mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge remote-tracking branch 'upstream/master' into ert
Conflicts: Makefile.am opm/core/grid/cpgpreprocess/preprocess.h tests/Makefile.am This brings ert branch up-to-date with current Github master branch.
This commit is contained in:
@@ -62,7 +62,7 @@ namespace Opm
|
||||
/// \return Array of P viscosity values.
|
||||
virtual const double* viscosity() const = 0;
|
||||
|
||||
/// Densities of fluid phases at surface conditions.
|
||||
/// Densities of fluid phases at reservoir conditions.
|
||||
/// \return Array of P density values.
|
||||
virtual const double* density() const = 0;
|
||||
|
||||
|
||||
@@ -235,6 +235,19 @@ void
|
||||
destroy_wells(struct Wells *W);
|
||||
|
||||
|
||||
/**
|
||||
* Create a deep-copy (i.e., clone) of an existing Wells object, including its
|
||||
* controls.
|
||||
*
|
||||
* @param[in] W Existing Wells object.
|
||||
* @return Complete clone of the input object. Dispose of resources using
|
||||
* function destroy_wells() when no longer needed. Returns @c NULL in case of
|
||||
* allocation failure.
|
||||
*/
|
||||
struct Wells *
|
||||
clone_wells(const struct Wells *W);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -632,6 +632,23 @@ namespace Opm
|
||||
&state.pressure()[0],
|
||||
&state.faceflux()[0],
|
||||
&state.facepressure()[0]);
|
||||
|
||||
// Compute well perforation pressures (not done by the C code).
|
||||
if (wells_ != 0) {
|
||||
const int nw = wells_->number_of_wells;
|
||||
const int np = props_.numPhases();
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const double* comp_frac = &wells_->comp_frac[np*w];
|
||||
for (int j = wells_->well_connpos[w]; j < wells_->well_connpos[w+1]; ++j) {
|
||||
const double bhp = well_state.bhp()[w];
|
||||
double perf_p = bhp;
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
perf_p += wellperf_gpot_[np*j + phase]*comp_frac[phase];
|
||||
}
|
||||
well_state.perfPress()[j] = perf_p;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
@@ -49,7 +49,8 @@ namespace Opm
|
||||
bhp_[w] = state.pressure()[cell];
|
||||
}
|
||||
}
|
||||
perfrates_.resize(wells->well_connpos[nw]);
|
||||
perfrates_.resize(wells->well_connpos[nw], 0.0);
|
||||
perfpress_.resize(wells->well_connpos[nw], -1e100);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -61,9 +62,14 @@ namespace Opm
|
||||
std::vector<double>& perfRates() { return perfrates_; }
|
||||
const std::vector<double>& perfRates() const { return perfrates_; }
|
||||
|
||||
/// One pressure per well connection.
|
||||
std::vector<double>& perfPress() { return perfpress_; }
|
||||
const std::vector<double>& perfPress() const { return perfpress_; }
|
||||
|
||||
private:
|
||||
std::vector<double> bhp_;
|
||||
std::vector<double> perfrates_;
|
||||
std::vector<double> perfpress_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
@@ -152,7 +152,7 @@ namespace Opm
|
||||
B_cell = 1.0/tm.A_[np*np*cell + 0];
|
||||
double src_flux = -tm.source_[cell];
|
||||
bool src_is_inflow = src_flux < 0.0;
|
||||
influx = src_is_inflow ? src_flux : 0.0;
|
||||
influx = src_is_inflow ? B_cell* src_flux : 0.0;
|
||||
outflux = !src_is_inflow ? src_flux : 0.0;
|
||||
comp_term = (tm.porevolume_[cell] - tm.porevolume0_[cell])/tm.porevolume0_[cell];
|
||||
dtpv = tm.dt_/tm.porevolume0_[cell];
|
||||
|
||||
@@ -20,6 +20,7 @@
|
||||
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
|
||||
#include <opm/core/transport/reorder/reordersequence.h>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/utility/StopWatch.hpp>
|
||||
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
@@ -31,10 +32,15 @@ void Opm::TransportModelInterface::reorderAndTransport(const UnstructuredGrid& g
|
||||
std::vector<int> sequence(grid.number_of_cells);
|
||||
std::vector<int> components(grid.number_of_cells + 1);
|
||||
int ncomponents;
|
||||
time::StopWatch clock;
|
||||
clock.start();
|
||||
compute_sequence(&grid, darcyflux, &sequence[0], &components[0], &ncomponents);
|
||||
clock.stop();
|
||||
std::cout << "Topological sort took: " << clock.secsSinceStart() << " seconds." << std::endl;
|
||||
|
||||
// Invoke appropriate solve method for each interdependent component.
|
||||
for (int comp = 0; comp < ncomponents; ++comp) {
|
||||
#if 0
|
||||
#ifdef MATLAB_MEX_FILE
|
||||
// \TODO replace this with general signal handling code, check if it costs performance.
|
||||
if (interrupt_signal) {
|
||||
@@ -42,6 +48,7 @@ void Opm::TransportModelInterface::reorderAndTransport(const UnstructuredGrid& g
|
||||
"cells finished.\n", i, grid.number_of_cells);
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
const int comp_size = components[comp + 1] - components[comp];
|
||||
if (comp_size == 1) {
|
||||
|
||||
122
opm/core/transport/reorder/TransportModelTracerTof.cpp
Normal file
122
opm/core/transport/reorder/TransportModelTracerTof.cpp
Normal file
@@ -0,0 +1,122 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <opm/core/transport/reorder/TransportModelTracerTof.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
#include <cmath>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
|
||||
/// Construct solver.
|
||||
/// \param[in] grid A 2d or 3d grid.
|
||||
TransportModelTracerTof::TransportModelTracerTof(const UnstructuredGrid& grid)
|
||||
: grid_(grid)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Solve for time-of-flight.
|
||||
/// \param[in] darcyflux Array of signed face fluxes.
|
||||
/// \param[in] porevolume Array of pore volumes.
|
||||
/// \param[in] source Source term. Sign convention is:
|
||||
/// (+) inflow flux,
|
||||
/// (-) outflow flux.
|
||||
/// \param[out] tof Array of time-of-flight values.
|
||||
void TransportModelTracerTof::solveTof(const double* darcyflux,
|
||||
const double* porevolume,
|
||||
const double* source,
|
||||
std::vector<double>& tof)
|
||||
{
|
||||
darcyflux_ = darcyflux;
|
||||
porevolume_ = porevolume;
|
||||
source_ = source;
|
||||
#ifndef NDEBUG
|
||||
// Sanity check for sources.
|
||||
const double cum_src = std::accumulate(source, source + grid_.number_of_cells, 0.0);
|
||||
if (std::fabs(cum_src) > *std::max_element(source, source + grid_.number_of_cells)*1e-2) {
|
||||
THROW("Sources do not sum to zero: " << cum_src);
|
||||
}
|
||||
#endif
|
||||
tof.resize(grid_.number_of_cells);
|
||||
std::fill(tof.begin(), tof.end(), 0.0);
|
||||
tof_ = &tof[0];
|
||||
reorderAndTransport(grid_, darcyflux);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTof::solveSingleCell(const int cell)
|
||||
{
|
||||
// Compute flux terms.
|
||||
// Sources have zero tof, and therefore do not contribute
|
||||
// to upwind_term. Sinks on the other hand, must be added
|
||||
// to the downwind_flux (note sign change resulting from
|
||||
// different sign conventions: pos. source is injection,
|
||||
// pos. flux is outflow).
|
||||
double upwind_term = 0.0;
|
||||
double downwind_flux = std::max(-source_[cell], 0.0);
|
||||
for (int i = grid_.cell_facepos[cell]; i < grid_.cell_facepos[cell+1]; ++i) {
|
||||
int f = grid_.cell_faces[i];
|
||||
double flux;
|
||||
int other;
|
||||
// Compute cell flux
|
||||
if (cell == grid_.face_cells[2*f]) {
|
||||
flux = darcyflux_[f];
|
||||
other = grid_.face_cells[2*f+1];
|
||||
} else {
|
||||
flux =-darcyflux_[f];
|
||||
other = grid_.face_cells[2*f];
|
||||
}
|
||||
// Add flux to upwind_term or downwind_flux, if interior.
