixScalar*, int*, int*, int*, int, int, const MatrixScalar*, const LinearSolverScalar*, LinearSolverScalar*, int);
|
||||
#define INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar) \
|
||||
template void solveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>( \
|
||||
MatrixScalar*, int*, int*, int*, int, int, const DiagonalScalar*, LinearSolverScalar*, int); \
|
||||
template void solveLowerLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>( \
|
||||
MatrixScalar*, int*, int*, int*, int, int, const DiagonalScalar*, const LinearSolverScalar*, LinearSolverScalar*, int);
|
||||
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(1, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(2, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(3, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(4, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(5, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(6, float, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(1, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(2, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(3, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(4, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(5, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(6, double, double);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(1, double, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(2, double, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(3, double, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(4, double, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(5, double, float);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(6, double, float);
|
||||
// TODO: be smarter about this... Surely this instantiates many more combinations that are actually needed
|
||||
#define INSTANTIATE_SOLVE_LEVEL_SET_SPLIT_ALL(blocksize) \
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, float, float, float); \
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, double, double, float); \
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, double, float, float); \
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, float, float, double); \
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, double, double, double); \
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT(blocksize, double, float, double);
|
||||
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT_ALL(1);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT_ALL(2);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT_ALL(3);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT_ALL(4);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT_ALL(5);
|
||||
INSTANTIATE_SOLVE_LEVEL_SET_SPLIT_ALL(6);
|
||||
|
||||
} // namespace Opm::gpuistl::detail::DILU
|
||||
|
@ -22,6 +22,7 @@
|
||||
#include <cstddef>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <opm/simulators/linalg/gpuistl/detail/kernel_enums.hpp>
|
||||
#include <vector>
|
||||
|
||||
namespace Opm::gpuistl::detail::DILU
|
||||
@ -71,14 +72,14 @@ void solveLowerLevelSet(T* reorderedMat,
|
||||
* @param d Stores the defect
|
||||
* @param [out] v Will store the results of the lower solve
|
||||
*/
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar, class DiagonalScalar>
|
||||
void solveLowerLevelSetSplit(MatrixScalar* reorderedUpperMat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const MatrixScalar* dInv,
|
||||
const DiagonalScalar* dInv,
|
||||
const LinearSolverScalar* d,
|
||||
LinearSolverScalar* v,
