mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-28 20:13:49 -06:00
Improve/fix well potential calculations for MultiSegmentWell.
Includes fixes for bhp-based potentials, and an implementation for thp-based potentials similar to that for StandardWell.
This commit is contained in:
parent
becb29cec6
commit
d4433b80b5
@ -72,8 +72,8 @@ SET_BOOL_PROP(FlowModelParameters, SolveWelleqInitially, true);
|
||||
SET_BOOL_PROP(FlowModelParameters, UpdateEquationsScaling, false);
|
||||
SET_BOOL_PROP(FlowModelParameters, UseUpdateStabilization, true);
|
||||
SET_BOOL_PROP(FlowModelParameters, MatrixAddWellContributions, false);
|
||||
SET_SCALAR_PROP(FlowModelParameters, TolerancePressureMsWells, 0.01 *1e5);
|
||||
SET_SCALAR_PROP(FlowModelParameters, MaxPressureChangeMsWells, 1e6);
|
||||
SET_SCALAR_PROP(FlowModelParameters, TolerancePressureMsWells, 0.01*1e5);
|
||||
SET_SCALAR_PROP(FlowModelParameters, MaxPressureChangeMsWells, 10*1e5);
|
||||
SET_BOOL_PROP(FlowModelParameters, UseInnerIterationsMsWells, true);
|
||||
SET_INT_PROP(FlowModelParameters, MaxInnerIterMsWells, 100);
|
||||
SET_BOOL_PROP(FlowModelParameters, EnableWellOperabilityCheck, true);
|
||||
|
@ -271,6 +271,8 @@ namespace Opm
|
||||
// the upwinding segment for each segment based on the flow direction
|
||||
std::vector<int> upwinding_segments_;
|
||||
|
||||
mutable int debug_cost_counter_ = 0;
|
||||
|
||||
void initMatrixAndVectors(const int num_cells) const;
|
||||
|
||||
// protected functions
|
||||
@ -348,11 +350,21 @@ namespace Opm
|
||||
const int perf,
|
||||
std::vector<EvalWell>& mob) const;
|
||||
|
||||
void computeWellRatesWithBhpPotential(const Simulator& ebosSimulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
const double& bhp,
|
||||
std::vector<double>& well_flux,
|
||||
Opm::DeferredLogger& deferred_logger);
|
||||
void computeWellRatesAtBhpLimit(const Simulator& ebosSimulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
std::vector<double>& well_flux,
|
||||
Opm::DeferredLogger& deferred_logger) const;
|
||||
|
||||
void computeWellRatesWithBhp(const Simulator& ebosSimulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
const Scalar bhp,
|
||||
std::vector<double>& well_flux,
|
||||
Opm::DeferredLogger& deferred_logger) const;
|
||||
|
||||
std::vector<double>
|
||||
computeWellPotentialWithTHP(const Simulator& ebos_simulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
Opm::DeferredLogger& deferred_logger) const;
|
||||
|
||||
void assembleControlEq(const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, Opm::DeferredLogger& deferred_logger);
|
||||
void assembleGroupProductionControl(const Group& group, const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, EvalWell& control_eq, double efficincyFactor, Opm::DeferredLogger& deferred_logger);
|
||||
@ -431,6 +443,17 @@ namespace Opm
|
||||
// be able to produce/inject .
|
||||
bool allDrawDownWrongDirection(const Simulator& ebos_simulator) const;
|
||||
|
||||
boost::optional<double> computeBhpAtThpLimitProd(const Simulator& ebos_simulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
const SummaryState& summary_state,
|
||||
DeferredLogger& deferred_logger) const;
|
||||
|
||||
boost::optional<double> computeBhpAtThpLimitInj(const Simulator& ebos_simulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
const SummaryState& summary_state,
|
||||
DeferredLogger& deferred_logger) const;
|
||||
|
||||
double maxPerfPress(const Simulator& ebos_simulator) const;
|
||||
};
|
||||
|
||||
}
|
||||
|
@ -656,12 +656,41 @@ namespace Opm
|
||||
std::vector<double>& well_potentials,
|
||||
Opm::DeferredLogger& deferred_logger)
|
||||
{
|
||||
const int np = number_of_phases_;
|
||||
well_potentials.resize(np, 0.0);
|
||||
|
||||
// Stopped wells have zero potential.
|
||||
if (this->wellIsStopped()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// If the well is pressure controlled the potential equals the rate.