|
||||
if (other != -1) {
|
||||
if (flux < 0.0) {
|
||||
upwind_term += flux*tof_[other];
|
||||
} else {
|
||||
downwind_flux += flux;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute tof.
|
||||
tof_[cell] = (porevolume_[cell] - upwind_term)/downwind_flux;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTof::solveMultiCell(const int num_cells, const int* cells)
|
||||
{
|
||||
std::cout << "Pretending to solve multi-cell dependent equation with " << num_cells << " cells." << std::endl;
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
solveSingleCell(cells[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
74
opm/core/transport/reorder/TransportModelTracerTof.hpp
Normal file
74
opm/core/transport/reorder/TransportModelTracerTof.hpp
Normal file
@@ -0,0 +1,74 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_TRANSPORTMODELTRACERTOF_HEADER_INCLUDED
|
||||
#define OPM_TRANSPORTMODELTRACERTOF_HEADER_INCLUDED
|
||||
|
||||
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <ostream>
|
||||
struct UnstructuredGrid;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class IncompPropertiesInterface;
|
||||
|
||||
/// Implements a first-order finite volume solver for
|
||||
/// (single-phase) time-of-flight using reordering.
|
||||
/// The equation solved is:
|
||||
/// v \cdot \grad\tau = \phi
|
||||
/// where v is the fluid velocity, \tau is time-of-flight and
|
||||
/// \phi is the porosity. This is a boundary value problem, where
|
||||
/// \tau is specified to be zero on all inflow boundaries.
|
||||
class TransportModelTracerTof : public TransportModelInterface
|
||||
{
|
||||
public:
|
||||
/// Construct solver.
|
||||
/// \param[in] grid A 2d or 3d grid.
|
||||
TransportModelTracerTof(const UnstructuredGrid& grid);
|
||||
|
||||
/// Solve for time-of-flight.
|
||||
/// \param[in] darcyflux Array of signed face fluxes.
|
||||
/// \param[in] porevolume Array of pore volumes.
|
||||
/// \param[in] source Source term. Sign convention is:
|
||||
/// (+) inflow flux,
|
||||
/// (-) outflow flux.
|
||||
/// \param[out] tof Array of time-of-flight values.
|
||||
void solveTof(const double* darcyflux,
|
||||
const double* porevolume,
|
||||
const double* source,
|
||||
std::vector<double>& tof);
|
||||
|
||||
private:
|
||||
virtual void solveSingleCell(const int cell);
|
||||
virtual void solveMultiCell(const int num_cells, const int* cells);
|
||||
|
||||
private:
|
||||
const UnstructuredGrid& grid_;
|
||||
const double* darcyflux_; // one flux per grid face
|
||||
const double* porevolume_; // one volume per cell
|
||||
const double* source_; // one volumetric source term per cell
|
||||
double* tof_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_TRANSPORTMODELTRACERTOF_HEADER_INCLUDED
|
||||
671
opm/core/transport/reorder/TransportModelTracerTofDiscGal.cpp
Normal file
671
opm/core/transport/reorder/TransportModelTracerTofDiscGal.cpp
Normal file
@@ -0,0 +1,671 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <opm/core/transport/reorder/TransportModelTracerTofDiscGal.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/linalg/blas_lapack.h>
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
#include <cmath>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
|
||||
// --------------- Helpers for TransportModelTracerTofDiscGal ---------------
|
||||
|
||||
|
||||
|
||||
/// A class providing discontinuous Galerkin basis functions.
|
||||
struct DGBasis
|
||||
{
|
||||
static int numBasisFunc(const int dimensions,
|
||||
const int degree)
|
||||
{
|
||||
switch (dimensions) {
|
||||
case 1:
|
||||
return degree + 1;
|
||||
case 2:
|
||||
return (degree + 2)*(degree + 1)/2;
|
||||
case 3:
|
||||
return (degree + 3)*(degree + 2)*(degree + 1)/6;
|
||||
default:
|
||||
THROW("Dimensions must be 1, 2 or 3.");
|
||||
}
|
||||
}
|
||||
|
||||
/// Evaluate all nonzero basis functions at x,
|
||||
/// writing to f_x. The array f_x must have
|
||||
/// size numBasisFunc(grid.dimensions, degree).
|
||||
///
|
||||
/// The basis functions are the following
|
||||
/// Degree 0: 1.
|
||||
/// Degree 1: x - xc, y - yc, z - zc etc.
|
||||
/// Further degrees await development.
|
||||
static void eval(const UnstructuredGrid& grid,
|
||||
const int cell,
|
||||
const int degree,
|
||||
const double* x,
|
||||
double* f_x)
|
||||
{
|
||||
const int dim = grid.dimensions;
|
||||
const double* cc = grid.cell_centroids + dim*cell;
|
||||
// Note intentional fallthrough in this switch statement!
|
||||
switch (degree) {
|
||||
case 1:
|
||||
for (int ix = 0; ix < dim; ++ix) {
|
||||
f_x[1 + ix] = x[ix] - cc[ix];
|
||||
}
|
||||
case 0:
|
||||
f_x[0] = 1;
|
||||
break;
|
||||
default:
|
||||
THROW("Maximum degree is 1 for now.");
|
||||
}
|
||||
}
|
||||
|
||||
/// Evaluate gradients of all nonzero basis functions at x,
|
||||
/// writing to grad_f_x. The array grad_f_x must have size
|
||||
/// numBasisFunc(grid.dimensions, degree) * grid.dimensions.
|
||||
/// The <grid.dimensions> components of the first basis function
|
||||
/// gradient come before the components of the second etc.
|
||||
static void evalGrad(const UnstructuredGrid& grid,
|
||||
const int /*cell*/,
|
||||
const int degree,
|
||||
const double* /*x*/,
|
||||
double* grad_f_x)
|
||||
{
|
||||
const int dim = grid.dimensions;
|
||||
const int num_basis = numBasisFunc(dim, degree);
|
||||
std::fill(grad_f_x, grad_f_x + num_basis*dim, 0.0);
|
||||
if (degree > 1) {
|
||||
THROW("Maximum degree is 1 for now.");
|
||||
} else if (degree == 1) {
|
||||
for (int ix = 0; ix < dim; ++ix) {
|
||||
grad_f_x[dim*(ix + 1) + ix] = 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
static void cross(const double* a, const double* b, double* res)
|
||||
{
|
||||
res[0] = a[1]*b[2] - a[2]*b[1];
|
||||
res[1] = a[2]*b[0] - a[0]*b[2];
|
||||
res[2] = a[0]*b[1] - a[1]*b[0];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
static double triangleArea3d(const double* p0,
|
||||
const double* p1,
|
||||
const double* p2)
|
||||
{
|
||||
double a[3] = { p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2] };
|
||||
double b[3] = { p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2] };
|
||||
double cr[3];
|
||||
cross(a, b, cr);
|
||||
return 0.5*std::sqrt(cr[0]*cr[0] + cr[1]*cr[1] + cr[2]*cr[2]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Calculates the determinant of a 3 x 3 matrix, represented as
|
||||
/// three three-dimensional arrays.
|
||||
static double determinantOf(const double* a0,
|
||||
const double* a1,
|
||||
const double* a2)
|
||||
{
|
||||
return
|
||||
a0[0] * (a1[1] * a2[2] - a2[1] * a1[2]) -
|
||||
a0[1] * (a1[0] * a2[2] - a2[0] * a1[2]) +
|
||||
a0[2] * (a1[0] * a2[1] - a2[0] * a1[1]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Computes the volume of a tetrahedron consisting of 4 vertices
|
||||
/// with 3-dimensional coordinates
|
||||
static double tetVolume(const double* p0,
|
||||
const double* p1,
|
||||
const double* p2,
|
||||
const double* p3)
|
||||
{
|
||||
double a[3] = { p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2] };
|
||||
double b[3] = { p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2] };
|
||||
double c[3] = { p3[0] - p0[0], p3[1] - p0[1], p3[2] - p0[2] };
|
||||
return std::fabs(determinantOf(a, b, c) / 6.0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// A class providing numerical quadrature for cells.