|
||||
int threadBlockSize);
|
||||
@ -124,14 +125,14 @@ void solveUpperLevelSet(T* reorderedMat,
|
||||
* @param [out] v Will store the results of the lower solve. To begin with it should store the output from the lower
|
||||
* solve
|
||||
*/
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar, class DiagonalScalar>
|
||||
void solveUpperLevelSetSplit(MatrixScalar* reorderedUpperMat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const MatrixScalar* dInv,
|
||||
const DiagonalScalar* dInv,
|
||||
LinearSolverScalar* v,
|
||||
int threadBlockSize);
|
||||
|
||||
@ -183,7 +184,7 @@ void computeDiluDiagonal(T* reorderedMat,
|
||||
* function
|
||||
* @param [out] dInv The diagonal matrix used by the Diagonal ILU preconditioner
|
||||
*/
|
||||
template <int blocksize, class InputScalar, class OutputScalar, bool copyResultToOtherMatrix>
|
||||
template <int blocksize, class InputScalar, class OutputScalar, MatrixStorageMPScheme>
|
||||
void computeDiluDiagonalSplit(const InputScalar* srcReorderedLowerMat,
|
||||
int* lowerRowIndices,
|
||||
int* lowerColIndices,
|
||||
|
@ -120,7 +120,7 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
template <int blocksize, class InputScalar, class OutputScalar, bool copyResultToOtherMatrix>
|
||||
template <int blocksize, class InputScalar, class OutputScalar, MatrixStorageMPScheme mixedPrecisionScheme>
|
||||
__global__ void cuLUFactorizationSplit(InputScalar* srcReorderedLowerMat,
|
||||
int* lowerRowIndices,
|
||||
int* lowerColIndices,
|
||||
@ -161,7 +161,7 @@ namespace
|
||||
mmOverlap<InputScalar, blocksize>(&srcReorderedLowerMat[ij * scalarsInBlock],
|
||||
&srcDiagonal[j * scalarsInBlock],
|
||||
&srcReorderedLowerMat[ij * scalarsInBlock]);
|
||||
if (copyResultToOtherMatrix) {
|
||||
if constexpr (detail::storeOffDiagonalAsFloat(mixedPrecisionScheme)) {
|
||||
moveBlock<blocksize, InputScalar, OutputScalar>(&srcReorderedLowerMat[ij * scalarsInBlock],
|
||||
&dstReorderedLowerMat[ij * scalarsInBlock]);
|
||||
}
|
||||
@ -180,22 +180,15 @@ namespace
|
||||
while (!(ik == endOfRowIUpper && ikState == POSITION_TYPE::ABOVE_DIAG) && jk != endOfRowJ) {
|
||||
|
||||
InputScalar* ikBlockPtr;
|
||||
OutputScalar* dstIkBlockPtr;
|
||||
int ikColumn;
|
||||
if (ikState == POSITION_TYPE::UNDER_DIAG) {
|
||||
ikBlockPtr = &srcReorderedLowerMat[ik * scalarsInBlock];
|
||||
if (copyResultToOtherMatrix)
|
||||
dstIkBlockPtr = &dstReorderedLowerMat[ik * scalarsInBlock];
|
||||
ikColumn = lowerColIndices[ik];
|
||||
} else if (ikState == POSITION_TYPE::ON_DIAG) {
|
||||
ikBlockPtr = &srcDiagonal[reorderedIdx * scalarsInBlock];
|
||||
if (copyResultToOtherMatrix)
|
||||
dstIkBlockPtr = &dstDiagonal[reorderedIdx * scalarsInBlock];
|
||||
ikColumn = naturalIdx;
|
||||
} else { // ikState == POSITION_TYPE::ABOVE_DIAG
|
||||
ikBlockPtr = &srcReorderedUpperMat[ik * scalarsInBlock];
|
||||
if (copyResultToOtherMatrix)
|
||||
dstIkBlockPtr = &dstReorderedUpperMat[ik * scalarsInBlock];
|
||||
ikColumn = upperColIndices[ik];
|
||||
}
|
||||
|
||||
@ -219,10 +212,15 @@ namespace
|
||||
}
|
||||
}
|
||||
invBlockInPlace<InputScalar, blocksize>(&srcDiagonal[reorderedIdx * scalarsInBlock]);
|
||||
if (copyResultToOtherMatrix) {
|
||||
moveBlock<blocksize, InputScalar, OutputScalar>(&srcDiagonal[reorderedIdx * scalarsInBlock],
|
||||
&dstDiagonal[reorderedIdx * scalarsInBlock]);
|
||||
|
||||
// as of now, if we are using mixed precision, then we are always storing the off-diagonals as floats,
|
||||
// and sometimes also the diagonal.