|
||||
{
|
||||
bool pressure_controlled_well = false;
|
||||
if (this->isInjector()) {
|
||||
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[index_of_well_];
|
||||
if (current == Well::InjectorCMode::BHP || current == Well::InjectorCMode::THP) {
|
||||
pressure_controlled_well = true;
|
||||
}
|
||||
} else {
|
||||
const Opm::Well::ProducerCMode& current = well_state.currentProductionControls()[index_of_well_];
|
||||
if (current == Well::ProducerCMode::BHP || current == Well::ProducerCMode::THP) {
|
||||
pressure_controlled_well = true;
|
||||
}
|
||||
}
|
||||
if (pressure_controlled_well) {
|
||||
for (int compIdx = 0; compIdx < num_components_; ++compIdx) {
|
||||
const EvalWell rate = this->getSegmentRate(0, compIdx);
|
||||
well_potentials[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value();
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// creating a copy of the well itself, to avoid messing up the explicit informations
|
||||
// during this copy, the only information not copied properly is the well controls
|
||||
MultisegmentWell<TypeTag> well(*this);
|
||||
|
||||
const int np = number_of_phases_;
|
||||
well_potentials.resize(np, 0.0);
|
||||
well.debug_cost_counter_ = 0;
|
||||
|
||||
well.updatePrimaryVariables(well_state, deferred_logger);
|
||||
|
||||
@ -669,55 +698,137 @@ namespace Opm
|
||||
// TODO: for computeWellPotentials, no derivative is required actually
|
||||
well.initPrimaryVariablesEvaluation();
|
||||
|
||||
// get the bhp value based on the bhp constraints
|
||||
const auto& summaryState = ebosSimulator.vanguard().summaryState();
|
||||
const double bhp = well.Base::mostStrictBhpFromBhpLimits(summaryState);
|
||||
|
||||
// does the well have a THP related constraint?
|
||||
if ( !well.Base::wellHasTHPConstraints(summaryState) ) {
|
||||
assert(std::abs(bhp) != std::numeric_limits<double>::max());
|
||||
|
||||
computeWellRatesWithBhpPotential(ebosSimulator, B_avg, bhp, well_potentials, deferred_logger);
|
||||
const auto& summaryState = ebosSimulator.vanguard().summaryState();
|
||||
const Well::ProducerCMode& current_control = well_state.currentProductionControls()[this->index_of_well_];
|
||||
if ( !well.Base::wellHasTHPConstraints(summaryState) || current_control == Well::ProducerCMode::BHP) {
|
||||
well.computeWellRatesAtBhpLimit(ebosSimulator, B_avg, well_potentials, deferred_logger);
|
||||
} else {
|
||||
|
||||
const std::string msg = std::string("Well potential calculation is not supported for thp controlled multisegment wells \n")
|
||||
+ "A well potential of zero is returned for output purposes. \n"
|
||||
+ "If you need well potential computed from thp to set the guide rate for group controled wells \n"
|
||||
+ "you will have to change the " + name() + " well to a standard well \n";
|
||||
|
||||
deferred_logger.warning("WELL_POTENTIAL_FOR_THP_NOT_IMPLEMENTED_FOR_MULTISEG_WELLS", msg);
|
||||
return;
|
||||
well_potentials = well.computeWellPotentialWithTHP(ebosSimulator, B_avg, deferred_logger);
|
||||
}
|
||||
|
||||
deferred_logger.debug("Cost in iterations of finding well potential for well "
|
||||
+ name() + ": " + std::to_string(well.debug_cost_counter_));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
MultisegmentWell<TypeTag>::
|
||||
computeWellRatesWithBhpPotential(const Simulator& ebosSimulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
const double& bhp OPM_UNUSED,
|
||||
std::vector<double>& well_flux,
|
||||
Opm::DeferredLogger& deferred_logger)
|
||||
computeWellRatesAtBhpLimit(const Simulator& ebosSimulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
std::vector<double>& well_flux,
|
||||
Opm::DeferredLogger& deferred_logger) const
|
||||
{
|
||||
if (well_ecl_.isInjector()) {
|
||||
const auto controls = well_ecl_.injectionControls(ebosSimulator.vanguard().summaryState());
|
||||
computeWellRatesWithBhp(ebosSimulator, B_avg, controls.bhp_limit, well_flux, deferred_logger);
|
||||
} else {
|
||||
const auto controls = well_ecl_.productionControls(ebosSimulator.vanguard().summaryState());
|
||||
computeWellRatesWithBhp(ebosSimulator, B_avg, controls.bhp_limit, well_flux, deferred_logger);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
void
|
||||
MultisegmentWell<TypeTag>::
|
||||
computeWellRatesWithBhp(const Simulator& ebosSimulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
const Scalar bhp,
|
||||
std::vector<double>& well_flux,
|
||||
Opm::DeferredLogger& deferred_logger) const
|
||||
{
|
||||
// creating a copy of the well itself, to avoid messing up the explicit informations
|
||||
// during this copy, the only information not copied properly is the well controls
|
||||
MultisegmentWell<TypeTag> well_copy(*this);
|
||||
well_copy.debug_cost_counter_ = 0;
|
||||
|
||||
// store a copy of the well state, we don't want to update the real well state
|
||||
WellState copy = ebosSimulator.problem().wellModel().wellState();
|
||||
WellState well_state_copy = ebosSimulator.problem().wellModel().wellState();
|
||||
|
||||
initPrimaryVariablesEvaluation();
|
||||
// Set current control to bhp, and bhp value in state, set bhp limit in Well object.