|
||||
/// In general: \int_{cell} g(x) dx = \sum_{i=0}^{n-1} w_i g(x_i).
|
||||
/// Note that this class does multiply weights by cell volume,
|
||||
/// so weights always sum to cell volume.
|
||||
/// Degree 1 method:
|
||||
/// Midpoint (centroid) method.
|
||||
/// n = 1, w_0 = cell volume, x_0 = cell centroid
|
||||
/// Degree 2 method:
|
||||
/// Based on subdivision of each cell face into triangles
|
||||
/// with the face centroid as a common vertex, and then
|
||||
/// subdividing the cell into tetrahedra with the cell
|
||||
/// centroid as a common vertex. Then apply the tetrahedron
|
||||
/// rule with the following 4 nodes (uniform weights):
|
||||
/// a = 0.138196601125010515179541316563436
|
||||
/// x_i has all barycentric coordinates = a, except for
|
||||
/// the i'th coordinate which is = 1 - 3a.
|
||||
/// This rule is from http://nines.cs.kuleuven.be/ecf,
|
||||
/// it is the second degree 2 4-point rule for tets,
|
||||
/// referenced to Stroud(1971).
|
||||
/// The tetrahedra are numbered T_{i,j}, and are given by the
|
||||
/// cell centroid C, the face centroid FC_i, and two nodes
|
||||
/// of face i: FN_{i,j}, FN_{i,j+1}.
|
||||
class CellQuadrature
|
||||
{
|
||||
public:
|
||||
CellQuadrature(const UnstructuredGrid& grid,
|
||||
const int cell,
|
||||
const int degree)
|
||||
: grid_(grid), cell_(cell), degree_(degree)
|
||||
{
|
||||
if (degree > 2) {
|
||||
THROW("CellQuadrature exact for polynomial degrees > 1 not implemented.");
|
||||
}
|
||||
if (degree == 2) {
|
||||
// Prepare subdivision.
|
||||
}
|
||||
}
|
||||
|
||||
int numQuadPts() const
|
||||
{
|
||||
if (degree_ < 2) {
|
||||
return 1;
|
||||
}
|
||||
// Degree 2 case.
|
||||
int sumnodes = 0;
|
||||
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
|
||||
const int face = grid_.cell_faces[hf];
|
||||
sumnodes += grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
|
||||
}
|
||||
return 4*sumnodes;
|
||||
}
|
||||
|
||||
void quadPtCoord(const int index, double* coord) const
|
||||
{
|
||||
const int dim = grid_.dimensions;
|
||||
const double* cc = grid_.cell_centroids + dim*cell_;
|
||||
if (degree_ < 2) {
|
||||
std::copy(cc, cc + dim, coord);
|
||||
return;
|
||||
}
|
||||
// Degree 2 case.
|
||||
int tetindex = index / 4;
|
||||
const int subindex = index % 4;
|
||||
const double* nc = grid_.node_coordinates;
|
||||
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
|
||||
const int face = grid_.cell_faces[hf];
|
||||
const int nfn = grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
|
||||
if (nfn <= tetindex) {
|
||||
// Our tet is not associated with this face.
|
||||
tetindex -= nfn;
|
||||
continue;
|
||||
}
|
||||
const double* fc = grid_.face_centroids + dim*face;
|
||||
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face];
|
||||
const int node0 = fnodes[tetindex];
|
||||
const int node1 = fnodes[(tetindex + 1) % nfn];
|
||||
const double* n0c = nc + dim*node0;
|
||||
const double* n1c = nc + dim*node1;
|
||||
const double a = 0.138196601125010515179541316563436;
|
||||
// Barycentric coordinates of our point in the tet.
|
||||
double baryc[4] = { a, a, a, a };
|
||||
baryc[subindex] = 1.0 - 3.0*a;
|
||||
for (int dd = 0; dd < dim; ++dd) {
|
||||
coord[dd] = baryc[0]*cc[dd] + baryc[1]*fc[dd] + baryc[2]*n0c[dd] + baryc[3]*n1c[dd];
|
||||
}
|
||||
return;
|
||||
}
|
||||
THROW("Should never reach this point.");
|
||||
}
|
||||
|
||||
double quadPtWeight(const int index) const
|
||||
{
|
||||
if (degree_ < 2) {
|
||||
return grid_.cell_volumes[cell_];
|
||||
}
|
||||
// Degree 2 case.
|
||||
const int dim = grid_.dimensions;
|
||||
const double* cc = grid_.cell_centroids + dim*cell_;
|
||||
int tetindex = index / 4;
|
||||
const double* nc = grid_.node_coordinates;
|
||||
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
|
||||
const int face = grid_.cell_faces[hf];
|
||||
const int nfn = grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
|
||||
if (nfn <= tetindex) {
|
||||
// Our tet is not associated with this face.
|
||||
tetindex -= nfn;
|
||||
continue;
|
||||
}
|
||||
const double* fc = grid_.face_centroids + dim*face;
|
||||
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face];
|
||||
const int node0 = fnodes[tetindex];
|
||||
const int node1 = fnodes[(tetindex + 1) % nfn];
|
||||
const double* n0c = nc + dim*node0;
|
||||
const double* n1c = nc + dim*node1;
|
||||
return 0.25*tetVolume(cc, fc, n0c, n1c);
|
||||
}
|
||||
THROW("Should never reach this point.");
|
||||
}
|
||||
|
||||
private:
|
||||
const UnstructuredGrid& grid_;
|
||||
const int cell_;
|
||||
const int degree_;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/// A class providing numerical quadrature for faces.
|
||||
/// In general: \int_{face} g(x) dx = \sum_{i=0}^{n-1} w_i g(x_i).
|
||||
/// Note that this class does multiply weights by face area,
|
||||
/// so weights always sum to face area.
|
||||
/// Degree 1 method:
|
||||
/// Midpoint (centroid) method.
|
||||
/// n = 1, w_0 = face area, x_0 = face centroid
|
||||
/// Degree 2 method:
|
||||
/// Based on subdivision of the face into triangles,
|
||||
/// with the centroid as a common vertex, and the triangle
|
||||
/// edge midpoint rule.
|
||||
/// Triangle i consists of the centroid C, nodes N_i and N_{i+1}.
|
||||
/// Its area is A_i.
|
||||
/// n = 2 * nn (nn = num nodes in face)
|
||||
/// For i = 0..(nn-1):
|
||||
/// w_i = 1/3 A_i.
|
||||
/// w_{nn+i} = 1/3 A_{i-1} + 1/3 A_i
|
||||
/// x_i = (N_i + N_{i+1})/2
|
||||
/// x_{nn+i} = (C + N_i)/2
|
||||
/// All N and A indices are interpreted cyclic, modulus nn.
|
||||
class FaceQuadrature
|
||||
{
|
||||
public:
|
||||
FaceQuadrature(const UnstructuredGrid& grid,
|
||||
const int face,
|
||||
const int degree)
|
||||
: grid_(grid), face_(face), degree_(degree)
|
||||
{
|
||||
if (grid_.dimensions != 3) {
|
||||
THROW("FaceQuadrature only implemented for 3D case.");
|
||||
}
|
||||
if (degree_ > 2) {
|
||||
THROW("FaceQuadrature exact for polynomial degrees > 2 not implemented.");
|
||||
}
|
||||
}
|
||||
|
||||
int numQuadPts() const
|
||||
{
|
||||
if (degree_ < 2) {
|
||||
return 1;
|
||||
}
|
||||
// Degree 2 case.
|
||||
return 2 * (grid_.face_nodepos[face_ + 1] - grid_.face_nodepos[face_]);
|
||||
}
|
||||
|
||||
void quadPtCoord(const int index, double* coord) const
|
||||
{
|
||||
const int dim = grid_.dimensions;
|
||||
const double* fc = grid_.face_centroids + dim*face_;
|
||||
if (degree_ < 2) {
|
||||
std::copy(fc, fc + dim, coord);
|
||||
return;
|
||||
}
|
||||
// Degree 2 case.
|
||||
const int nn = grid_.face_nodepos[face_ + 1] - grid_.face_nodepos[face_];
|
||||
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face_];
|
||||
const double* nc = grid_.node_coordinates;
|
||||
if (index < nn) {
|
||||
// Boundary edge midpoint.