|
||||
if constexpr (detail::usingMixedPrecision(mixedPrecisionScheme)) {
|
||||
// if we are want to store the entire matrix as a float then we must also move the diagonal block from double to float
|
||||
// if not then we just use the double diagonal that is already now stored in srcDiagonal
|
||||
if constexpr (detail::storeDiagonalAsFloat(mixedPrecisionScheme)){
|
||||
moveBlock<blocksize, InputScalar, OutputScalar>(&srcDiagonal[reorderedIdx * scalarsInBlock],
|
||||
&dstDiagonal[reorderedIdx * scalarsInBlock]);
|
||||
}
|
||||
// also move all values above the diagonal on this row
|
||||
for (int block = startOfRowIUpper; block < endOfRowIUpper; ++block) {
|
||||
moveBlock<blocksize, InputScalar, OutputScalar>(&srcReorderedUpperMat[block * scalarsInBlock],
|
||||
@ -321,14 +319,14 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar, class DiagonalScalar>
|
||||
__global__ void cuSolveUpperLevelSetSplit(MatrixScalar* mat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const MatrixScalar* dInv,
|
||||
const DiagonalScalar* dInv,
|
||||
LinearSolverScalar* v)
|
||||
{
|
||||
auto reorderedIdx = startIdx + (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
@ -348,7 +346,7 @@ namespace
|
||||
&mat[block * blocksize * blocksize], &v[col * blocksize], rhs);
|
||||
}
|
||||
|
||||
mvMixedGeneral<blocksize, MatrixScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(
|
||||
mvMixedGeneral<blocksize, DiagonalScalar, LinearSolverScalar, LinearSolverScalar, LinearSolverScalar>(
|
||||
&dInv[reorderedIdx * blocksize * blocksize], rhs, &v[naturalRowIdx * blocksize]);
|
||||
}
|
||||
}
|
||||
@ -410,7 +408,7 @@ solveLowerLevelSetSplit(MatrixScalar* reorderedMat,
|
||||
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, d, v);
|
||||
}
|
||||
// perform the upper solve for all rows in the same level set
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar, class DiagonalScalar>
|
||||
void
|
||||
solveUpperLevelSetSplit(MatrixScalar* reorderedMat,
|
||||
int* rowIndices,
|
||||
@ -418,14 +416,14 @@ solveUpperLevelSetSplit(MatrixScalar* reorderedMat,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const MatrixScalar* dInv,
|
||||
const DiagonalScalar* dInv,
|
||||
LinearSolverScalar* v,
|
||||
int thrBlockSize)
|
||||
{
|
||||
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
|
||||
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar>, thrBlockSize);
|
||||
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar>, thrBlockSize);
|
||||
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
|
||||
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar><<<nThreadBlocks, threadBlockSize>>>(
|
||||
cuSolveUpperLevelSetSplit<blocksize, LinearSolverScalar, MatrixScalar, DiagonalScalar><<<nThreadBlocks, threadBlockSize>>>(
|
||||
reorderedMat, rowIndices, colIndices, indexConversion, startIdx, rowsInLevelSet, dInv, v);
|
||||
}
|
||||
|
||||
@ -447,7 +445,7 @@ LUFactorization(T* srcMatrix,
|
||||
srcMatrix, srcRowIndices, srcColumnIndices, naturalToReordered, reorderedToNatual, rowsInLevelSet, startIdx);
|
||||
}
|
||||
|
||||
template <int blocksize, class InputScalar, class OutputScalar, bool copyResultToOtherMatrix>
|
||||
template <int blocksize, class InputScalar, class OutputScalar, MatrixStorageMPScheme mixedPrecisionScheme>
|
||||
void
|
||||
LUFactorizationSplit(InputScalar* srcReorderedLowerMat,
|
||||
int* lowerRowIndices,
|
||||
@ -466,9 +464,9 @@ LUFactorizationSplit(InputScalar* srcReorderedLowerMat,
|
||||
int thrBlockSize)
|
||||
{
|
||||
int threadBlockSize = ::Opm::gpuistl::detail::getCudaRecomendedThreadBlockSize(
