Merge pull request #3474 from bska/restart-load-aquifer

Load Analytic Aquifers From Restart File
This commit is contained in:
Bård Skaflestad 2021-08-19 22:45:05 +02:00 committed by GitHub
commit db963a4158
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 194 additions and 61 deletions

View File

@ -2379,8 +2379,13 @@ private:
this->solventSaturation_[elemIdx] = ssol; this->solventSaturation_[elemIdx] = ssol;
} }
this->lastRs_[elemIdx] = elemFluidState.Rs(); if (! this->lastRs_.empty()) {
this->lastRv_[elemIdx] = elemFluidState.Rv(); this->lastRs_[elemIdx] = elemFluidState.Rs();
}
if (! this->lastRv_.empty()) {
this->lastRv_[elemIdx] = elemFluidState.Rv();
}
if constexpr (enablePolymer) if constexpr (enablePolymer)
this->polymerConcentration_[elemIdx] = eclWriter_->eclOutputModule().getPolymerConcentration(elemIdx); this->polymerConcentration_[elemIdx] = eclWriter_->eclOutputModule().getPolymerConcentration(elemIdx);

View File

@ -104,10 +104,10 @@ protected:
Scalar dimensionless_time_{0}; Scalar dimensionless_time_{0};
Scalar dimensionless_pressure_{0}; Scalar dimensionless_pressure_{0};
void assignRestartData(const data::AquiferData& /* xaq */) override void assignRestartData(const data::AquiferData& xaq) override
{ {
throw std::runtime_error {"Restart-based initialization not currently supported " this->fluxValue_ = xaq.volume;
"for Carter-Tracey analytic aquifers"}; this->rhow_ = this->aquct_data_.waterDensity();
} }
std::pair<Scalar, Scalar> std::pair<Scalar, Scalar>
@ -176,6 +176,10 @@ protected:
inline void calculateAquiferCondition() override inline void calculateAquiferCondition() override
{ {
if (this->solution_set_from_restart_) {
return;
}
if (! this->aquct_data_.initial_pressure.has_value()) { if (! this->aquct_data_.initial_pressure.has_value()) {
this->aquct_data_.initial_pressure = this->aquct_data_.initial_pressure =
this->calculateReservoirEquilibrium(); this->calculateReservoirEquilibrium();

View File

@ -107,6 +107,7 @@ protected:
} }
this->aquifer_pressure_ = xaq.pressure; this->aquifer_pressure_ = xaq.pressure;
this->rhow_ = this->aqufetp_data_.waterDensity();
} }
inline Eval dpai(int idx) inline Eval dpai(int idx)