|
||||
const int node0 = fnodes[index];
|
||||
const int node1 = fnodes[(index + 1)%nn];
|
||||
for (int dd = 0; dd < dim; ++dd) {
|
||||
coord[dd] = 0.5*(nc[dim*node0 + dd] + nc[dim*node1 + dd]);
|
||||
}
|
||||
} else {
|
||||
// Interiour edge midpoint.
|
||||
// Recall that index is now in [nn, 2*nn).
|
||||
const int node = fnodes[index - nn];
|
||||
for (int dd = 0; dd < dim; ++dd) {
|
||||
coord[dd] = 0.5*(nc[dim*node + dd] + fc[dd]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double quadPtWeight(const int index) const
|
||||
{
|
||||
if (degree_ < 2) {
|
||||
return grid_.face_areas[face_];
|
||||
}
|
||||
// Degree 2 case.
|
||||
const int dim = grid_.dimensions;
|
||||
const double* fc = grid_.face_centroids + dim*face_;
|
||||
const int nn = grid_.face_nodepos[face_ + 1] - grid_.face_nodepos[face_];
|
||||
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face_];
|
||||
const double* nc = grid_.node_coordinates;
|
||||
if (index < nn) {
|
||||
// Boundary edge midpoint.
|
||||
const int node0 = fnodes[index];
|
||||
const int node1 = fnodes[(index + 1)%nn];
|
||||
const double area = triangleArea3d(nc + dim*node1, nc + dim*node0, fc);
|
||||
return area / 3.0;
|
||||
} else {
|
||||
// Interiour edge midpoint.
|
||||
// Recall that index is now in [nn, 2*nn).
|
||||
const int node0 = fnodes[(index - 1) % nn];
|
||||
const int node1 = fnodes[index - nn];
|
||||
const int node2 = fnodes[(index + 1) % nn];
|
||||
const double area0 = triangleArea3d(nc + dim*node1, nc + dim*node0, fc);
|
||||
const double area1 = triangleArea3d(nc + dim*node2, nc + dim*node1, fc);
|
||||
return (area0 + area1) / 3.0;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
const UnstructuredGrid& grid_;
|
||||
const int face_;
|
||||
const int degree_;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
// Initial version: only a constant interpolation.
|
||||
static void interpolateVelocity(const UnstructuredGrid& grid,
|
||||
const int cell,
|
||||
const double* darcyflux,
|
||||
const double* /*x*/,
|
||||
double* v)
|
||||
{
|
||||
const int dim = grid.dimensions;
|
||||
std::fill(v, v + dim, 0.0);
|
||||
const double* cc = grid.cell_centroids + cell*dim;
|
||||
for (int hface = grid.cell_facepos[cell]; hface < grid.cell_facepos[cell+1]; ++hface) {
|
||||
const int face = grid.cell_faces[hface];
|
||||
const double* fc = grid.face_centroids + face*dim;
|
||||
double flux = 0.0;
|
||||
if (cell == grid.face_cells[2*face]) {
|
||||
flux = darcyflux[face];
|
||||
} else {
|
||||
flux = -darcyflux[face];
|
||||
}
|
||||
for (int dd = 0; dd < dim; ++dd) {
|
||||
v[dd] += flux * (fc[dd] - cc[dd]) / grid.cell_volumes[cell];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// --------------- Methods of TransportModelTracerTofDiscGal ---------------
|
||||
|
||||
|
||||
|
||||
/// Construct solver.
|
||||
/// \param[in] grid A 2d or 3d grid.
|
||||
TransportModelTracerTofDiscGal::TransportModelTracerTofDiscGal(const UnstructuredGrid& grid)
|
||||
: grid_(grid),
|
||||
coord_(grid.dimensions),
|
||||
velocity_(grid.dimensions)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Solve for time-of-flight.
|
||||
/// \param[in] darcyflux Array of signed face fluxes.
|
||||
/// \param[in] porevolume Array of pore volumes.
|
||||
/// \param[in] source Source term. Sign convention is:
|
||||
/// (+) inflow flux,
|
||||
/// (-) outflow flux.
|
||||
/// \param[in] degree Polynomial degree of DG basis functions used.
|
||||
/// \param[out] tof_coeff Array of time-of-flight solution coefficients.
|
||||
/// The values are ordered by cell, meaning that
|
||||
/// the K coefficients corresponding to the first
|
||||
/// cell comes before the K coefficients corresponding
|
||||
/// to the second cell etc.
|
||||
/// K depends on degree and grid dimension.
|
||||
void TransportModelTracerTofDiscGal::solveTof(const double* darcyflux,
|
||||
const double* porevolume,
|
||||
const double* source,
|
||||
const int degree,
|
||||
std::vector<double>& tof_coeff)
|
||||
{
|
||||
darcyflux_ = darcyflux;
|
||||
porevolume_ = porevolume;
|
||||
source_ = source;
|
||||
#ifndef NDEBUG
|
||||
// Sanity check for sources.
|
||||
const double cum_src = std::accumulate(source, source + grid_.number_of_cells, 0.0);
|
||||
if (std::fabs(cum_src) > *std::max_element(source, source + grid_.number_of_cells)*1e-2) {
|
||||
THROW("Sources do not sum to zero: " << cum_src);
|
||||
}
|
||||
#endif
|
||||
degree_ = degree;
|
||||
const int num_basis = DGBasis::numBasisFunc(grid_.dimensions, degree_);
|
||||
tof_coeff.resize(num_basis*grid_.number_of_cells);
|
||||
std::fill(tof_coeff.begin(), tof_coeff.end(), 0.0);
|
||||
tof_coeff_ = &tof_coeff[0];
|
||||
rhs_.resize(num_basis);
|
||||
jac_.resize(num_basis*num_basis);
|
||||
basis_.resize(num_basis);
|
||||
basis_nb_.resize(num_basis);
|
||||
grad_basis_.resize(num_basis*grid_.dimensions);
|
||||
reorderAndTransport(grid_, darcyflux);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTofDiscGal::solveSingleCell(const int cell)
|
||||
{
|
||||
// Residual:
|
||||
// For each cell K, basis function b_j (spanning V_h),
|
||||
// writing the solution u_h|K = \sum_i c_i b_i
|
||||
// Res = - \int_K \sum_i c_i b_i v(x) \cdot \grad b_j dx
|
||||
// + \int_{\partial K} F(u_h, u_h^{ext}, v(x) \cdot n) b_j ds
|
||||
// - \int_K \phi b_j
|
||||
// This is linear in c_i, so we do not need any nonlinear iterations.
|
||||
// We assemble the jacobian and the right-hand side. The residual is
|
||||
// equal to Res = Jac*c - rhs, and we compute rhs directly.
|
||||
|
||||
const int dim = grid_.dimensions;
|
||||
const int num_basis = DGBasis::numBasisFunc(dim, degree_);
|
||||
|
||||
std::fill(rhs_.begin(), rhs_.end(), 0.0);
|
||||
std::fill(jac_.begin(), jac_.end(), 0.0);
|
||||
|
||||
// Compute cell residual contribution.
|
||||
// Note: Assumes that \int_K b_j = 0 for all j > 0
|
||||
rhs_[0] += porevolume_[cell];
|
||||
|
||||
// Compute upstream residual contribution.
|
||||
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
||||
const int face = grid_.cell_faces[hface];
|
||||
double flux = 0.0;
|
||||
int upstream_cell = -1;
|
||||
if (cell == grid_.face_cells[2*face]) {
|
||||
flux = darcyflux_[face];
|
||||
upstream_cell = grid_.face_cells[2*face+1];
|
||||
} else {
|
||||
flux = -darcyflux_[face];
|
||||
upstream_cell = grid_.face_cells[2*face];
|
||||
}
|
||||
if (upstream_cell < 0) {
|
||||
// This is an outer boundary. Assumed tof = 0 on inflow, so no contribution.
|
||||
continue;
|
||||
}
|
||||
if (flux >= 0.0) {
|
||||
// This is an outflow boundary.