|
||||
cuLUFactorizationSplit<blocksize, InputScalar, OutputScalar, copyResultToOtherMatrix>, thrBlockSize);
|
||||
cuLUFactorizationSplit<blocksize, InputScalar, OutputScalar, mixedPrecisionScheme>, thrBlockSize);
|
||||
int nThreadBlocks = ::Opm::gpuistl::detail::getNumberOfBlocks(rowsInLevelSet, threadBlockSize);
|
||||
cuLUFactorizationSplit<blocksize, InputScalar, OutputScalar, copyResultToOtherMatrix>
|
||||
cuLUFactorizationSplit<blocksize, InputScalar, OutputScalar, mixedPrecisionScheme>
|
||||
<<<nThreadBlocks, threadBlockSize>>>(srcReorderedLowerMat,
|
||||
lowerRowIndices,
|
||||
lowerColIndices,
|
||||
@ -489,27 +487,29 @@ LUFactorizationSplit(InputScalar* srcReorderedLowerMat,
|
||||
template void solveUpperLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, T*, int); \
|
||||
template void solveLowerLevelSet<T, blocksize>(T*, int*, int*, int*, int, int, const T*, T*, int); \
|
||||
template void LUFactorization<T, blocksize>(T*, int*, int*, int*, int*, size_t, int, int); \
|
||||
template void LUFactorizationSplit<blocksize, T, float, true>( \
|
||||
template void LUFactorizationSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
|
||||
T*, int*, int*, T*, int*, int*, T*, float*, float*, float*, int*, int*, const int, int, int); \
|
||||
template void LUFactorizationSplit<blocksize, T, double, true>( \
|
||||
template void LUFactorizationSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_DOUBLE_OFFDIAG>( \
|
||||
T*, int*, int*, T*, int*, int*, T*, double*, double*, double*, int*, int*, const int, int, int); \
|
||||
template void LUFactorizationSplit<blocksize, T, float, false>( \
|
||||
template void LUFactorizationSplit<blocksize, T, float, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
|
||||
T*, int*, int*, T*, int*, int*, T*, float*, float*, float*, int*, int*, const int, int, int); \
|
||||
template void LUFactorizationSplit<blocksize, T, double, false>( \
|
||||
template void LUFactorizationSplit<blocksize, T, double, MatrixStorageMPScheme::FLOAT_DIAG_FLOAT_OFFDIAG>( \
|
||||
T*, int*, int*, T*, int*, int*, T*, double*, double*, double*, int*, int*, const int, int, int); \
|
||||
template void LUFactorizationSplit<blocksize, T, float, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
|
||||
T*, int*, int*, T*, int*, int*, T*, float*, float*, float*, int*, int*, const int, int, int); \
|
||||
template void LUFactorizationSplit<blocksize, T, double, MatrixStorageMPScheme::DOUBLE_DIAG_FLOAT_OFFDIAG>( \
|
||||
T*, int*, int*, T*, int*, int*, T*, double*, double*, double*, int*, int*, const int, int, int);
|
||||
|
||||
INSTANTIATE_KERNEL_WRAPPERS(float, 1);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(float, 2);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(float, 3);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(float, 4);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(float, 5);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(float, 6);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(double, 1);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(double, 2);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(double, 3);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(double, 4);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(double, 5);
|
||||
INSTANTIATE_KERNEL_WRAPPERS(double, 6);
|
||||
#define INSTANTIATE_BLOCK_SIZED_KERNEL_WRAPPERS(T) \
|
||||
INSTANTIATE_KERNEL_WRAPPERS(T, 1); \
|
||||
INSTANTIATE_KERNEL_WRAPPERS(T, 2); \
|
||||
INSTANTIATE_KERNEL_WRAPPERS(T, 3); \
|
||||
INSTANTIATE_KERNEL_WRAPPERS(T, 4); \
|
||||
