mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
working with small increase in performance
This commit is contained in:
parent
487cf2376e
commit
d986ef1add
@ -57,13 +57,14 @@ class BlackOilLocalResidualTPFA : public GetPropType<TypeTag, Properties::DiscLo
|
||||
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
||||
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
||||
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
||||
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
|
||||
enum { conti0EqIdx = Indices::conti0EqIdx };
|
||||
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
||||
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
||||
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
||||
|
||||
|
||||
enum { dimWorld = GridView::dimensionworld };
|
||||
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
||||
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
||||
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
||||
@ -195,27 +196,117 @@ public:
|
||||
assert(timeIdx == 0);
|
||||
|
||||
flux = 0.0;
|
||||
// need for dary flux calculation
|
||||
const auto& problem = elemCtx.problem();
|
||||
const auto& stencil = elemCtx.stencil(timeIdx);
|
||||
const auto& scvf = stencil.interiorFace(scvfIdx);
|
||||
|
||||
const ExtensiveQuantities& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
|
||||
unsigned interiorDofIdx = scvf.interiorIndex();
|
||||
unsigned exteriorDofIdx = scvf.exteriorIndex();
|
||||
assert(interiorDofIdx != exteriorDofIdx);
|
||||
|
||||
//unsigned I = stencil.globalSpaceIndex(interiorDofIdx);
|
||||
//unsigned J = stencil.globalSpaceIndex(exteriorDofIdx);
|
||||
Scalar Vin = elemCtx.dofVolume(interiorDofIdx, /*timeIdx=*/0);
|
||||
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, /*timeIdx=*/0);
|
||||
const auto& globalIndexIn = stencil.globalSpaceIndex(interiorDofIdx);
|
||||
const auto& globalIndexEx = stencil.globalSpaceIndex(exteriorDofIdx);
|
||||
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
|
||||
Scalar faceArea = scvf.area();
|
||||
Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx);
|
||||
|
||||
// estimate the gravity correction: for performance reasons we use a simplified
|
||||
// approach for this flux module that assumes that gravity is constant and always
|
||||
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
||||
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
|
||||
|
||||
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
|
||||
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
|
||||
|
||||
// this is quite hacky because the dune grid interface does not provide a
|
||||
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
|
||||
// solution would be to take the Z coordinate of the element centroids, but since
|
||||
// ECL seems to like to be inconsistent on that front, it needs to be done like
|
||||
// here...
|
||||
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
|
||||
Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
|
||||
|
||||
// the distances from the DOF's depths. (i.e., the additional depth of the
|
||||
// exterior DOF)
|
||||
Scalar distZ = zIn - zEx;
|
||||
|
||||
//
|
||||
//const ExtensiveQuantities& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
|
||||
unsigned focusDofIdx = elemCtx.focusDofIndex();
|
||||
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
|
||||
if (!FluidSystem::phaseIsActive(phaseIdx))
|
||||
continue;
|
||||
// darcy flux calculation
|
||||
short dnIdx;
|
||||
//
|
||||
short upIdx;
|
||||
Evaluation pressureDifference;
|
||||
ExtensiveQuantities::calculatePhasePressureDiff_(upIdx,
|
||||
dnIdx,
|
||||
pressureDifference,
|
||||
intQuantsIn,
|
||||
intQuantsEx,
|
||||
scvfIdx,//input
|
||||
timeIdx,//input
|
||||
phaseIdx,//input
|
||||
interiorDofIdx,//input
|
||||
exteriorDofIdx,//intput
|
||||
Vin,
|
||||
Vex,
|
||||
globalIndexIn,
|
||||
globalIndexEx,
|
||||
distZ*g,
|
||||
thpres);
|
||||
|
||||
|
||||
|
||||
const IntensiveQuantities& up = (upIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx;
|
||||
unsigned globalIndex;
|
||||
if(upIdx == interiorDofIdx){
|
||||
//up = intQuantsIn;
|
||||
globalIndex = globalIndexIn;
|
||||
}else{
|
||||
//up = intQuantsEx;
|
||||
globalIndex = globalIndexEx;
|
||||
}
|
||||
// TODO: should the rock compaction transmissibility multiplier be upstreamed
|
||||
// or averaged? all fluids should see the same compaction?!