|
||||
if (well_copy.well_ecl_.isInjector()) {
|
||||
auto prop = std::make_shared<Well::WellInjectionProperties>(well_copy.well_ecl_.getInjectionProperties());
|
||||
prop->BHPLimit.reset(bhp/1e5); // HACK WARNING: internal unit is same as deck, assuming metric!
|
||||
well_copy.well_ecl_.updateInjection(prop);
|
||||
well_state_copy.currentInjectionControls()[index_of_well_] = Well::InjectorCMode::BHP;
|
||||
} else {
|
||||
auto prop = std::make_shared<Well::WellProductionProperties>(well_copy.well_ecl_.getProductionProperties());
|
||||
prop->BHPLimit.reset(bhp/1e5); // HACK WARNING: internal unit is same as deck, assuming metric!
|
||||
well_copy.well_ecl_.updateProduction(prop);
|
||||
well_state_copy.currentProductionControls()[index_of_well_] = Well::ProducerCMode::BHP;
|
||||
}
|
||||
well_state_copy.bhp()[well_copy.index_of_well_] = bhp;
|
||||
|
||||
well_copy.updatePrimaryVariables(well_state_copy, deferred_logger);
|
||||
well_copy.initPrimaryVariablesEvaluation();
|
||||
const double dt = ebosSimulator.timeStepSize();
|
||||
// iterate to get a solution that satisfies the bhp potential.
|
||||
iterateWellEquations(ebosSimulator, B_avg, dt, copy, deferred_logger);
|
||||
// iterate to get a solution at the given bhp.
|
||||
well_copy.iterateWellEquations(ebosSimulator, B_avg, dt, well_state_copy, deferred_logger);
|
||||
|
||||
// compute the potential and store in the flux vector.
|
||||
well_flux.clear();
|
||||
const int np = number_of_phases_;
|
||||
well_flux.resize(np, 0.0);
|
||||
for(int compIdx = 0; compIdx < num_components_; ++compIdx) {
|
||||
const EvalWell rate = getSegmentRate(0, compIdx);
|
||||
well_flux[ebosCompIdxToFlowCompIdx(compIdx)] += rate.value();
|
||||
for (int compIdx = 0; compIdx < num_components_; ++compIdx) {
|
||||
const EvalWell rate = well_copy.getSegmentRate(0, compIdx);
|
||||
well_flux[ebosCompIdxToFlowCompIdx(compIdx)] = rate.value();
|
||||
}
|
||||
debug_cost_counter_ += well_copy.debug_cost_counter_;
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
std::vector<double>
|
||||
MultisegmentWell<TypeTag>::
|
||||
computeWellPotentialWithTHP(const Simulator& ebos_simulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
Opm::DeferredLogger& deferred_logger) const
|
||||
{
|
||||
std::vector<double> potentials(number_of_phases_, 0.0);
|
||||
const auto& summary_state = ebos_simulator.vanguard().summaryState();
|
||||
|
||||
const auto& well = well_ecl_;
|
||||
if (well.isInjector()){
|
||||
auto bhp_at_thp_limit = computeBhpAtThpLimitInj(ebos_simulator, B_avg, summary_state, deferred_logger);
|
||||
if (bhp_at_thp_limit) {
|
||||
const auto& controls = well_ecl_.injectionControls(summary_state);
|
||||
const double bhp = std::min(*bhp_at_thp_limit, controls.bhp_limit);
|
||||
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
|
||||
deferred_logger.debug("Converged thp based potential calculation for well "
|
||||
+ name() + ", at bhp = " + std::to_string(bhp));
|
||||
} else {
|
||||
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
|
||||
"Failed in getting converged thp based potential calculation for well "
|
||||
+ name() + ". Instead the bhp based value is used");
|
||||
const auto& controls = well_ecl_.injectionControls(summary_state);
|
||||
const double bhp = controls.bhp_limit;
|
||||
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
|
||||
}
|
||||
} else {
|
||||
auto bhp_at_thp_limit = computeBhpAtThpLimitProd(ebos_simulator, B_avg, summary_state, deferred_logger);
|
||||
if (bhp_at_thp_limit) {
|
||||
const auto& controls = well_ecl_.productionControls(summary_state);
|
||||
const double bhp = std::max(*bhp_at_thp_limit, controls.bhp_limit);
|
||||
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
|
||||
deferred_logger.debug("Converged thp based potential calculation for well "
|
||||
+ name() + ", at bhp = " + std::to_string(bhp));
|
||||
} else {
|
||||
deferred_logger.warning("FAILURE_GETTING_CONVERGED_POTENTIAL",
|
||||
"Failed in getting converged thp based potential calculation for well "