|
||||
continue;
|
||||
}
|
||||
// Do quadrature over the face to compute
|
||||
// \int_{\partial K} u_h^{ext} (v(x) \cdot n) b_j ds
|
||||
// (where u_h^{ext} is the upstream unknown (tof)).
|
||||
const double normal_velocity = flux / grid_.face_areas[face];
|
||||
FaceQuadrature quad(grid_, face, degree_);
|
||||
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
||||
quad.quadPtCoord(quad_pt, &coord_[0]);
|
||||
DGBasis::eval(grid_, cell, degree_, &coord_[0], &basis_[0]);
|
||||
DGBasis::eval(grid_, upstream_cell, degree_, &coord_[0], &basis_nb_[0]);
|
||||
const double tof_upstream = std::inner_product(basis_nb_.begin(), basis_nb_.end(),
|
||||
tof_coeff_ + num_basis*upstream_cell, 0.0);
|
||||
const double w = quad.quadPtWeight(quad_pt);
|
||||
for (int j = 0; j < num_basis; ++j) {
|
||||
rhs_[j] -= w * tof_upstream * normal_velocity * basis_[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute cell jacobian contribution. We use Fortran ordering
|
||||
// for jac_, i.e. rows cycling fastest.
|
||||
{
|
||||
CellQuadrature quad(grid_, cell, 2*degree_ - 1);
|
||||
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
||||
// b_i (v \cdot \grad b_j)
|
||||
quad.quadPtCoord(quad_pt, &coord_[0]);
|
||||
DGBasis::eval(grid_, cell, degree_, &coord_[0], &basis_[0]);
|
||||
DGBasis::evalGrad(grid_, cell, degree_, &coord_[0], &grad_basis_[0]);
|
||||
interpolateVelocity(grid_, cell, darcyflux_, &coord_[0], &velocity_[0]);
|
||||
const double w = quad.quadPtWeight(quad_pt);
|
||||
for (int j = 0; j < num_basis; ++j) {
|
||||
for (int i = 0; i < num_basis; ++i) {
|
||||
for (int dd = 0; dd < dim; ++dd) {
|
||||
jac_[j*num_basis + i] -= w * basis_[j] * grad_basis_[dim*i + dd] * velocity_[dd];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute downstream jacobian contribution from faces.
|
||||
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
|
||||
const int face = grid_.cell_faces[hface];
|
||||
double flux = 0.0;
|
||||
if (cell == grid_.face_cells[2*face]) {
|
||||
flux = darcyflux_[face];
|
||||
} else {
|
||||
flux = -darcyflux_[face];
|
||||
}
|
||||
if (flux <= 0.0) {
|
||||
// This is an inflow boundary.
|
||||
continue;
|
||||
}
|
||||
// Do quadrature over the face to compute
|
||||
// \int_{\partial K} b_i (v(x) \cdot n) b_j ds
|
||||
const double normal_velocity = flux / grid_.face_areas[face];
|
||||
FaceQuadrature quad(grid_, face, 2*degree_);
|
||||
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
||||
// u^ext flux B (B = {b_j})
|
||||
quad.quadPtCoord(quad_pt, &coord_[0]);
|
||||
DGBasis::eval(grid_, cell, degree_, &coord_[0], &basis_[0]);
|
||||
const double w = quad.quadPtWeight(quad_pt);
|
||||
for (int j = 0; j < num_basis; ++j) {
|
||||
for (int i = 0; i < num_basis; ++i) {
|
||||
jac_[j*num_basis + i] += w * basis_[i] * normal_velocity * basis_[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute downstream jacobian contribution from sink terms.
|
||||
// Contribution from inflow sources would be
|
||||
// similar to the contribution from upstream faces, but
|
||||
// it is zero since we let all external inflow be associated
|
||||
// with a zero tof.
|
||||
if (source_[cell] < 0.0) {
|
||||
// A sink.
|
||||
const double flux = -source_[cell]; // Sign convention for flux: outflux > 0.
|
||||
const double flux_density = flux / grid_.cell_volumes[cell];
|
||||
// Do quadrature over the cell to compute
|
||||
// \int_{K} b_i flux b_j dx
|
||||
CellQuadrature quad(grid_, cell, 2*degree_);
|
||||
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
||||
quad.quadPtCoord(quad_pt, &coord_[0]);
|
||||
DGBasis::eval(grid_, cell, degree_, &coord_[0], &basis_[0]);
|
||||
const double w = quad.quadPtWeight(quad_pt);
|
||||
for (int j = 0; j < num_basis; ++j) {
|
||||
for (int i = 0; i < num_basis; ++i) {
|
||||
jac_[j*num_basis + i] += w * basis_[i] * flux_density * basis_[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Solve linear equation.
|
||||
MAT_SIZE_T n = num_basis;
|
||||
MAT_SIZE_T nrhs = 1;
|
||||
MAT_SIZE_T lda = num_basis;
|
||||
std::vector<MAT_SIZE_T> piv(num_basis);
|
||||
MAT_SIZE_T ldb = num_basis;
|
||||
MAT_SIZE_T info = 0;
|
||||
dgesv_(&n, &nrhs, &jac_[0], &lda, &piv[0], &rhs_[0], &ldb, &info);
|
||||
if (info != 0) {
|
||||
// Print the local matrix and rhs.
|
||||
std::cerr << "Failed solving single-cell system Ax = b in cell " << cell
|
||||
<< " with A = \n";
|
||||
for (int row = 0; row < n; ++row) {
|
||||
for (int col = 0; col < n; ++col) {
|
||||
std::cerr << " " << jac_[row + n*col];
|
||||
}
|
||||
std::cerr << '\n';
|
||||
}
|
||||
std::cerr << "and b = \n";
|
||||
for (int row = 0; row < n; ++row) {
|
||||
std::cerr << " " << rhs_[row] << '\n';
|
||||
}
|
||||
THROW("Lapack error: " << info << " encountered in cell " << cell);
|
||||
}
|
||||
// The solution ends up in rhs_, so we must copy it.
|
||||
std::copy(rhs_.begin(), rhs_.end(), tof_coeff_ + num_basis*cell);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void TransportModelTracerTofDiscGal::solveMultiCell(const int num_cells, const int* cells)
|
||||
{
|
||||
std::cout << "Pretending to solve multi-cell dependent equation with " << num_cells << " cells." << std::endl;
|
||||
for (int i = 0; i < num_cells; ++i) {
|
||||
solveSingleCell(cells[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
@@ -0,0 +1,93 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_TRANSPORTMODELTRACERTOFDISCGAL_HEADER_INCLUDED
|
||||
#define OPM_TRANSPORTMODELTRACERTOFDISCGAL_HEADER_INCLUDED
|
||||
|
||||
#include <opm/core/transport/reorder/TransportModelInterface.hpp>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <ostream>
|
||||
struct UnstructuredGrid;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class IncompPropertiesInterface;
|
||||
|
||||
/// Implements a discontinuous Galerkin solver for
|
||||
/// (single-phase) time-of-flight using reordering.
|
||||
/// The equation solved is:
|
||||
/// v \cdot \grad\tau = \phi
|
||||
/// where v is the fluid velocity, \tau is time-of-flight and
|
||||
/// \phi is the porosity. This is a boundary value problem, where
|
||||
/// \tau is specified to be zero on all inflow boundaries.
|
||||
/// The user may specify the polynomial degree of the basis function space
|
||||
/// used, but only degrees 0 and 1 are supported so far.
|
||||
class TransportModelTracerTofDiscGal : public TransportModelInterface
|
||||
{
|
||||
public:
|
||||
/// Construct solver.
|
||||
/// \param[in] grid A 2d or 3d grid.
|
||||
TransportModelTracerTofDiscGal(const UnstructuredGrid& grid);
|
||||
|
||||
|
||||
/// Solve for time-of-flight.
|
||||
/// \param[in] darcyflux Array of signed face fluxes.
|
||||
/// \param[in] porevolume Array of pore volumes.
|
||||
/// \param[in] source Source term. Sign convention is:
|
||||
/// (+) inflow flux,
|
||||
/// (-) outflow flux.
|
||||
/// \param[in] degree Polynomial degree of DG basis functions used.