|
||||
//const auto& globalIndex = stencil.globalSpaceIndex(upstreamIdx);
|
||||
const Evaluation& transMult =
|
||||
problem.template rockCompTransMultiplier<Evaluation>(up, globalIndex);
|
||||
Evaluation darcyFlux;
|
||||
if(pressureDifference == 0){
|
||||
darcyFlux = 0.0; //NB maybe we could drop calculations
|
||||
}else{
|
||||
if (upIdx == interiorDofIdx)
|
||||
darcyFlux =
|
||||
pressureDifference*up.mobility(phaseIdx)*transMult*(-trans/faceArea);
|
||||
else
|
||||
darcyFlux =
|
||||
pressureDifference*(Toolbox::value(up.mobility(phaseIdx))*Toolbox::value(transMult)*(-trans/faceArea));
|
||||
}
|
||||
//const auto& darcyFlux = extQuants.volumeFlux(phaseIdx);
|
||||
//unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
|
||||
|
||||
//const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
||||
unsigned pvtRegionIdx = up.pvtRegionIndex();
|
||||
using FluidState = typename IntensiveQuantities::FluidState;
|
||||
if (upIdx == focusDofIdx){
|
||||
const auto& invB = getInvB_<FluidSystem, FluidState, Evaluation>(up.fluidState(), phaseIdx, pvtRegionIdx);
|
||||
const auto& surfaceVolumeFlux = invB*darcyFlux;
|
||||
evalPhaseFluxes_<Evaluation,Evaluation,FluidState>(flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
|
||||
}else{
|
||||
const auto& invB = getInvB_<FluidSystem, FluidState, Scalar>(up.fluidState(), phaseIdx, pvtRegionIdx);
|
||||
const auto& surfaceVolumeFlux = invB*darcyFlux;
|
||||
evalPhaseFluxes_<Scalar,Evaluation,FluidState>(flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
|
||||
}
|
||||
|
||||
|
||||
const auto& darcyFlux = extQuants.volumeFlux(phaseIdx);
|
||||
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
|
||||
const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
||||
unsigned pvtRegionIdx = up.pvtRegionIndex();
|
||||
using FluidState = typename IntensiveQuantities::FluidState;
|
||||
if (upIdx == focusDofIdx){
|
||||
const auto& invB = getInvB_<FluidSystem, FluidState, Evaluation>(up.fluidState(), phaseIdx, pvtRegionIdx);
|
||||
const auto& surfaceVolumeFlux = invB*darcyFlux;
|
||||
evalPhaseFluxes_<Evaluation,Evaluation,FluidState>(flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
|
||||
}else{
|
||||
const auto& invB = getInvB_<FluidSystem, FluidState, Scalar>(up.fluidState(), phaseIdx, pvtRegionIdx);
|
||||
const auto& surfaceVolumeFlux = invB*darcyFlux;
|
||||
evalPhaseFluxes_<Scalar,Evaluation,FluidState>(flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
|
||||
}
|
||||
}
|
||||
|
||||
// deal with solvents (if present)
|
||||
|
308
opm/models/discretization/common/fvbaseadlocallinearizertpfa.hh
Normal file
308
opm/models/discretization/common/fvbaseadlocallinearizertpfa.hh
Normal file
@ -0,0 +1,308 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Opm::FvBaseAdLocalLinearizer
|
||||
*/
|
||||
#ifndef EWOMS_FV_BASE_AD_LOCAL_TPFA_LINEARIZER_HH
|
||||
#define EWOMS_FV_BASE_AD_LOCAL_TPFA_LINEARIZER_HH
|
||||
|
||||
#include "fvbaseproperties.hh"
|
||||
|
||||
#include <opm/material/densead/Math.hpp>
|
||||
#include <opm/material/common/Valgrind.hpp>
|
||||
#include <opm/material/common/Unused.hpp>
|
||||
|
||||
#include <dune/istl/bvector.hh>
|
||||
#include <dune/istl/matrix.hh>
|
||||
|
||||
#include <dune/common/fvector.hh>
|
||||
#include <dune/common/fmatrix.hh>
|
||||
|
||||
namespace Opm {
|
||||
//forward declaration
|
||||
template<class TypeTag>
|
||||
class FvBaseAdLocalLinearizerTPFA;
|
||||
}
|
||||
|
||||
namespace Opm::Properties {
|
||||
|
||||
//declare the property tags required for the finite differences local linearizer
|
||||
|
||||
namespace TTag {
|
||||
struct AutoDiffLocalLinearizerTPFA {};
|
||||
} // namespace TTag
|
||||
|
||||
// set the properties to be spliced in
|
||||
template<class TypeTag>
|
||||
struct LocalLinearizer<TypeTag, TTag::AutoDiffLocalLinearizerTPFA>
|
||||
{ using type = FvBaseAdLocalLinearizerTPFA<TypeTag>; };
|
||||
|
||||
//! Set the function evaluation w.r.t. the primary variables
|
||||
template<class TypeTag>
|
||||
struct Evaluation<TypeTag, TTag::AutoDiffLocalLinearizerTPFA>
|
||||
{
|
||||
private:
|
||||
static const unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
|
||||
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
|
||||
public:
|
||||
using type = DenseAd::Evaluation<Scalar, numEq>;
|
||||
};
|
||||
|
||||
} // namespace Opm::Properties
|
||||
|
||||
namespace Opm {
|
||||
|
||||
/*!
|
||||
* \ingroup FiniteVolumeDiscretizations
|
||||
*
|
||||
* \brief Calculates the local residual and its Jacobian for a single element of the grid.
|
||||
*
|
||||
* This class uses automatic differentiation to calculate the partial derivatives (the
|
||||
* alternative is finite differences).
|
||||
*/
|
||||
template<class TypeTag>
|
||||
class FvBaseAdLocalLinearizerTPFA
|
||||
{
|
||||
private:
|
||||
using Implementation = GetPropType<TypeTag, Properties::LocalLinearizer>;
|
||||
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
|
||||
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
||||
using Model = GetPropType<TypeTag, Properties::Model>;
|
||||
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
||||
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
using Element = typename GridView::template Codim<0>::Entity;
|
||||
|
||||
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
||||
|
||||
using ScalarVectorBlock = Dune::FieldVector<Scalar, numEq>;
|
||||
// extract local matrices from jacobian matrix for consistency
|
||||
using ScalarMatrixBlock = typename GetPropType<TypeTag, Properties::SparseMatrixAdapter>::MatrixBlock;
|
||||
|
||||
using ScalarLocalBlockVector = Dune::BlockVector<ScalarVectorBlock>;
|
||||
using ScalarLocalBlockMatrix = Dune::Matrix<ScalarMatrixBlock>;
|
||||
|
||||
public:
|
||||
FvBaseAdLocalLinearizerTPFA()
|
||||
: internalElemContext_(0)
|
||||
{ }
|
||||
|
||||
// copying local linearizer objects around is a very bad idea, so we explicitly
|
||||
// prevent it...