|
||||
+ name() + ". Instead the bhp based value is used");
|
||||
const auto& controls = well_ecl_.productionControls(summary_state);
|
||||
const double bhp = controls.bhp_limit;
|
||||
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, potentials, deferred_logger);
|
||||
}
|
||||
}
|
||||
|
||||
return potentials;
|
||||
}
|
||||
|
||||
|
||||
@ -1626,6 +1737,7 @@ namespace Opm
|
||||
MultisegmentWell<TypeTag>::
|
||||
assembleControlEq(const WellState& well_state, const Opm::Schedule& schedule, const SummaryState& summaryState, Opm::DeferredLogger& deferred_logger)
|
||||
{
|
||||
|
||||
EvalWell control_eq(0.0);
|
||||
|
||||
const auto& well = well_ecl_;
|
||||
@ -2518,7 +2630,9 @@ namespace Opm
|
||||
// relaxation factor
|
||||
double relaxation_factor = 1.;
|
||||
const double min_relaxation_factor = 0.2;
|
||||
for (; it < max_iter_number; ++it) {
|
||||
bool converged = false;
|
||||
int stagnate_count = 0;
|
||||
for (; it < max_iter_number; ++it, ++debug_cost_counter_) {
|
||||
|
||||
assembleWellEqWithoutIteration(ebosSimulator, dt, well_state, deferred_logger);
|
||||
|
||||
@ -2527,6 +2641,7 @@ namespace Opm
|
||||
|
||||
const auto report = getWellConvergence(well_state, B_avg, deferred_logger);
|
||||
if (report.converged()) {
|
||||
converged = true;
|
||||
break;
|
||||
}
|
||||
|
||||
@ -2540,7 +2655,21 @@ namespace Opm
|
||||
// TODO: maybe we should have more sophiscated strategy to recover the relaxation factor,
|
||||
// for example, to recover it to be bigger
|
||||
|
||||
if (!is_stagnate) {
|
||||
stagnate_count = 0;
|
||||
}
|
||||
if (is_oscillate || is_stagnate) {
|
||||
// HACK!
|
||||
if (is_stagnate && relaxation_factor == min_relaxation_factor) {
|
||||
// Still stagnating, terminate iterations if 5 iterations pass.
|
||||
++stagnate_count;
|
||||
if (stagnate_count == 5) {
|
||||
// break;
|
||||
}
|
||||
} else {
|
||||
stagnate_count = 0;
|
||||
}
|
||||
|
||||
// a factor value to reduce the relaxation_factor
|
||||
const double reduction_mutliplier = 0.9;
|
||||
relaxation_factor = std::max(relaxation_factor * reduction_mutliplier, min_relaxation_factor);
|
||||
@ -2548,10 +2677,11 @@ namespace Opm
|
||||
// debug output
|
||||
std::ostringstream sstr;
|
||||
if (is_stagnate) {
|
||||
sstr << " well " << name() << " observes stagnation within " << it << "th inner iterations\n";
|
||||
sstr << " well " << name() << " observes stagnation in inner iteration " << it << "\n";
|
||||
|
||||
}
|
||||
if (is_oscillate) {
|
||||
sstr << " well " << name() << " osbserves oscillation within " << it <<"th inner iterations\n";
|
||||
sstr << " well " << name() << " observes oscillation in inner iteration " << it << "\n";
|
||||
}
|
||||
sstr << " relaxation_factor is " << relaxation_factor << " now\n";
|
||||
deferred_logger.debug(sstr.str());
|
||||
@ -2561,7 +2691,7 @@ namespace Opm
|
||||
}
|
||||
|
||||
// TODO: we should decide whether to keep the updated well_state, or recover to use the old well_state
|
||||
if (it < max_iter_number) {
|
||||
if (converged) {
|
||||
std::ostringstream sstr;
|
||||
sstr << " well " << name() << " manage to get converged within " << it << " inner iterations";
|
||||
deferred_logger.debug(sstr.str());
|
||||
@ -3230,4 +3360,429 @@ namespace Opm
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
boost::optional<double>
|
||||
MultisegmentWell<TypeTag>::
|
||||
computeBhpAtThpLimitProd(const Simulator& ebos_simulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
const SummaryState& summary_state,
|
||||
DeferredLogger& deferred_logger) const
|
||||
{
|
||||
// Given a VFP function returning bhp as a function of phase
|
||||
// rates and thp:
|
||||
// fbhp(rates, thp),
|
||||
// a function extracting the particular flow rate used for VFP
|
||||
// lookups:
|
||||
// flo(rates)
|
||||
// and the inflow function (assuming the reservoir is fixed):
|
||||
// frates(bhp)
|
||||
// we want to solve the equation:
|
||||
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
||||
// for bhp.