|
||||
/// \param[out] tof_coeff Array of time-of-flight solution coefficients.
|
||||
/// The values are ordered by cell, meaning that
|
||||
/// the K coefficients corresponding to the first
|
||||
/// cell comes before the K coefficients corresponding
|
||||
/// to the second cell etc.
|
||||
/// K depends on degree and grid dimension.
|
||||
void solveTof(const double* darcyflux,
|
||||
const double* porevolume,
|
||||
const double* source,
|
||||
const int degree,
|
||||
std::vector<double>& tof_coeff);
|
||||
|
||||
private:
|
||||
virtual void solveSingleCell(const int cell);
|
||||
virtual void solveMultiCell(const int num_cells, const int* cells);
|
||||
|
||||
private:
|
||||
const UnstructuredGrid& grid_;
|
||||
const double* darcyflux_; // one flux per grid face
|
||||
const double* porevolume_; // one volume per cell
|
||||
const double* source_; // one volumetric source term per cell
|
||||
int degree_;
|
||||
double* tof_coeff_;
|
||||
std::vector<double> rhs_; // single-cell right-hand-side
|
||||
std::vector<double> jac_; // single-cell jacobian
|
||||
// Below: storage for quantities needed by solveSingleCell().
|
||||
std::vector<double> coord_;
|
||||
std::vector<double> basis_;
|
||||
std::vector<double> basis_nb_;
|
||||
std::vector<double> grad_basis_;
|
||||
std::vector<double> velocity_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_TRANSPORTMODELTRACERTOFDISCGAL_HEADER_INCLUDED
|
||||
@@ -1,11 +1,11 @@
|
||||
/* Copyright 2011 (c) Jostein R. Natvig <Jostein.R.Natvig at sintef.no> */
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
|
||||
#ifdef MATLAB_MEX_FILE
|
||||
#include "grid.h"
|
||||
#include "reordersequence.h"
|
||||
#include "tarjan.h"
|
||||
#else
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/transport/reorder/reordersequence.h>
|
||||
#include <opm/core/transport/reorder/tarjan.h>
|
||||
#endif
|
||||
|
||||
@@ -553,6 +553,7 @@ namespace Opm
|
||||
{
|
||||
const int np = wells.number_of_phases;
|
||||
const int nw = wells.number_of_wells;
|
||||
ASSERT(int(flow_rates_per_well_cell.size()) == wells.well_connpos[nw]);
|
||||
phase_flow_per_well.resize(nw * np);
|
||||
for (int wix = 0; wix < nw; ++wix) {
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
|
||||
@@ -21,7 +21,10 @@
|
||||
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/newwells.h>
|
||||
#include <opm/core/fluid/BlackoilPropertiesInterface.hpp>
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
@@ -31,53 +34,74 @@
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/// @brief Computes injected and produced volumes of all phases.
|
||||
/// @brief Computes injected and produced surface volumes of all phases.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] p pressure (one value per cell)
|
||||
/// @param[in] z surface-volume values (for all P phases)
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// Note 3: Gives surface volume values, not reservoir volumes
|
||||
/// (as the incompressible version of the function does).
|
||||
/// Also, assumes that transport_src is given in surface volumes
|
||||
/// for injector terms!
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] state state variables (pressure, sat, surfvol)
|
||||
/// @param[in] transport_src if < 0: total resv outflow, if > 0: first phase surfv inflow
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
|
||||
const std::vector<double>& press,
|
||||
const std::vector<double>& z,
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& src,
|
||||
const BlackoilState& state,
|
||||
const std::vector<double>& transport_src,
|
||||
const double dt,
|
||||
double* injected,
|
||||
double* produced)
|
||||
{
|
||||
const int num_cells = src.size();
|
||||
const int np = s.size()/src.size();
|
||||
if (int(s.size()) != num_cells*np) {
|
||||
THROW("Sizes of s and src vectors do not match.");
|
||||
const int num_cells = transport_src.size();
|
||||
if (props.numCells() != num_cells) {
|
||||
THROW("Size of transport_src vector does not match number of cells in props.");
|
||||
}
|
||||
const int np = props.numPhases();
|
||||
if (int(state.saturation().size()) != num_cells*np) {
|
||||
THROW("Sizes of state vectors do not match number of cells.");
|
||||
}
|
||||
const std::vector<double>& press = state.pressure();
|
||||
const std::vector<double>& s = state.saturation();
|
||||
const std::vector<double>& z = state.surfacevol();
|
||||
std::fill(injected, injected + np, 0.0);
|
||||
std::fill(produced, produced + np, 0.0);
|
||||
std::vector<double> visc(np);
|
||||
std::vector<double> mob(np);
|
||||
std::vector<double> A(np*np);
|
||||
std::vector<double> prod_resv_phase(np);
|
||||
std::vector<double> prod_surfvol(np);
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
if (src[c] > 0.0) {
|
||||
injected[0] += src[c]*dt;
|
||||
} else if (src[c] < 0.0) {
|
||||
const double flux = -src[c]*dt;
|
||||
if (transport_src[c] > 0.0) {
|
||||
// Inflowing transport source is a surface volume flux
|
||||
// for the first phase.
|
||||
injected[0] += transport_src[c]*dt;
|
||||
} else if (transport_src[c] < 0.0) {
|
||||
// Outflowing transport source is a total reservoir
|
||||
// volume flux.
|
||||
const double flux = -transport_src[c]*dt;
|
||||
const double* sat = &s[np*c];
|
||||
props.relperm(1, sat, &c, &mob[0], 0);
|
||||
props.viscosity(1, &press[c], &z[np*c], &c, &visc[0], 0);
|
||||
props.matrix(1, &press[c], &z[np*c], &c, &A[0], 0);
|
||||
double totmob = 0.0;
|
||||
for (int p = 0; p < np; ++p) {
|
||||
mob[p] /= visc[p];
|
||||
totmob += mob[p];
|
||||
}
|
||||
std::fill(prod_surfvol.begin(), prod_surfvol.end(), 0.0);
|
||||
for (int p = 0; p < np; ++p) {
|
||||
produced[p] += (mob[p]/totmob)*flux;
|
||||
prod_resv_phase[p] = (mob[p]/totmob)*flux;
|
||||
for (int q = 0; q < np; ++q) {
|
||||
prod_surfvol[q] += prod_resv_phase[p]*A[q + np*p];
|
||||
}
|
||||
}
|
||||
for (int p = 0; p < np; ++p) {
|
||||
produced[p] += prod_surfvol[p];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -251,4 +275,58 @@ namespace Opm
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Compute two-phase transport source terms from well terms.
|
||||
/// Note: Unlike the incompressible version of this function,
|
||||
/// this version computes surface volume injection rates,
|
||||
/// production rates are still total reservoir volumes.
|
||||
/// \param[in] props Fluid and rock properties.
|
||||
/// \param[in] wells Wells data structure.
|
||||
/// \param[in] well_state Well pressures and fluxes.
|
||||
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
|
||||
/// (+) positive inflow of first (water) phase (surface volume),
|
||||
/// (-) negative total outflow of both phases (reservoir volume).
|
||||
void computeTransportSource(const BlackoilPropertiesInterface& props,
|
||||
const Wells* wells,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& transport_src)
|
||||
{
|
||||
int nc = props.numCells();
|
||||
transport_src.clear();
|
||||
transport_src.resize(nc, 0.0);
|
||||
// Well contributions.
|
||||
if (wells) {
|
||||
const int nw = wells->number_of_wells;
|
||||
const int np = wells->number_of_phases;
|
||||
if (np != 2) {
|
||||
THROW("computeTransportSource() requires a 2 phase case.");
|
||||
}
|
||||
std::vector<double> A(np*np);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const double* comp_frac = wells->comp_frac + np*w;
|
||||
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
|
||||
const int perf_cell = wells->well_cells[perf];
|
||||
double perf_rate = well_state.perfRates()[perf];
|
||||
if (perf_rate > 0.0) {
|
||||
// perf_rate is a total inflow reservoir rate, we want a surface water rate.