|
||||
FvBaseAdLocalLinearizerTPFA(const FvBaseAdLocalLinearizerTPFA&) = delete;
|
||||
|
||||
~FvBaseAdLocalLinearizerTPFA()
|
||||
{ delete internalElemContext_; }
|
||||
|
||||
/*!
|
||||
* \brief Register all run-time parameters for the local jacobian.
|
||||
*/
|
||||
static void registerParameters()
|
||||
{ }
|
||||
|
||||
/*!
|
||||
* \brief Initialize the local Jacobian object.
|
||||
*
|
||||
* At this point we can assume that everything has been allocated,
|
||||
* although some objects may not yet be completely initialized.
|
||||
*
|
||||
* \param simulator The simulator object of the simulation.
|
||||
*/
|
||||
void init(Simulator& simulator)
|
||||
{
|
||||
simulatorPtr_ = &simulator;
|
||||
delete internalElemContext_;
|
||||
internalElemContext_ = new ElementContext(simulator);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Compute an element's local Jacobian matrix and evaluate its residual.
|
||||
*
|
||||
* The local Jacobian for a given context is defined as the derivatives of the
|
||||
* residuals of all degrees of freedom featured by the stencil with regard to the
|
||||
* primary variables of the stencil's "primary" degrees of freedom. Adding the local
|
||||
* Jacobians for all elements in the grid will give the global Jacobian 'grad f(x)'.
|
||||
*
|
||||
* \param element The grid element for which the local residual and its local
|
||||
* Jacobian should be calculated.
|
||||
*/
|
||||
void linearize(const Element& element)
|
||||
{
|
||||
linearize(*internalElemContext_, element);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Compute an element's local Jacobian matrix and evaluate its residual.
|
||||
*
|
||||
* The local Jacobian for a given context is defined as the derivatives of the
|
||||
* residuals of all degrees of freedom featured by the stencil with regard to the
|
||||
* primary variables of the stencil's "primary" degrees of freedom. Adding the local
|
||||
* Jacobians for all elements in the grid will give the global Jacobian 'grad f(x)'.
|
||||
*
|
||||
* After calling this method the ElementContext is in an undefined state, so do not
|
||||
* use it anymore!
|
||||
*
|
||||
* \param elemCtx The element execution context for which the local residual and its
|
||||
* local Jacobian should be calculated.
|
||||
*/
|
||||
void linearize(ElementContext& elemCtx, const Element& elem)
|
||||
{
|
||||
elemCtx.updateStencil(elem);
|
||||
elemCtx.updateAllIntensiveQuantities();
|
||||
|
||||
// update the weights of the primary variables for the context
|
||||
model_().updatePVWeights(elemCtx);
|
||||
|
||||
// resize the internal arrays of the linearizer
|
||||
resize_(elemCtx);
|
||||
|
||||
// compute the local residual and its Jacobian
|
||||
unsigned numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
|
||||
for (unsigned focusDofIdx = 0; focusDofIdx < numPrimaryDof; focusDofIdx++) {
|
||||
elemCtx.setFocusDofIndex(focusDofIdx);
|
||||
//elemCtx.updateAllExtensiveQuantities();//NB should not be need anymore
|
||||
|
||||
// calculate the local residual
|
||||
localResidual_.eval(elemCtx);
|
||||
|
||||
// convert the local Jacobian matrix and the right hand side from the data
|
||||
// structures used by the automatic differentiation code to the conventional
|
||||
// ones used by the linear solver.
|
||||
updateLocalLinearization_(elemCtx, focusDofIdx);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Return reference to the local residual.
|
||||
*/
|
||||
LocalResidual& localResidual()
|
||||
{ return localResidual_; }
|
||||
|
||||
/*!
|
||||
* \brief Return reference to the local residual.
|
||||
*/
|
||||
const LocalResidual& localResidual() const
|
||||
{ return localResidual_; }
|
||||
|
||||
/*!
|
||||
* \brief Returns the local Jacobian matrix of the residual of a sub-control volume.
|
||||
*
|
||||
* \param domainScvIdx The local index of the sub control volume to which the primary
|
||||
* variables are associated with
|
||||
* \param rangeScvIdx The local index of the sub control volume which contains the
|
||||
* local residual
|
||||
*/
|
||||
const ScalarMatrixBlock& jacobian(unsigned domainScvIdx, unsigned rangeScvIdx) const
|
||||
{ return jacobian_[domainScvIdx][rangeScvIdx]; }
|
||||
|
||||
/*!
|
||||
* \brief Returns the local residual of a sub-control volume.
|
||||
*
|
||||
* \param dofIdx The local index of the sub control volume
|
||||
*/
|
||||
const ScalarVectorBlock& residual(unsigned dofIdx) const
|
||||
{ return residual_[dofIdx]; }
|
||||
|
||||
protected:
|
||||
Implementation& asImp_()
|
||||
{ return *static_cast<Implementation*>(this); }
|
||||
const Implementation& asImp_() const
|
||||
{ return *static_cast<const Implementation*>(this); }
|
||||
|
||||
const Simulator& simulator_() const
|
||||
{ return *simulatorPtr_; }
|
||||
const Problem& problem_() const
|
||||
{ return simulatorPtr_->problem(); }
|
||||
const Model& model_() const
|
||||
{ return simulatorPtr_->model(); }
|
||||
|
||||
/*!
|
||||
* \brief Resize all internal attributes to the size of the
|
||||
* element.