|
||||
//
|
||||
// This may result in 0, 1 or 2 solutions. If two solutions,
|
||||
// the one corresponding to the lowest bhp (and therefore
|
||||
// highest rate) should be returned.
|
||||
|
||||
// Make the fbhp() function.
|
||||
const auto& controls = well_ecl_.productionControls(summary_state);
|
||||
const auto& table = *(vfp_properties_->getProd()->getTable(controls.vfp_table_number));
|
||||
const double vfp_ref_depth = table.getDatumDepth();
|
||||
const double rho = segment_densities_[0].value(); // Use the density at the top perforation.
|
||||
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
||||
auto fbhp = [this, &controls, dp](const std::vector<double>& rates) {
|
||||
assert(rates.size() == 3);
|
||||
return this->vfp_properties_->getProd()
|
||||
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], controls.thp_limit, controls.alq_value) - dp;
|
||||
};
|
||||
|
||||
// Make the flo() function.
|
||||
auto flo_type = table.getFloType();
|
||||
auto flo = [flo_type](const std::vector<double>& rates) {
|
||||
return detail::getFlo(rates[Water], rates[Oil], rates[Gas], flo_type);
|
||||
};
|
||||
|
||||
// Make the frates() function.
|
||||
auto frates = [this, &ebos_simulator, &B_avg, &deferred_logger](const double bhp) {
|
||||
// Not solving the well equations here, which means we are
|
||||
// calculating at the current Fg/Fw values of the
|
||||
// well. This does not matter unless the well is
|
||||
// crossflowing, and then it is likely still a good
|
||||
// approximation.
|
||||
std::vector<double> rates(3);
|
||||
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, rates, deferred_logger);
|
||||
return rates;
|
||||
};
|
||||
|
||||
// Find the bhp-point where production becomes nonzero.
|
||||
double bhp_max = 0.0;
|
||||
{
|
||||
auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); };
|
||||
double low = controls.bhp_limit;
|
||||
double high = maxPerfPress(ebos_simulator) + 1.0 * unit::barsa;
|
||||
double f_low = fflo(low);
|
||||
double f_high = fflo(high);
|
||||
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() +
|
||||
" low = " + std::to_string(low) +
|
||||
" high = " + std::to_string(high) +
|
||||
" f(low) = " + std::to_string(f_low) +
|
||||
" f(high) = " + std::to_string(f_high));
|
||||
int adjustments = 0;
|
||||
const int max_adjustments = 10;
|
||||
const double adjust_amount = 5.0 * unit::barsa;
|
||||
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
|
||||
// Same sign, adjust high to see if we can flip it.
|
||||
high += adjust_amount;
|
||||
f_high = fflo(high);
|
||||
++adjustments;
|
||||
}
|
||||
if (f_low * f_high > 0.0) {
|
||||
if (f_low > 0.0) {
|
||||
// Even at the BHP limit, we are injecting.
|
||||
// There will be no solution here, return an
|
||||
// empty optional.
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
||||
"Robust bhp(thp) solve failed due to inoperability for well " + name());
|
||||
return boost::optional<double>();
|
||||
} else {
|
||||
// Still producing, even at high bhp.
|
||||
assert(f_high < 0.0);
|
||||
bhp_max = high;
|
||||
}
|
||||
} else {
|
||||
// Bisect to find a bhp point where we produce, but
|
||||
// not a large amount ('eps' below).