INSTANTIATE_KERNEL_WRAPPERS(T, 5); \
|
||||
INSTANTIATE_KERNEL_WRAPPERS(T, 6);
|
||||
|
||||
INSTANTIATE_BLOCK_SIZED_KERNEL_WRAPPERS(float)
|
||||
INSTANTIATE_BLOCK_SIZED_KERNEL_WRAPPERS(double)
|
||||
|
||||
#define INSTANTIATE_MIXED_PRECISION_KERNEL_WRAPPERS(blocksize) \
|
||||
/* double preconditioner */ \
|
||||
@ -523,15 +523,25 @@ INSTANTIATE_KERNEL_WRAPPERS(double, 6);
|
||||
float*, int*, int*, int*, int, int, const float*, float*, int); \
|
||||
\
|
||||
/* double preconditioner */ \
|
||||
template void solveUpperLevelSetSplit<blocksize, double, double>( \
|
||||
template void solveUpperLevelSetSplit<blocksize, double, double, double>( \
|
||||
double*, int*, int*, int*, int, int, const double*, double*, int); \
|
||||
/* float matrix, double compute preconditioner */ \
|
||||
template void solveUpperLevelSetSplit<blocksize, double, float>( \
|
||||
template void solveUpperLevelSetSplit<blocksize, double, float, double>( \
|
||||
float*, int*, int*, int*, int, int, const double*, double*, int); \
|
||||
/* float preconditioner */ \
|
||||
template void solveUpperLevelSetSplit<blocksize, float, float, double>( \
|
||||
float*, int*, int*, int*, int, int, const double*, float*, int); \
|
||||
/* double preconditioner */ \
|
||||
template void solveUpperLevelSetSplit<blocksize, double, double, float>( \
|
||||
double*, int*, int*, int*, int, int, const float*, double*, int); \
|
||||
/* float matrix, double compute preconditioner */ \
|
||||
template void solveUpperLevelSetSplit<blocksize, double, float, float>( \
|
||||
float*, int*, int*, int*, int, int, const float*, double*, int); \
|
||||
/* float preconditioner */ \
|
||||
template void solveUpperLevelSetSplit<blocksize, float, float>( \
|
||||
template void solveUpperLevelSetSplit<blocksize, float, float, float>( \
|
||||
float*, int*, int*, int*, int, int, const float*, float*, int);
|
||||
|
||||
|
||||
INSTANTIATE_MIXED_PRECISION_KERNEL_WRAPPERS(1);
|
||||
INSTANTIATE_MIXED_PRECISION_KERNEL_WRAPPERS(2);
|
||||
INSTANTIATE_MIXED_PRECISION_KERNEL_WRAPPERS(3);
|
||||
|
@ -20,6 +20,7 @@
|
||||
#define OPM_ILU0_KERNELS_HPP
|
||||
#include <cstddef>
|
||||
#include <vector>
|
||||
#include <opm/simulators/linalg/gpuistl/detail/kernel_enums.hpp>
|
||||
namespace Opm::gpuistl::detail::ILU0
|
||||
{
|
||||
|
||||
@ -89,14 +90,14 @@ void solveLowerLevelSet(T* reorderedMat,
|
||||
* solve
|
||||
* @param threadBlockSize The number of threads per threadblock. Leave as -1 if no blocksize is already chosen
|
||||
*/
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar>
|
||||
template <int blocksize, class LinearSolverScalar, class MatrixScalar, class DiagonalScalar>
|
||||
void solveUpperLevelSetSplit(MatrixScalar* reorderedMat,
|
||||
int* rowIndices,
|
||||
int* colIndices,
|
||||
int* indexConversion,
|
||||
int startIdx,
|
||||
int rowsInLevelSet,
|
||||
const MatrixScalar* dInv,
|
||||
const DiagonalScalar* dInv,
|
||||
LinearSolverScalar* v,
|
||||
int threadBlockSize);
|
||||
|
||||
@ -176,7 +177,7 @@ void LUFactorization(T* reorderedMat,
|
||||
* function
|
||||
* @param threadBlockSize The number of threads per threadblock. Leave as -1 if no blocksize is already chosen
|
||||
*/
|
||||
template <int blocksize, class InputScalar, class OutputScalar, bool copyResultToOtherMatrix>
|
||||
template <int blocksize, class InputScalar, class OutputScalar, MatrixStorageMPScheme mixedPrecisionScheme>
|
||||
void LUFactorizationSplit(InputScalar* srcReorderedLowerMat,
|
||||
int* lowerRowIndices,
|
||||
int* lowerColIndices,
|
||||
|
Loading…
Reference in New Issue
Block a user