|
||||
*/
|
||||
void resize_(const ElementContext& elemCtx)
|
||||
{
|
||||
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
|
||||
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
|
||||
|
||||
residual_.resize(numDof);
|
||||
if (jacobian_.N() != numDof || jacobian_.M() != numPrimaryDof)
|
||||
jacobian_.setSize(numDof, numPrimaryDof);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Reset the all relevant internal attributes to 0
|
||||
*/
|
||||
void reset_(const ElementContext&)
|
||||
{
|
||||
residual_ = 0.0;
|
||||
jacobian_ = 0.0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Updates the current local Jacobian matrix with the partial derivatives of
|
||||
* all equations for the degree of freedom associated with 'focusDofIdx'.
|
||||
*/
|
||||
void updateLocalLinearization_(const ElementContext& elemCtx,
|
||||
unsigned focusDofIdx)
|
||||
{
|
||||
const auto& resid = localResidual_.residual();
|
||||
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++)
|
||||
residual_[focusDofIdx][eqIdx] = resid[focusDofIdx][eqIdx].value();
|
||||
|
||||
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
|
||||
for (unsigned dofIdx = 0; dofIdx < numDof; dofIdx++) {
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
|
||||
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
|
||||
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of
|
||||
// the residual function 'eqIdx' for the degree of freedom 'dofIdx'
|
||||
// with regard to the focus variable 'pvIdx' of the degree of freedom
|
||||
// 'focusDofIdx'
|
||||
jacobian_[dofIdx][focusDofIdx][eqIdx][pvIdx] = resid[dofIdx][eqIdx].derivative(pvIdx);
|
||||
Valgrind::CheckDefined(jacobian_[dofIdx][focusDofIdx][eqIdx][pvIdx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Simulator *simulatorPtr_;
|
||||
Model *modelPtr_;
|
||||
|
||||
ElementContext *internalElemContext_;
|
||||
|
||||
LocalResidual localResidual_;
|
||||
|
||||
ScalarLocalBlockVector residual_;
|
||||
ScalarLocalBlockMatrix jacobian_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif
|
648
opm/models/discretization/common/fvbaselocalresidualtpfa.hh
Normal file
648
opm/models/discretization/common/fvbaselocalresidualtpfa.hh
Normal file
@ -0,0 +1,648 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Opm::FvBaseLocalResidual
|
||||
*/
|
||||
#ifndef EWOMS_FV_BASE_LOCAL_TPFA_RESIDUAL_HH
|
||||
#define EWOMS_FV_BASE_LOCAL_TPFA_RESIDUAL_HH
|
||||
|
||||
#include "fvbaseproperties.hh"
|
||||
|
||||
#include <opm/models/utils/parametersystem.hh>
|
||||
#include <opm/models/utils/alignedallocator.hh>
|
||||
|
||||
#include <opm/material/common/Valgrind.hpp>
|
||||
#include <opm/material/common/Unused.hpp>
|
||||
|
||||
#include <dune/istl/bvector.hh>
|
||||
#include <dune/grid/common/geometry.hh>
|
||||
|
||||
#include <dune/common/fvector.hh>
|
||||
|
||||
#include <dune/common/classname.hh>
|
||||
|
||||
#include <cmath>
|
||||
|
||||
namespace Opm {
|
||||
/*!
|
||||
* \ingroup FiniteVolumeDiscretizations
|
||||
*
|
||||
* \brief Element-wise caculation of the residual matrix for models based on a finite
|
||||
* volume spatial discretization.
|
||||
*
|
||||
* \copydetails Doxygen::typeTagTParam
|
||||
*/
|
||||
template<class TypeTag>
|
||||
class FvBaseLocalResidualTPFA
|
||||
{
|
||||
private:
|
||||
using Implementation = GetPropType<TypeTag, Properties::LocalResidual>;
|
||||
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
using Element = typename GridView::template Codim<0>::Entity;
|
||||
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
||||
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
||||
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
||||
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
||||
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
||||
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
||||
using BoundaryContext = GetPropType<TypeTag, Properties::BoundaryContext>;
|
||||
|
||||
static constexpr bool useVolumetricResidual = getPropValue<TypeTag, Properties::UseVolumetricResidual>();
|
||||
|
||||
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
||||
enum { extensiveStorageTerm = getPropValue<TypeTag, Properties::ExtensiveStorageTerm>() };
|
||||
|
||||
using Toolbox = MathToolbox<Evaluation>;
|
||||
using EvalVector = Dune::FieldVector<Evaluation, numEq>;
|
||||
|
||||
// copying the local residual class is not a good idea
|
||||
FvBaseLocalResidualTPFA(const FvBaseLocalResidualTPFA& )
|
||||
{}
|
||||
|
||||
public:
|
||||
using LocalEvalBlockVector = Dune::BlockVector<EvalVector, aligned_allocator<EvalVector, alignof(EvalVector)> >;
|
||||
|
||||
FvBaseLocalResidualTPFA()
|
||||
{ }
|
||||
|
||||
~FvBaseLocalResidualTPFA()
|
||||
{ }
|
||||
|
||||
/*!
|
||||
* \brief Register all run-time parameters for the local residual.
|
||||
*/
|
||||
static void registerParameters()
|
||||
{ }
|
||||
|
||||
/*!
|
||||
* \brief Return the result of the eval() call using internal
|
||||
* storage.
|
||||
*/
|
||||
const LocalEvalBlockVector& residual() const
|
||||
{ return internalResidual_; }
|
||||
|
||||
/*!
|
||||
* \brief Return the result of the eval() call using internal
|
||||
* storage.
|
||||
*
|
||||
* \copydetails Doxygen::ecfvScvIdxParam
|
||||
*/
|
||||
const EvalVector& residual(unsigned dofIdx) const
|
||||
{ return internalResidual_[dofIdx]; }
|
||||
|
||||
/*!