|
||||
const double eps = 0.1 * std::fabs(table.getFloAxis().front());
|
||||
const int maxit = 50;
|
||||
int it = 0;
|
||||
while (std::fabs(f_low) > eps && it < maxit) {
|
||||
const double curr = 0.5*(low + high);
|
||||
const double f_curr = fflo(curr);
|
||||
if (f_curr * f_low > 0.0) {
|
||||
low = curr;
|
||||
f_low = f_curr;
|
||||
} else {
|
||||
high = curr;
|
||||
f_high = f_curr;
|
||||
}
|
||||
++it;
|
||||
}
|
||||
bhp_max = low;
|
||||
}
|
||||
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() +
|
||||
" low = " + std::to_string(low) +
|
||||
" high = " + std::to_string(high) +
|
||||
" f(low) = " + std::to_string(f_low) +
|
||||
" f(high) = " + std::to_string(f_high) +
|
||||
" bhp_max = " + std::to_string(bhp_max));
|
||||
}
|
||||
|
||||
// Define the equation we want to solve.
|
||||
auto eq = [&fbhp, &frates](double bhp) {
|
||||
return fbhp(frates(bhp)) - bhp;
|
||||
};
|
||||
|
||||
// Find appropriate brackets for the solution.
|
||||
double low = controls.bhp_limit;
|
||||
double high = bhp_max;
|
||||
{
|
||||
double eq_high = eq(high);
|
||||
double eq_low = eq(low);
|
||||
const double eq_bhplimit = eq_low;
|
||||
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + name() +
|
||||
" low = " + std::to_string(low) +
|
||||
" high = " + std::to_string(high) +
|
||||
" eq(low) = " + std::to_string(eq_low) +
|
||||
" eq(high) = " + std::to_string(eq_high));
|
||||
if (eq_low * eq_high > 0.0) {
|
||||
// Failed to bracket the zero.
|
||||
// If this is due to having two solutions, bisect until bracketed.
|
||||
double abs_low = std::fabs(eq_low);
|
||||
double abs_high = std::fabs(eq_high);
|
||||
int bracket_attempts = 0;
|
||||
const int max_bracket_attempts = 20;
|
||||
double interval = high - low;
|
||||
const double min_interval = 1.0 * unit::barsa;
|
||||
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
|
||||
if (abs_high < abs_low) {
|
||||
low = 0.5 * (low + high);
|
||||
eq_low = eq(low);
|
||||
abs_low = std::fabs(eq_low);
|
||||
} else {
|
||||
high = 0.5 * (low + high);
|
||||
eq_high = eq(high);
|
||||
abs_high = std::fabs(eq_high);
|
||||
}
|
||||
++bracket_attempts;
|
||||
}
|
||||
if (eq_low * eq_high > 0.0) {
|
||||
// Still failed bracketing!
|
||||
const double limit = 3.0 * unit::barsa;
|
||||
if (std::min(abs_low, abs_high) < limit) {
|
||||
// Return the least bad solution if less off than 3 bar.
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
||||
"Robust bhp(thp) not solved precisely for well " + name());
|
||||
return abs_low < abs_high ? low : high;
|
||||
} else {
|
||||
// Return failure.
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
||||
"Robust bhp(thp) solve failed due to bracketing failure for well " + name());
|
||||
return boost::optional<double>();
|
||||
}
|
||||
}
|
||||
}
|
||||
// We have a bracket!
|
||||
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
|
||||
// If so, that is the bracket we shall use, choosing the solution with the
|
||||
// highest flow.
|
||||
if (eq_low * eq_bhplimit <= 0.0) {
|
||||
high = low;
|
||||
low = controls.bhp_limit;
|
||||
}
|
||||
}
|
||||
|
||||
// Solve for the proper solution in the given interval.
|
||||
const int max_iteration = 100;
|
||||
const double bhp_tolerance = 0.01 * unit::barsa;
|
||||
int iteration = 0;
|
||||
try {
|
||||
const double solved_bhp = RegulaFalsiBisection<ThrowOnError>::
|
||||
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
||||
return solved_bhp;
|
||||
}
|
||||
catch (...) {
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
||||
"Robust bhp(thp) solve failed for well " + name());
|
||||
return boost::optional<double>();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
boost::optional<double>
|
||||
MultisegmentWell<TypeTag>::
|
||||
computeBhpAtThpLimitInj(const Simulator& ebos_simulator,
|
||||
const std::vector<Scalar>& B_avg,
|
||||
const SummaryState& summary_state,
|
||||
DeferredLogger& deferred_logger) const
|
||||
{
|
||||
// Given a VFP function returning bhp as a function of phase
|
||||
// rates and thp:
|
||||
// fbhp(rates, thp),
|
||||
// a function extracting the particular flow rate used for VFP
|
||||
// lookups:
|
||||
// flo(rates)
|
||||
// and the inflow function (assuming the reservoir is fixed):
|
||||
// frates(bhp)
|
||||
// we want to solve the equation:
|
||||
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
||||
// for bhp.
|
||||
//
|
||||
// This may result in 0, 1 or 2 solutions. If two solutions,
|
||||
// the one corresponding to the lowest bhp (and therefore
|
||||
// highest rate) is returned.
