enabled DUNE-ISTL::AMG and DUNE-ISTL::CGSolver.

The default is the same as before, i.e. DUNE-ISTL::ILU0 and DUNE-ISTL::BiCGSolver
for solving the elliptic problem.
This commit is contained in:
Robert Kloefkorn 2014-09-04 17:06:00 +02:00
parent 65ce6b4d22
commit d46fbe6728

View File

@ -1,5 +1,6 @@
/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2014 IRIS AS.
This file is part of the Open Porous Media project (OPM).
@ -69,22 +70,77 @@ namespace Opm
category = Dune::SolverCategory::sequential
};
//! \brief Elliptic Operator
typedef Dune::MatrixAdapter<M,X,X> Operator;
//! \brief ilu-0 preconditioner for the elliptic system
typedef Dune::SeqILU0<M,X,X> Preconditioner;
//! \brief amg preconditioner for the elliptic system
typedef Preconditioner Smoother;
typedef Dune::Amg::AMG<Operator, X, Smoother> AMG;
/*! \brief Constructor.
Constructor gets all parameters to operate the prec.
\param A The matrix to operate on.
\param Ae The top-left elliptic part of A.
\param w The ILU0 relaxation factor.
\param A The matrix to operate on.
\param Ae The top-left elliptic part of A.
\param relax The ILU0 relaxation factor.
\param useAMG if true, AMG is used as a preconditioner for the elliptic sub-system, otherwise ilu-0 (default)
\param useBiCG if true, BiCG solver is used (default), otherwise CG solver
*/
CPRPreconditioner (const M& A, const M& Ae, const field_type relax)
CPRPreconditioner (const M& A, const M& Ae, const field_type relax,
const bool useAMG = false,
const bool useBiCG = true )
: A_(A),
ILU_(A), // copy A (will be overwritten by ILU decomp)
Ae_(Ae),
relax_(relax)
de_( Ae_.N() ),
ve_( Ae_.M() ),
dmodified_( A_.N() ),
opAe_( Ae_ ),
precond_( 0 ), // ilu0 preconditioner for elliptic system
amg_( 0 ), // amg preconditioner for elliptic system
ILU_(A), // copy A (will be overwritten by ILU decomp)
vilu_( ILU_.N() ),
relax_(relax),
use_bicg_solver_( useBiCG )
{
// create appropriate preconditioner for elliptic system
createPreconditioner( useAMG );
Dune::bilu0_decomposition(ILU_);
}
//! \brief copy constructor
CPRPreconditioner( const CPRPreconditioner& other )
: A_( other.A_ ),
Ae_( other.Ae_ ),
de_( Ae_.N() ),
ve_( Ae_.M() ),
dmodified_( A_.N() ),
opAe_( Ae_ ),
precond_( 0 ),
amg_( 0 ),
ILU_( other.ILU_ ),
vilu_( ILU_.N() ),
relax_( other.relax_ ),
use_bicg_solver_( other.use_bicg_solver_ )
{
// create appropriate preconditioner for elliptic system
createPreconditioner( other.amg_ != 0 );
}
//! \brief Destructor
virtual ~CPRPreconditioner()
{
if( precond_ ) {
delete precond_ ; precond_ = 0;
}
if( amg_ ) {
delete amg_; amg_ = 0;
}
}
/*!
\brief Prepare the preconditioner.
@ -102,27 +158,33 @@ namespace Opm
virtual void apply (X& v, const Y& d)
{
// Extract part of d corresponding to elliptic part.
Y de(Ae_.N());
// Note: Assumes that the elliptic part comes first.
std::copy_n(d.begin(), Ae_.N(), de.begin());
std::copy_n(d.begin(), de_.size(), de_.begin());
// Solve elliptic part, extend solution to full.
Y ve = solveElliptic(de);
Y vfull(ILU_.N());
vfull = 0.0;
// reset result
ve_ = 0;
//std::copy_n(v.begin(), ve_.size(), ve_.begin());
solveElliptic( ve_, de_ );
//reset return value
v = 0.0;
// Again assuming that the elliptic part comes first.
std::copy(ve.begin(), ve.end(), vfull.begin());
std::copy(ve_.begin(), ve_.end(), v.begin());
// Subtract elliptic residual from initial residual.
// dmodified = d - A * vfull
Y dmodified = d;
A_.mmv(vfull, dmodified);
//Y dmodified = d;
dmodified_ = d ;
A_.mmv(v, dmodified_);