|
||||
* \brief Compute the local residual, i.e. the deviation of the
|
||||
* conservation equations from zero and store the results
|
||||
* internally.
|
||||
*
|
||||
* The results can be requested afterwards using the residual() method.
|
||||
*
|
||||
* \copydetails Doxygen::problemParam
|
||||
* \copydetails Doxygen::elementParam
|
||||
*/
|
||||
void eval(const Problem& problem, const Element& element)
|
||||
{
|
||||
ElementContext elemCtx(problem);
|
||||
elemCtx.updateAll(element);
|
||||
eval(elemCtx);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Compute the local residual, i.e. the deviation of the
|
||||
* conservation equations from zero and store the results
|
||||
* internally.
|
||||
*
|
||||
* The results can be requested afterwards using the residual() method.
|
||||
*
|
||||
* \copydetails Doxygen::ecfvElemCtxParam
|
||||
*/
|
||||
void eval(ElementContext& elemCtx)
|
||||
{
|
||||
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
|
||||
internalResidual_.resize(numDof);
|
||||
asImp_().eval(internalResidual_, elemCtx);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Compute the local residual, i.e. the deviation of the
|
||||
* conservation equations from zero.
|
||||
*
|
||||
* \copydetails Doxygen::residualParam
|
||||
* \copydetails Doxygen::ecfvElemCtxParam
|
||||
*/
|
||||
void eval(LocalEvalBlockVector& residual,
|
||||
ElementContext& elemCtx) const
|
||||
{
|
||||
assert(residual.size() == elemCtx.numDof(/*timeIdx=*/0));
|
||||
|
||||
residual = 0.0;
|
||||
|
||||
// evaluate the flux terms
|
||||
asImp_().evalFluxes(residual, elemCtx, /*timeIdx=*/0);
|
||||
|
||||
// evaluate the storage and the source terms
|
||||
asImp_().evalVolumeTerms_(residual, elemCtx);
|
||||
|
||||
// evaluate the boundary conditions
|
||||
//asImp_().evalBoundary_(residual, elemCtx, /*timeIdx=*/0);
|
||||
|
||||
if (useVolumetricResidual) {
|
||||
// make the residual volume specific (i.e., make it incorrect mass per cubic
|
||||
// meter instead of total mass)
|
||||
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
|
||||
for (unsigned dofIdx=0; dofIdx < numDof; ++dofIdx) {
|
||||
if (elemCtx.dofTotalVolume(dofIdx, /*timeIdx=*/0) > 0.0) {
|
||||
// interior DOF
|
||||
Scalar dofVolume = elemCtx.dofTotalVolume(dofIdx, /*timeIdx=*/0);
|
||||
|
||||
assert(std::isfinite(dofVolume));
|
||||
Valgrind::CheckDefined(dofVolume);
|
||||
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
|
||||
residual[dofIdx][eqIdx] /= dofVolume;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Calculate the amount of all conservation quantities stored in all element's
|
||||
* sub-control volumes for a given history index.
|
||||
*
|
||||
* This is used to figure out how much of each conservation quantity is inside the
|
||||
* element.
|
||||
*
|
||||
* \copydetails Doxygen::storageParam
|
||||
* \copydetails Doxygen::ecfvElemCtxParam
|
||||
* \copydetails Doxygen::timeIdxParam
|
||||
*/
|
||||
void evalStorage(LocalEvalBlockVector& storage,
|
||||
const ElementContext& elemCtx,
|
||||
unsigned timeIdx) const
|
||||
{
|
||||
// the derivative of the storage term depends on the current primary variables;
|
||||
// for time indices != 0, the storage term is constant (because these solutions
|
||||
// are not changed by the Newton method!)
|
||||
if (timeIdx == 0) {
|
||||
// calculate the amount of conservation each quantity inside
|
||||
// all primary sub control volumes
|
||||
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
|
||||
for (unsigned dofIdx=0; dofIdx < numPrimaryDof; dofIdx++) {
|
||||
storage[dofIdx] = 0.0;
|
||||
|
||||
// the volume of the associated DOF
|
||||
Scalar alpha =
|
||||
elemCtx.stencil(timeIdx).subControlVolume(dofIdx).volume();
|
||||
//* elemCtx.intensiveQuantities(dofIdx, timeIdx).extrusionFactor();
|
||||
|
||||
// If the degree of freedom which we currently look at is the one at the
|
||||
// center of attention, we need to consider the derivatives for the
|
||||
// storage term, else the storage term is constant w.r.t. the primary
|
||||
// variables of the focused DOF.
|
||||
if (dofIdx == elemCtx.focusDofIndex()) {
|
||||
asImp_().computeStorage(storage[dofIdx],
|
||||
elemCtx,
|
||||
dofIdx,
|
||||
timeIdx);
|
||||
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
|
||||
storage[dofIdx][eqIdx] *= alpha;
|
||||
}
|
||||
else {
|
||||
Dune::FieldVector<Scalar, numEq> tmp;
|
||||
asImp_().computeStorage(tmp,
|
||||
elemCtx,
|
||||
dofIdx,
|
||||
timeIdx);
|
||||
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
|
||||
storage[dofIdx][eqIdx] = tmp[eqIdx]*alpha;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
// for all previous solutions, the storage term does _not_ depend on the
|
||||
// current primary variables, so we use scalars to store it.