|
||||
//
|
||||
// In order to detect these situations, we will find piecewise
|
||||
// linear approximations both to the inverse of the frates
|
||||
// function and to the fbhp function.
|
||||
//
|
||||
// We first take the FLO sample points of the VFP curve, and
|
||||
// find the corresponding bhp values by solving the equation:
|
||||
// flo(frates(bhp)) - flo_sample = 0
|
||||
// for bhp, for each flo_sample. The resulting (flo_sample,
|
||||
// bhp_sample) values give a piecewise linear approximation to
|
||||
// the true inverse inflow function, at the same flo values as
|
||||
// the VFP data.
|
||||
//
|
||||
// Then we extract a piecewise linear approximation from the
|
||||
// multilinear fbhp() by evaluating it at the flo_sample
|
||||
// points, with fractions given by the frates(bhp_sample)
|
||||
// values.
|
||||
//
|
||||
// When we have both piecewise linear curves defined on the
|
||||
// same flo_sample points, it is easy to distinguish between
|
||||
// the 0, 1 or 2 solution cases, and obtain the right interval
|
||||
// in which to solve for the solution we want (with highest
|
||||
// flow in case of 2 solutions).
|
||||
|
||||
// Make the fbhp() function.
|
||||
const auto& controls = well_ecl_.injectionControls(summary_state);
|
||||
const auto& table = *(vfp_properties_->getInj()->getTable(controls.vfp_table_number));
|
||||
const double vfp_ref_depth = table.getDatumDepth();
|
||||
const double rho = segment_densities_[0].value(); // Use the density at the top perforation.
|
||||
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
|
||||
auto fbhp = [this, &controls, dp](const std::vector<double>& rates) {
|
||||
assert(rates.size() == 3);
|
||||
return this->vfp_properties_->getInj()
|
||||
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], controls.thp_limit) - dp;
|
||||
};
|
||||
|
||||
// Make the flo() function.
|
||||
auto flo_type = table.getFloType();
|
||||
auto flo = [flo_type](const std::vector<double>& rates) {
|
||||
return detail::getFlo(rates[Water], rates[Oil], rates[Gas], flo_type);
|
||||
};
|
||||
|
||||
// Make the frates() function.
|
||||
auto frates = [this, &ebos_simulator, &B_avg, &deferred_logger](const double bhp) {
|
||||
// Not solving the well equations here, which means we are
|
||||
// calculating at the current Fg/Fw values of the
|
||||
// well. This does not matter unless the well is
|
||||
// crossflowing, and then it is likely still a good
|
||||
// approximation.
|
||||
std::vector<double> rates(3);
|
||||
computeWellRatesWithBhp(ebos_simulator, B_avg, bhp, rates, deferred_logger);
|
||||
return rates;
|
||||
};
|
||||
|
||||
// Get the flo samples, add extra samples at low rates and bhp
|
||||
// limit point if necessary.
|
||||
std::vector<double> flo_samples = table.getFloAxis();
|
||||
if (flo_samples[0] > 0.0) {
|
||||
const double f0 = flo_samples[0];
|
||||
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
|
||||
}
|
||||
const double flo_bhp_limit = flo(frates(controls.bhp_limit));
|
||||
if (flo_samples.back() < flo_bhp_limit) {
|
||||
flo_samples.push_back(flo_bhp_limit);
|
||||
}
|
||||
|
||||
// Find bhp values for inflow relation corresponding to flo samples.
|
||||
std::vector<double> bhp_samples;
|
||||
for (double flo_sample : flo_samples) {
|
||||
if (flo_sample > flo_bhp_limit) {
|
||||
// We would have to go over the bhp limit to obtain a
|
||||
// flow of this magnitude. We associate all such flows
|
||||
// with simply the bhp limit. The first one
|
||||
// encountered is considered valid, the rest not. They
|
||||
// are therefore skipped.
|
||||
bhp_samples.push_back(controls.bhp_limit);
|
||||
break;
|
||||
}
|
||||
auto eq = [&flo, &frates, flo_sample](double bhp) {
|
||||
return flo(frates(bhp)) - flo_sample;
|
||||
};
|
||||
// TODO: replace hardcoded low/high limits.
|
||||
const double low = 10.0 * unit::barsa;
|
||||
const double high = 800.0 * unit::barsa;
|
||||
const int max_iteration = 100;
|
||||
const double flo_tolerance = 0.05 * std::fabs(flo_samples.back());
|
||||
int iteration = 0;
|
||||
try {
|
||||
const double solved_bhp = RegulaFalsiBisection<WarnAndContinueOnError>::
|
||||
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
|
||||
bhp_samples.push_back(solved_bhp);
|
||||
}
|
||||
catch (...) {
|
||||
// Use previous value (or max value if at start) if we failed.