|
||||
if (wells->type[w] != INJECTOR) {
|
||||
std::cout << "**** Warning: crossflow in well "
|
||||
<< w << " perf " << perf - wells->well_connpos[w]
|
||||
<< " ignored. Reservoir rate was "
|
||||
<< perf_rate/Opm::unit::day << " m^3/day." << std::endl;
|
||||
perf_rate = 0.0;
|
||||
} else {
|
||||
ASSERT(std::fabs(comp_frac[0] + comp_frac[1] - 1.0) < 1e-6);
|
||||
perf_rate *= comp_frac[0]; // Water reservoir volume rate.
|
||||
props.matrix(1, &well_state.perfPress()[perf], comp_frac, &perf_cell, &A[0], 0);
|
||||
perf_rate *= A[0]; // Water surface volume rate.
|
||||
}
|
||||
}
|
||||
transport_src[perf_cell] += perf_rate;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
@@ -22,36 +22,40 @@
|
||||
|
||||
#include <vector>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
struct Wells;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class BlackoilPropertiesInterface;
|
||||
class BlackoilState;
|
||||
class WellState;
|
||||
|
||||
/// @brief Computes injected and produced volumes of all phases.
|
||||
|
||||
/// @brief Computes injected and produced surface volumes of all phases.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] p pressure (one value per cell)
|
||||
/// @param[in] z surface-volume values (for all P phases)
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// Note 3: Gives surface volume values, not reservoir volumes
|
||||
/// (as the incompressible version of the function does).
|
||||
/// Also, assumes that transport_src is given in surface volumes
|
||||
/// for injector terms!
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] state state variables (pressure, sat, surfvol)
|
||||
/// @param[in] transport_src if < 0: total resv outflow, if > 0: first phase surfv inflow
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
void computeInjectedProduced(const BlackoilPropertiesInterface& props,
|
||||
const std::vector<double>& p,
|
||||
const std::vector<double>& z,
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& src,
|
||||
const BlackoilState& state,
|
||||
const std::vector<double>& transport_src,
|
||||
const double dt,
|
||||
double* injected,
|
||||
double* produced);
|
||||
|
||||
|
||||
/// @brief Computes total mobility for a set of saturation values.
|
||||
/// @param[in] props rock and fluid properties
|
||||
/// @param[in] cells cells with which the saturation values are associated
|
||||
@@ -66,6 +70,7 @@ namespace Opm
|
||||
const std::vector<double>& s,
|
||||
std::vector<double>& totmob);
|
||||
|
||||
|
||||
/// @brief Computes total mobility and omega for a set of saturation values.
|
||||
/// @param[in] props rock and fluid properties
|
||||
/// @param[in] cells cells with which the saturation values are associated
|
||||
@@ -131,6 +136,22 @@ namespace Opm
|
||||
const double* saturation,
|
||||
double* surfacevol);
|
||||
|
||||
|
||||
/// Compute two-phase transport source terms from well terms.
|
||||
/// Note: Unlike the incompressible version of this function,
|
||||
/// this version computes surface volume injection rates,
|
||||
/// production rates are still total reservoir volumes.
|
||||
/// \param[in] props Fluid and rock properties.
|
||||
/// \param[in] wells Wells data structure.
|
||||
/// \param[in] well_state Well pressures and fluxes.
|
||||
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
|
||||
/// (+) positive inflow of first (water) phase (surface volume),
|
||||
/// (-) negative total outflow of both phases (reservoir volume).
|
||||
void computeTransportSource(const BlackoilPropertiesInterface& props,
|
||||
const Wells* wells,
|
||||
const WellState& well_state,
|
||||
std::vector<double>& transport_src);
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_MISCUTILITIESBLACKOIL_HEADER_INCLUDED
|
||||
|
||||
@@ -572,6 +572,7 @@ namespace Opm
|
||||
break;
|
||||
}
|
||||
const double total_produced = getTotalProductionFlow(well_surfacerates_phase, phase);
|
||||
const double total_reinjected = - total_produced; // Production negative, injection positive
|
||||
const double my_guide_rate = injectionGuideRate(true);
|
||||
for (size_t i = 0; i < children_.size(); ++i) {
|
||||
// Apply for all children.
|
||||
@@ -580,11 +581,11 @@ namespace Opm
|
||||
const double children_guide_rate = children_[i]->injectionGuideRate(true);
|
||||
#ifdef DIRTY_WELLCTRL_HACK
|
||||
children_[i]->applyInjGroupControl(InjectionSpecification::RESV,
|
||||
(children_guide_rate / my_guide_rate) * total_produced * injSpec().reinjection_fraction_target_,
|
||||
(children_guide_rate / my_guide_rate) * total_reinjected * injSpec().reinjection_fraction_target_,
|
||||
false);
|
||||
#else
|
||||
children_[i]->applyInjGroupControl(InjectionSpecification::RATE,
|
||||
(children_guide_rate / my_guide_rate) * total_produced * injSpec().reinjection_fraction_target_,
|
||||
(children_guide_rate / my_guide_rate) * total_reinjected * injSpec().reinjection_fraction_target_,
|
||||
false);
|
||||
#endif
|
||||
}
|
||||
@@ -600,15 +601,15 @@ namespace Opm
|
||||
if (phaseUsage().phase_used[BlackoilPhases::Vapour]) {
|
||||
total_produced += getTotalProductionFlow(well_reservoirrates_phase, BlackoilPhases::Vapour);
|
||||
}
|
||||
|
||||
const double my_guide_rate = injectionGuideRate(true);
|
||||
const double total_reinjected = - total_produced; // Production negative, injection positive
|
||||
const double my_guide_rate = injectionGuideRate(true);
|
||||
for (size_t i = 0; i < children_.size(); ++i) {
|
||||
// Apply for all children.
|
||||
// Note, we do _not_ want to call the applyProdGroupControl in this object,
|
||||
// as that would check if we're under group control, something we're not.
|
||||
const double children_guide_rate = children_[i]->injectionGuideRate(true);
|
||||
children_[i]->applyInjGroupControl(InjectionSpecification::RESV,
|
||||
(children_guide_rate / my_guide_rate) * total_produced * injSpec().voidage_replacment_fraction_,
|
||||
(children_guide_rate / my_guide_rate) * total_reinjected * injSpec().voidage_replacment_fraction_,
|
||||
false);
|
||||
}
|
||||
|
||||
@@ -863,7 +864,7 @@ namespace Opm
|
||||
return;
|
||||
}
|
||||
// We're a producer, so we need to negate the input
|
||||
double ntarget = target;
|
||||
double ntarget = -target;
|
||||
|
||||
double distr[3] = { 0.0, 0.0, 0.0 };
|
||||
const int* phase_pos = phaseUsage().phase_pos;
|
||||
|
||||
@@ -226,6 +226,14 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
/// Construct from existing wells object.
|
||||
WellsManager::WellsManager(struct Wells* W)
|
||||
: w_(clone_wells(W))
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// Construct wells from deck.
|
||||
WellsManager::WellsManager(const Opm::EclipseGridParser& deck,
|
||||
const UnstructuredGrid& grid,
|
||||
|
||||
@@ -41,7 +41,14 @@ namespace Opm
|
||||
{
|
||||
public:
|
||||
/// Default constructor -- no wells.
|
||||
WellsManager();
|
||||
WellsManager();
|
||||
|
||||
/// Construct from existing wells object.
|
||||
/// WellsManager is not properly initialised in the sense that the logic to
|
||||
/// manage control switching does not exist.
|
||||
///
|
||||
/// @param[in] W Existing wells object.
|
||||
WellsManager(struct Wells* W);
|
||||
|
||||
/// Construct from input deck and grid.