|
||||
if (elemCtx.enableStorageCache()) {
|
||||
size_t numPrimaryDof = elemCtx.numPrimaryDof(timeIdx);
|
||||
for (unsigned dofIdx=0; dofIdx < numPrimaryDof; dofIdx++) {
|
||||
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
|
||||
const auto& cachedStorage = elemCtx.model().cachedStorage(globalDofIdx, timeIdx);
|
||||
for (unsigned eqIdx=0; eqIdx < numEq; eqIdx++)
|
||||
storage[dofIdx][eqIdx] = cachedStorage[eqIdx];
|
||||
}
|
||||
}
|
||||
else {
|
||||
// calculate the amount of conservation each quantity inside
|
||||
// all primary sub control volumes
|
||||
Dune::FieldVector<Scalar, numEq> tmp;
|
||||
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
|
||||
for (unsigned dofIdx=0; dofIdx < numPrimaryDof; dofIdx++) {
|
||||
tmp = 0.0;
|
||||
asImp_().computeStorage(tmp,
|
||||
elemCtx,
|
||||
dofIdx,
|
||||
timeIdx);
|
||||
tmp *=
|
||||
elemCtx.stencil(timeIdx).subControlVolume(dofIdx).volume()
|
||||
* elemCtx.intensiveQuantities(dofIdx, timeIdx).extrusionFactor();
|
||||
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
|
||||
storage[dofIdx][eqIdx] = tmp[eqIdx];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
|
||||
for (unsigned dofIdx=0; dofIdx < numPrimaryDof; dofIdx++) {
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
|
||||
Valgrind::CheckDefined(storage[dofIdx][eqIdx]);
|
||||
assert(isfinite(storage[dofIdx][eqIdx]));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Add the flux term to a local residual.
|
||||
*
|
||||
* \copydetails Doxygen::residualParam
|
||||
* \copydetails Doxygen::ecfvElemCtxParam
|
||||
* \copydetails Doxygen::timeIdxParam
|
||||
*/
|
||||
void evalFluxes(LocalEvalBlockVector& residual,
|
||||
const ElementContext& elemCtx,
|
||||
unsigned timeIdx) const
|
||||
{
|
||||
RateVector flux;
|
||||
|
||||
const auto& stencil = elemCtx.stencil(timeIdx);
|
||||
// calculate the mass flux over the sub-control volume faces
|
||||
size_t numInteriorFaces = elemCtx.numInteriorFaces(timeIdx);
|
||||
for (unsigned scvfIdx = 0; scvfIdx < numInteriorFaces; scvfIdx++) {
|
||||
const auto& face = stencil.interiorFace(scvfIdx);
|
||||
unsigned i = face.interiorIndex();
|
||||
unsigned j = face.exteriorIndex();
|
||||
|
||||
Valgrind::SetUndefined(flux);
|
||||
asImp_().computeFlux(flux, /*context=*/elemCtx, scvfIdx, timeIdx);
|
||||
Valgrind::CheckDefined(flux);
|
||||
#ifndef NDEBUG
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
|
||||
assert(isfinite(flux[eqIdx]));
|
||||
#endif
|
||||
|
||||
// Scalar alpha = elemCtx.extensiveQuantities(scvfIdx, timeIdx).extrusionFactor();
|
||||
Scalar alpha = face.area();
|
||||
// Valgrind::CheckDefined(alpha);
|
||||
// assert(alpha > 0.0);
|
||||
// assert(isfinite(alpha));
|
||||
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
|
||||
flux[eqIdx] *= alpha;
|
||||
|
||||
// The balance equation for a finite volume is given by
|
||||
//
|
||||
// dStorage/dt + Flux = Source
|
||||
//
|
||||
// where the 'Flux' and the 'Source' terms represent the
|
||||
// mass per second which leaves the finite
|
||||
// volume. Re-arranging this, we get
|
||||
//
|
||||
// dStorage/dt + Flux - Source = 0
|
||||
//
|
||||
// Since the mass flux as calculated by computeFlux() goes out of sub-control
|
||||
// volume i and into sub-control volume j, we need to add the flux to finite
|
||||
// volume i and subtract it from finite volume j
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
|
||||
assert(isfinite(flux[eqIdx]));
|
||||
residual[i][eqIdx] += flux[eqIdx];
|
||||
residual[j][eqIdx] -= flux[eqIdx];
|
||||
}
|
||||
}
|
||||
|
||||
#if !defined NDEBUG
|
||||
// in debug mode, ensure that the residual is well-defined
|
||||
size_t numDof = elemCtx.numDof(timeIdx);
|
||||
for (unsigned i=0; i < numDof; i++) {
|
||||
for (unsigned j = 0; j < numEq; ++ j) {
|
||||
assert(isfinite(residual[i][j]));
|
||||
Valgrind::CheckDefined(residual[i][j]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
/////////////////////////////
|
||||
// The following methods _must_ be overloaded by the actual flow
|
||||
// models!
|
||||
/////////////////////////////
|
||||
|
||||
/*!
|
||||
* \brief Evaluate the amount all conservation quantities
|
||||
* (e.g. phase mass) within a finite sub-control volume.
|
||||
*
|
||||
* \copydetails Doxygen::storageParam
|
||||
* \copydetails Doxygen::ecfvScvCtxParams
|
||||
*/
|
||||
void computeStorage(EqVector&,
|
||||
const ElementContext&,
|
||||
unsigned,
|
||||
unsigned) const
|
||||
{
|
||||
throw std::logic_error("Not implemented: The local residual "+Dune::className<Implementation>()
|
||||
+" does not implement the required method 'computeStorage()'");
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Evaluates the total mass flux of all conservation
|
||||
* quantities over a face of a sub-control volume.