// Apply ILU0.
Y vilu(ILU_.N());
Dune::bilu_backsolve(ILU_, vilu, dmodified);
v = vfull;
v += vilu;
Dune::bilu_backsolve(ILU_, vilu_, dmodified_);
v += vilu_;
// don't apply relaxation if relax_ == 1
if( std::abs( relax_ - 1.0 ) < 1e-12 ) return ;
v *= relax_;
}
@ -135,47 +197,105 @@ namespace Opm
{
}
private:
Y solveElliptic(Y& de)
protected:
void solveElliptic(Y& x, Y& de)
{
// std::cout << "solveElliptic()" << std::endl;
// Construct operator, scalar product and vectors needed.
typedef Dune::MatrixAdapter<M,X,X> Operator;
Operator opAe(Ae_);
Dune::SeqScalarProduct<X> sp;
// Right hand side.
// System solution
X x(opAe.getmat().M());
x = 0.0;
// Construct preconditioner.
typedef typename Dune::SeqILU0<M,X,X> Preconditioner;
const double relax = 1.0;
Preconditioner precond(Ae_, relax);
// Construct linear solver.
// Linear solver parameters
const double tolerance = 1e-4;
const int maxit = 5000;
const int verbosity = 0;
Dune::BiCGSTABSolver<X> linsolve(opAe, sp, precond, tolerance, maxit, verbosity);
// Solve system.
// operator result containing iterations etc.
Dune::InverseOperatorResult result;
linsolve.apply(x, de, result);
// sequential scalar product
Dune::SeqScalarProduct<X> sp;
if( amg_ )
{
// Solve system with AMG
if( use_bicg_solver_ ) {
Dune::BiCGSTABSolver<X> linsolve(opAe_, sp, (*amg_), tolerance, maxit, verbosity);
linsolve.apply(x, de, result);
}
else {
Dune::CGSolver<X> linsolve(opAe_, sp, (*amg_), tolerance, maxit, verbosity);
linsolve.apply(x, de, result);
}
}
else
{
assert( precond_ );
// Solve system with ILU-0
if( use_bicg_solver_ ) {
Dune::BiCGSTABSolver<X> linsolve(opAe_, sp, (*precond_), tolerance, maxit, verbosity);
linsolve.apply(x, de, result);
}
else {
Dune::CGSolver<X> linsolve(opAe_, sp, (*precond_), tolerance, maxit, verbosity);
linsolve.apply(x, de, result);
}
}
if (!result.converged) {
OPM_THROW(std::runtime_error, "CPRPreconditioner failed to solve elliptic subsystem.");
}
return x;
}
//! \brief The matrix for the full linear problem.
const matrix_type& A_;
//! \brief The elliptic part of the matrix.
const matrix_type& Ae_;
//! \brief temporary variables for elliptic solve
Y de_, ve_, dmodified_;
//! \brief elliptic operator
Operator opAe_;
//! \brief ILU0 preconditioner for the elliptic system
Preconditioner* precond_;
//! \brief AMG preconditioner with ILU0 smoother
AMG* amg_;
//! \brief The ILU0 decomposition of the matrix.
matrix_type ILU_;
//! \brief The elliptic part of the matrix.
matrix_type Ae_;
//! \brief temporary variables for ILU solve
Y vilu_;
//! \brief The relaxation factor to use.
field_type relax_;
//! \brief true if ISTL BiCGSTABSolver is used, otherwise ISTL CGSolver is used
const bool use_bicg_solver_ ;
protected:
void createPreconditioner( const bool amg )
{
if( amg )
{
typedef Dune::Amg::CoarsenCriterion< Dune::Amg::SymmetricCriterion<M, Dune::Amg::FirstDiagonal> > Criterion;
typedef typename Dune::Amg::SmootherTraits<Smoother>::Arguments SmootherArgs;
SmootherArgs smootherArgs;
smootherArgs.iterations = 1;
smootherArgs.relaxationFactor = relax_ ;
int coarsenTarget=1200;
Criterion criterion(15,coarsenTarget);
criterion.setDebugLevel( 1 ); // only print hierarchy information
criterion.setDefaultValuesIsotropic(2);
criterion.setAlpha(.67);
criterion.setBeta(1.0e-6);
criterion.setMaxLevel(10);
amg_ = new AMG(opAe_, criterion, smootherArgs);
}
else
precond_ = new Preconditioner( Ae_, relax_ );
//precond_ = new Preconditioner( Ae_, 1, relax_ );
}
};
} // namespace Opm