|
||||
bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back());
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
|
||||
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + name());
|
||||
}
|
||||
}
|
||||
|
||||
// Find bhp values for VFP relation corresponding to flo samples.
|
||||
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
|
||||
std::vector<double> fbhp_samples(num_samples);
|
||||
for (int ii = 0; ii < num_samples; ++ii) {
|
||||
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
|
||||
}
|
||||
// #define EXTRA_THP_DEBUGGING
|
||||
#ifdef EXTRA_THP_DEBUGGING
|
||||
std::string dbgmsg;
|
||||
dbgmsg += "flo: ";
|
||||
for (int ii = 0; ii < num_samples; ++ii) {
|
||||
dbgmsg += " " + std::to_string(flo_samples[ii]);
|
||||
}
|
||||
dbgmsg += "\nbhp: ";
|
||||
for (int ii = 0; ii < num_samples; ++ii) {
|
||||
dbgmsg += " " + std::to_string(bhp_samples[ii]);
|
||||
}
|
||||
dbgmsg += "\nfbhp: ";
|
||||
for (int ii = 0; ii < num_samples; ++ii) {
|
||||
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
|
||||
}
|
||||
OpmLog::debug(dbgmsg);
|
||||
#endif // EXTRA_THP_DEBUGGING
|
||||
|
||||
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
|
||||
// We only look at the valid
|
||||
int sign_change_index = -1;
|
||||
for (int ii = 0; ii < num_samples - 1; ++ii) {
|
||||
const double curr = fbhp_samples[ii] - bhp_samples[ii];
|
||||
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
|
||||
if (curr * next < 0.0) {
|
||||
// Sign change in the [ii, ii + 1] interval.
|
||||
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
|
||||
}
|
||||
}
|
||||
|
||||
// Handle the no solution case.
|
||||
if (sign_change_index == -1) {
|
||||
return boost::optional<double>();
|
||||
}
|
||||
|
||||
// Solve for the proper solution in the given interval.
|
||||
auto eq = [&fbhp, &frates](double bhp) {
|
||||
return fbhp(frates(bhp)) - bhp;
|
||||
};
|
||||
// TODO: replace hardcoded low/high limits.
|
||||
const double low = bhp_samples[sign_change_index + 1];
|
||||
const double high = bhp_samples[sign_change_index];
|
||||
const int max_iteration = 100;
|
||||
const double bhp_tolerance = 0.01 * unit::barsa;
|
||||
int iteration = 0;
|
||||
if (low == high) {
|
||||
// We are in the high flow regime where the bhp_samples
|
||||
// are all equal to the bhp_limit.
|
||||
assert(low == controls.bhp_limit);
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
||||
"Robust bhp(thp) solve failed for well " + name());
|
||||
return boost::optional<double>();
|
||||
}
|
||||
try {
|
||||
const double solved_bhp = RegulaFalsiBisection<WarnAndContinueOnError>::
|
||||
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
||||
#ifdef EXTRA_THP_DEBUGGING
|
||||
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
|
||||
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
|
||||
#endif // EXTRA_THP_DEBUGGING
|
||||
return solved_bhp;
|
||||
}
|
||||
catch (...) {
|
||||
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
||||
"Robust bhp(thp) solve failed for well " + name());
|
||||
return boost::optional<double>();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<typename TypeTag>
|
||||
double
|
||||
MultisegmentWell<TypeTag>::
|
||||
maxPerfPress(const Simulator& ebos_simulator) const
|
||||
{
|
||||
double max_pressure = 0.0;
|
||||
const int nseg = numberOfSegments();
|
||||
for (int seg = 0; seg < nseg; ++seg) {
|
||||
for (const int perf : segment_perforations_[seg]) {
|
||||
const int cell_idx = well_cells_[perf];
|
||||
const auto& int_quants = *(ebos_simulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
||||
const auto& fs = int_quants.fluidState();
|
||||
double pressure_cell = fs.pressure(FluidSystem::oilPhaseIdx).value();
|
||||
max_pressure = std::max(max_pressure, pressure_cell);
|
||||
}
|
||||
}
|
||||
return max_pressure;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
@ -283,7 +283,7 @@ namespace Opm
|
||||
// to indicate a invalid completion
|
||||
static const int INVALIDCOMPLETION = INT_MAX;
|
||||
|
||||
const Well well_ecl_;
|
||||
Well well_ecl_;
|
||||
|
||||
const int current_step_;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user