|
||||
*
|
||||
* \copydetails Doxygen::areaFluxParam
|
||||
* \copydetails Doxygen::ecfvScvfCtxParams
|
||||
*/
|
||||
void computeFlux(RateVector&,
|
||||
const ElementContext&,
|
||||
unsigned,
|
||||
unsigned) const
|
||||
{
|
||||
throw std::logic_error("Not implemented: The local residual "+Dune::className<Implementation>()
|
||||
+" does not implement the required method 'computeFlux()'");
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Calculate the source term of the equation
|
||||
*
|
||||
* \copydoc Doxygen::sourceParam
|
||||
* \copydoc Doxygen::ecfvScvCtxParams
|
||||
*/
|
||||
void computeSource(RateVector&,
|
||||
const ElementContext&,
|
||||
unsigned,
|
||||
unsigned) const
|
||||
{
|
||||
throw std::logic_error("Not implemented: The local residual "+Dune::className<Implementation>()
|
||||
+" does not implement the required method 'computeSource()'");
|
||||
}
|
||||
|
||||
protected:
|
||||
/*!
|
||||
* \brief Evaluate the boundary conditions of an element.
|
||||
*/
|
||||
void evalBoundary_(LocalEvalBlockVector& residual,
|
||||
const ElementContext& elemCtx,
|
||||
unsigned timeIdx) const
|
||||
{
|
||||
|
||||
if (!elemCtx.onBoundary())
|
||||
return;
|
||||
throw std::logic_error("Not implemented: Boundary??? "+Dune::className<Implementation>()
|
||||
+" does not implement the required method 'computeSource()'");
|
||||
|
||||
BoundaryContext boundaryCtx(elemCtx);
|
||||
// move the iterator to the first boundary
|
||||
if(boundaryCtx.intersection(0).neighbor())
|
||||
boundaryCtx.increment();
|
||||
|
||||
// evaluate the boundary for all boundary faces of the current context
|
||||
size_t numBoundaryFaces = boundaryCtx.numBoundaryFaces(/*timeIdx=*/0);
|
||||
for (unsigned faceIdx = 0; faceIdx < numBoundaryFaces; ++faceIdx, boundaryCtx.increment()) {
|
||||
// add the residual of all vertices of the boundary
|
||||
// segment
|
||||
evalBoundarySegment_(residual,
|
||||
boundaryCtx,
|
||||
faceIdx,
|
||||
timeIdx);
|
||||
}
|
||||
|
||||
#if !defined NDEBUG
|
||||
// in debug mode, ensure that the residual and the storage terms are well-defined
|
||||
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
|
||||
for (unsigned i=0; i < numDof; i++) {
|
||||
for (unsigned j = 0; j < numEq; ++ j) {
|
||||
assert(isfinite(residual[i][j]));
|
||||
Valgrind::CheckDefined(residual[i][j]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Evaluate all boundary conditions for a single
|
||||
* sub-control volume face to the local residual.
|
||||
*/
|
||||
void evalBoundarySegment_(LocalEvalBlockVector& residual,
|
||||
const BoundaryContext& boundaryCtx,
|
||||
unsigned boundaryFaceIdx,
|
||||
unsigned timeIdx) const
|
||||
{
|
||||
throw std::logic_error("Not implemented: Boundary??? "+Dune::className<Implementation>()
|
||||
+" does not implement the required method 'computeSource()'");
|
||||
|
||||
BoundaryRateVector values;
|
||||
|
||||
Valgrind::SetUndefined(values);
|
||||
boundaryCtx.problem().boundary(values, boundaryCtx, boundaryFaceIdx, timeIdx);
|
||||
Valgrind::CheckDefined(values);
|
||||
|
||||
const auto& stencil = boundaryCtx.stencil(timeIdx);
|
||||
unsigned dofIdx = stencil.boundaryFace(boundaryFaceIdx).interiorIndex();
|
||||
const auto& insideIntQuants = boundaryCtx.elementContext().intensiveQuantities(dofIdx, timeIdx);
|
||||
for (unsigned eqIdx = 0; eqIdx < values.size(); ++eqIdx) {
|
||||
values[eqIdx] *=
|
||||
stencil.boundaryFace(boundaryFaceIdx).area()
|
||||
* insideIntQuants.extrusionFactor();
|
||||
|
||||
Valgrind::CheckDefined(values[eqIdx]);
|
||||
assert(isfinite(values[eqIdx]));
|
||||
}
|
||||
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
|
||||
residual[dofIdx][eqIdx] += values[eqIdx];
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Add the change in the storage terms and the source term
|
||||
* to the local residual of all sub-control volumes of the
|
||||
* current element.
|
||||
*/
|
||||
void evalVolumeTerms_(LocalEvalBlockVector& residual,
|
||||
ElementContext& elemCtx) const
|
||||
{
|
||||
EvalVector tmp;
|
||||
EqVector tmp2;
|
||||
RateVector sourceRate;
|
||||
|
||||
tmp = 0.0;
|
||||
tmp2 = 0.0;
|
||||
|
||||
// evaluate the volumetric terms (storage + source terms)
|
||||
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
|
||||
for (unsigned dofIdx=0; dofIdx < numPrimaryDof; dofIdx++) {
|
||||
// Scalar extrusionFactor =
|
||||
// elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0).extrusionFactor();
|
||||
// Valgrind::CheckDefined(extrusionFactor);
|
||||
// assert(isfinite(extrusionFactor));
|
||||
// assert(extrusionFactor > 0.0);
|
||||
Scalar scvVolume =
|
||||
elemCtx.stencil(/*timeIdx=*/0).subControlVolume(dofIdx).volume();// * extrusionFactor;
|
||||
Valgrind::CheckDefined(scvVolume);
|
||||
assert(isfinite(scvVolume));
|
||||
assert(scvVolume > 0.0);
|
||||
|
||||
// if the model uses extensive quantities in its storage term, and we use
|
||||
// automatic differention and current DOF is also not the one we currently
|
||||
// focus on, the storage term does not need any derivatives!