|
||||
/// The permeability argument may be zero if the input contain
|
||||
|
||||
205
tests/test_wells.cpp
Normal file
205
tests/test_wells.cpp
Normal file
@@ -0,0 +1,205 @@
|
||||
/*
|
||||
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#if HAVE_DYNAMIC_BOOST_TEST
|
||||
#define BOOST_TEST_DYN_LINK
|
||||
#endif
|
||||
|
||||
#define NVERBOSE // Suppress own messages when throw()ing
|
||||
|
||||
#define BOOST_TEST_MODULE WellsModuleTest
|
||||
#include <boost/test/unit_test.hpp>
|
||||
|
||||
#include <opm/core/newwells.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <boost/shared_ptr.hpp>
|
||||
|
||||
BOOST_AUTO_TEST_CASE(Construction)
|
||||
{
|
||||
const int nphases = 2;
|
||||
const int nwells = 2;
|
||||
const int nperfs = 2;
|
||||
|
||||
boost::shared_ptr<Wells> W(create_wells(nphases, nwells, nperfs),
|
||||
destroy_wells);
|
||||
|
||||
if (W) {
|
||||
int cells[] = { 0, 9 };
|
||||
double WI = 1.0;
|
||||
const double ifrac[] = { 1.0, 0.0 };
|
||||
|
||||
const bool ok0 = add_well(INJECTOR, 0.0, 1, &ifrac[0], &cells[0],
|
||||
&WI, "INJECTOR", W.get());
|
||||
|
||||
const double pfrac[] = { 0.0, 0.0 };
|
||||
const bool ok1 = add_well(PRODUCER, 0.0, 1, &pfrac[0], &cells[1],
|
||||
&WI, "PRODUCER", W.get());
|
||||
|
||||
if (ok0 && ok1) {
|
||||
BOOST_CHECK_EQUAL(W->number_of_phases, nphases);
|
||||
BOOST_CHECK_EQUAL(W->number_of_wells , nwells );
|
||||
|
||||
BOOST_CHECK_EQUAL(W->well_connpos[0], 0);
|
||||
BOOST_CHECK_EQUAL(W->well_connpos[1], 1);
|
||||
BOOST_CHECK_EQUAL(W->well_connpos[W->number_of_wells], nperfs);
|
||||
|
||||
BOOST_CHECK_EQUAL(W->well_cells[W->well_connpos[0]], cells[0]);
|
||||
BOOST_CHECK_EQUAL(W->well_cells[W->well_connpos[1]], cells[1]);
|
||||
|
||||
BOOST_CHECK_EQUAL(W->WI[W->well_connpos[0]], WI);
|
||||
BOOST_CHECK_EQUAL(W->WI[W->well_connpos[1]], WI);
|
||||
|
||||
using std::string;
|
||||
BOOST_CHECK_EQUAL(string(W->name[0]), string("INJECTOR"));
|
||||
BOOST_CHECK_EQUAL(string(W->name[1]), string("PRODUCER"));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(Controls)
|
||||
{
|
||||
const int nphases = 2;
|
||||
const int nwells = 1;
|
||||
const int nperfs = 2;
|
||||
|
||||
boost::shared_ptr<Wells> W(create_wells(nphases, nwells, nperfs),
|
||||
destroy_wells);
|
||||
|
||||
if (W) {
|
||||
int cells[] = { 0 , 9 };
|
||||
double WI [] = { 1.0, 1.0 };
|
||||
const double ifrac[] = { 1.0, 0.0 };
|
||||
|
||||
const bool ok = add_well(INJECTOR, 0.0, nperfs, &ifrac[0], &cells[0],
|
||||
&WI[0], "INJECTOR", W.get());
|
||||
|
||||
if (ok) {
|
||||
const double distr[] = { 1.0, 0.0 };
|
||||
const bool ok1 = append_well_controls(BHP, 1, &distr[0],
|
||||
0, W.get());
|
||||
const bool ok2 = append_well_controls(SURFACE_RATE, 1,
|
||||
&distr[0], 0, W.get());
|
||||
|
||||
if (ok1 && ok2) {
|
||||
WellControls* ctrls = W->ctrls[0];
|
||||
|
||||
BOOST_CHECK_EQUAL(ctrls->num , 2);
|
||||
BOOST_CHECK_EQUAL(ctrls->current, -1);
|
||||
|
||||
set_current_control(0, 0, W.get());
|
||||
BOOST_CHECK_EQUAL(ctrls->current, 0);
|
||||
|
||||
set_current_control(0, 1, W.get());
|
||||
BOOST_CHECK_EQUAL(ctrls->current, 1);
|
||||
|
||||
BOOST_CHECK_EQUAL(ctrls->type[0], BHP);
|
||||
BOOST_CHECK_EQUAL(ctrls->type[1], SURFACE_RATE);
|
||||
|
||||
BOOST_CHECK_EQUAL(ctrls->target[0], 1.0);
|
||||
BOOST_CHECK_EQUAL(ctrls->target[1], 1.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(Copy)
|
||||
{
|
||||
const int nphases = 2;
|
||||
const int nwells = 2;
|
||||
const int nperfs = 2;
|
||||
|
||||
boost::shared_ptr<Wells> W1(create_wells(nphases, nwells, nperfs),
|
||||
destroy_wells);
|
||||
boost::shared_ptr<Wells> W2;
|
||||
|
||||
if (W1) {
|
||||
int cells[] = { 0, 9 };
|
||||
const double WI = 1.0;
|
||||
const double ifrac[] = { 1.0, 0.0 };
|
||||
|
||||
const bool ok0 = add_well(INJECTOR, 0.0, 1, &ifrac[0], &cells[0],
|
||||
&WI, "INJECTOR", W1.get());
|
||||
|
||||
const double pfrac[] = { 0.0, 0.0 };
|
||||
const bool ok1 = add_well(PRODUCER, 0.0, 1, &pfrac[0], &cells[1],
|
||||
&WI, "PRODUCER", W1.get());
|
||||
|
||||
bool ok = ok0 && ok1;
|
||||
for (int w = 0; ok && (w < W1->number_of_wells); ++w) {
|
||||
const double distr[] = { 1.0, 0.0 };
|
||||
const bool okc1 = append_well_controls(BHP, 1, &distr[0],
|
||||
w, W1.get());
|
||||
const bool okc2 = append_well_controls(SURFACE_RATE, 1,
|
||||
&distr[0], w,
|
||||
W1.get());
|
||||
|
||||
ok = okc1 && okc2;
|
||||
}
|
||||
|
||||
if (ok) {
|
||||
W2.reset(clone_wells(W1.get()), destroy_wells);
|
||||
}
|
||||
}
|
||||
|
||||
if (W2) {
|
||||
BOOST_CHECK_EQUAL(W2->number_of_phases, W1->number_of_phases);
|
||||
BOOST_CHECK_EQUAL(W2->number_of_wells , W1->number_of_wells );
|
||||
BOOST_CHECK_EQUAL(W2->well_connpos[0] , W1->well_connpos[0] );
|
||||
|
||||
for (int w = 0; w < W1->number_of_wells; ++w) {
|
||||
using std::string;
|
||||
BOOST_CHECK_EQUAL(string(W2->name[w]), string(W1->name[w]));
|
||||
BOOST_CHECK_EQUAL( W2->type[w] , W1->type[w] );
|
||||
|
||||
BOOST_CHECK_EQUAL(W2->well_connpos[w + 1],
|
||||
W1->well_connpos[w + 1]);
|
||||
|
||||
for (int j = W1->well_connpos[w];
|
||||
j < W1->well_connpos[w + 1]; ++j) {
|
||||
BOOST_CHECK_EQUAL(W2->well_cells[j], W1->well_cells[j]);
|
||||
BOOST_CHECK_EQUAL(W2->WI [j], W1->WI [j]);
|
||||
}
|
||||
|
||||
BOOST_CHECK(W1->ctrls[w] != 0);
|
||||
BOOST_CHECK(W2->ctrls[w] != 0);
|
||||
|
||||
WellControls* c1 = W1->ctrls[w];
|
||||
WellControls* c2 = W2->ctrls[w];
|
||||
|
||||
BOOST_CHECK_EQUAL(c2->num , c1->num );
|
||||
BOOST_CHECK_EQUAL(c2->current, c1->current);
|
||||
|
||||
for (int c = 0; c < c1->num; ++c) {
|
||||
BOOST_CHECK_EQUAL(c2->type [c], c1->type [c]);
|
||||
BOOST_CHECK_EQUAL(c2->target[c], c1->target[c]);
|
||||
|
||||
for (int p = 0; p < W1->number_of_phases; ++p) {
|
||||
BOOST_CHECK_EQUAL(c2->distr[c*W1->number_of_phases + p],
|
||||
c1->distr[c*W1->number_of_phases + p]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user