|
||||
if (!extensiveStorageTerm &&
|
||||
!std::is_same<Scalar, Evaluation>::value &&
|
||||
dofIdx != elemCtx.focusDofIndex())
|
||||
{
|
||||
asImp_().computeStorage(tmp2, elemCtx, dofIdx, /*timeIdx=*/0);
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
|
||||
tmp[eqIdx] = tmp2[eqIdx];
|
||||
}
|
||||
else
|
||||
asImp_().computeStorage(tmp, elemCtx, dofIdx, /*timeIdx=*/0);
|
||||
|
||||
#ifndef NDEBUG
|
||||
Valgrind::CheckDefined(tmp);
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
|
||||
assert(isfinite(tmp[eqIdx]));
|
||||
#endif
|
||||
|
||||
if (elemCtx.enableStorageCache()) {
|
||||
const auto& model = elemCtx.model();
|
||||
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
||||
if (model.newtonMethod().numIterations() == 0 &&
|
||||
!elemCtx.haveStashedIntensiveQuantities())
|
||||
{
|
||||
if (!elemCtx.problem().recycleFirstIterationStorage()) {
|
||||
// we re-calculate the storage term for the solution of the
|
||||
// previous time step from scratch instead of using the one of
|
||||
// the first iteration of the current time step.
|
||||
tmp2 = 0.0;
|
||||
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/1);
|
||||
asImp_().computeStorage(tmp2, elemCtx, dofIdx, /*timeIdx=*/1);
|
||||
}
|
||||
else {
|
||||
// if the storage term is cached and we're in the first iteration
|
||||
// of the time step, use the storage term of the first iteration
|
||||
// as the one as the solution of the last time step (this assumes
|
||||
// that the initial guess for the solution at the end of the time
|
||||
// step is the same as the solution at the beginning of the time
|
||||
// step. This is usually true, but some fancy preprocessing
|
||||
// scheme might invalidate that assumption.)
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
|
||||
tmp2[eqIdx] = Toolbox::value(tmp[eqIdx]);
|
||||
}
|
||||
|
||||
Valgrind::CheckDefined(tmp2);
|
||||
|
||||
model.updateCachedStorage(globalDofIdx, /*timeIdx=*/1, tmp2);
|
||||
}
|
||||
else {
|
||||
// if the mass storage at the beginning of the time step is not cached,
|
||||
// if the storage term is cached and we're not looking at the first
|
||||
// iteration of the time step, we take the cached data.
|
||||
tmp2 = model.cachedStorage(globalDofIdx, /*timeIdx=*/1);
|
||||
Valgrind::CheckDefined(tmp2);
|
||||
}
|
||||
}
|
||||
else {
|
||||
// if the mass storage at the beginning of the time step is not cached,
|
||||
// we re-calculate it from scratch.
|
||||
tmp2 = 0.0;
|
||||
asImp_().computeStorage(tmp2, elemCtx, dofIdx, /*timeIdx=*/1);
|
||||
Valgrind::CheckDefined(tmp2);
|
||||
}
|
||||
|
||||
// Use the implicit Euler time discretization
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
|
||||
double dt = elemCtx.simulator().timeStepSize();
|
||||
assert(dt > 0);
|
||||
tmp[eqIdx] -= tmp2[eqIdx];
|
||||
tmp[eqIdx] *= scvVolume / dt;
|
||||
|
||||
residual[dofIdx][eqIdx] += tmp[eqIdx];
|
||||
}
|
||||
|
||||
Valgrind::CheckDefined(residual[dofIdx]);
|
||||
|
||||
// deal with the source term
|
||||
asImp_().computeSource(sourceRate, elemCtx, dofIdx, /*timeIdx=*/0);
|
||||
|
||||
// if the model uses extensive quantities in its storage term, and we use
|
||||
// automatic differention and current DOF is also not the one we currently
|
||||
// focus on, the storage term does not need any derivatives!
|
||||
if (!extensiveStorageTerm &&
|
||||
!std::is_same<Scalar, Evaluation>::value &&
|
||||
dofIdx != elemCtx.focusDofIndex())
|
||||
{
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
|
||||
residual[dofIdx][eqIdx] -= scalarValue(sourceRate[eqIdx])*scvVolume;
|
||||
}
|
||||
else {
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
|
||||
sourceRate[eqIdx] *= scvVolume;
|
||||
residual[dofIdx][eqIdx] -= sourceRate[eqIdx];
|
||||
}
|
||||
}
|
||||
|
||||
Valgrind::CheckDefined(residual[dofIdx]);
|
||||
}
|
||||
|
||||
#if !defined NDEBUG
|
||||
// in debug mode, ensure that the residual is well-defined
|
||||
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
|
||||
for (unsigned i=0; i < numDof; i++) {
|
||||
for (unsigned j = 0; j < numEq; ++ j) {
|
||||
assert(isfinite(residual[i][j]));
|
||||
Valgrind::CheckDefined(residual[i][j]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
Implementation& asImp_()
|
||||
{ return *static_cast<Implementation*>(this); }
|
||||
|
||||
const Implementation& asImp_() const
|
||||
{ return *static_cast<const Implementation*>(this); }
|
||||
|
||||
LocalEvalBlockVector internalResidual_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user