View File

@ -24,8 +24,6 @@
#include <opm/common/utility/numeric/linearInterpolation.hpp> #include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifer/Aquancon.hpp> #include <opm/parser/eclipse/EclipseState/Aquifer/Aquancon.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifer/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifer/Aquifetp.hpp>
#include <opm/output/data/Aquifer.hpp> #include <opm/output/data/Aquifer.hpp>
@ -35,6 +33,10 @@
#include <opm/material/fluidstates/BlackOilFluidState.hpp> #include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <algorithm> #include <algorithm>
#include <cmath>
#include <cstddef>
#include <limits>
#include <numeric>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
@ -168,7 +170,7 @@ protected:
{ {
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0 // We reset the cumulative flux at the start of any simulation, so, W_flux = 0
if (!this->solution_set_from_restart_) { if (!this->solution_set_from_restart_) {
W_flux_ = 0.; W_flux_ = Scalar{0};
} }
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections // We next get our connections to the aquifer and initialize these quantities using the initialize_connections
@ -177,9 +179,9 @@ protected:
calculateAquiferCondition(); calculateAquiferCondition();
calculateAquiferConstants(); calculateAquiferConstants();
pressure_previous_.resize(this->connections_.size(), 0.); pressure_previous_.resize(this->connections_.size(), Scalar{0});
pressure_current_.resize(this->connections_.size(), 0.); pressure_current_.resize(this->connections_.size(), Scalar{0});
Qai_.resize(this->connections_.size(), 0.0); Qai_.resize(this->connections_.size(), Scalar{0});
} }
inline void inline void
@ -225,16 +227,18 @@ protected:
{ {
this->cell_depth_.resize(this->size(), this->aquiferDepth()); this->cell_depth_.resize(this->size(), this->aquiferDepth());
this->alphai_.resize(this->size(), 1.0); this->alphai_.resize(this->size(), 1.0);
this->faceArea_connected_.resize(this->size(), 0.0); this->faceArea_connected_.resize(this->size(), Scalar{0});
// Translate the C face tag into the enum used by opm-parser's TransMult class // Translate the C face tag into the enum used by opm-parser's TransMult class
FaceDir::DirEnum faceDirection; FaceDir::DirEnum faceDirection;
bool has_active_connection_on_proc = false;
// denom_face_areas is the sum of the areas connected to an aquifer // denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.; Scalar denom_face_areas{0};
this->cellToConnectionIdx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1); this->cellToConnectionIdx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
const auto& gridView = this->ebos_simulator_.vanguard().gridView(); const auto& gridView = this->ebos_simulator_.vanguard().gridView();
for (size_t idx = 0; idx < this->size(); ++idx) { for (std::size_t idx = 0; idx < this->size(); ++idx) {
const auto global_index = this->connections_[idx].global_index; const auto global_index = this->connections_[idx].global_index;
const int cell_index = this->ebos_simulator_.vanguard().compressedIndex(global_index); const int cell_index = this->ebos_simulator_.vanguard().compressedIndex(global_index);
auto elemIt = gridView.template begin</*codim=*/ 0>(); auto elemIt = gridView.template begin</*codim=*/ 0>();
@ -245,6 +249,8 @@ protected:
if ( cell_index < 0 || elemIt->partitionType() != Dune::InteriorEntity) if ( cell_index < 0 || elemIt->partitionType() != Dune::InteriorEntity)
continue; continue;
has_active_connection_on_proc = true;
this->cellToConnectionIdx_[cell_index] = idx; this->cellToConnectionIdx_[cell_index] = idx;
this->cell_depth_.at(idx) = this->ebos_simulator_.vanguard().cellCenterDepth(cell_index); this->cell_depth_.at(idx) = this->ebos_simulator_.vanguard().cellCenterDepth(cell_index);
} }
@ -308,12 +314,36 @@ protected:
const auto& comm = this->ebos_simulator_.vanguard().grid().comm(); const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
comm.sum(&denom_face_areas, 1); comm.sum(&denom_face_areas, 1);
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon()); const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
for (size_t idx = 0; idx < this->size(); ++idx) { for (std::size_t idx = 0; idx < this->size(); ++idx) {
// Protect against division by zero NaNs.
this->alphai_.at(idx) = (denom_face_areas < eps_sqrt) this->alphai_.at(idx) = (denom_face_areas < eps_sqrt)
? // Prevent no connection NaNs due to division by zero ? Scalar{0}
0.
: this->faceArea_connected_.at(idx) / denom_face_areas; : this->faceArea_connected_.at(idx) / denom_face_areas;
} }
if (this->solution_set_from_restart_) {
this->rescaleProducedVolume(has_active_connection_on_proc);
}
}
void rescaleProducedVolume(const bool has_active_connection_on_proc)
{
// Needed in parallel restart to approximate influence of aquifer
// being "owned" by a subset of the parallel processes. If the
// aquifer is fully owned by a single process--i.e., if all cells
// connecting to the aquifer are on a single process--then this_area
// is tot_area on that process and zero elsewhere.
const auto this_area = has_active_connection_on_proc
? std::accumulate(this->alphai_.begin(),
this->alphai_.end(),
Scalar{0})
: Scalar{0};
const auto tot_area = this->ebos_simulator_.vanguard()
.grid().comm().sum(this_area);
this->W_flux_ *= this_area / tot_area;
} }
virtual void assignRestartData(const data::AquiferData& xaq) = 0; virtual void assignRestartData(const data::AquiferData& xaq) = 0;
@ -364,8 +394,8 @@ protected:
const auto& comm = ebos_simulator_.vanguard().grid().comm(); const auto& comm = ebos_simulator_.vanguard().grid().comm();
Scalar vals[2]; Scalar vals[2];
vals[0] = std::accumulate(this->alphai_.begin(), this->alphai_.end(), 0.0); vals[0] = std::accumulate(this->alphai_.begin(), this->alphai_.end(), Scalar{0});
vals[1] = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.0); vals[1] = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), Scalar{0});
comm.sum(vals, 2); comm.sum(vals, 2);

View File

@ -22,9 +22,15 @@
#define OPM_AQUIFERNUMERICAL_HEADER_INCLUDED #define OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
#include <opm/output/data/Aquifer.hpp> #include <opm/output/data/Aquifer.hpp>
#include <opm/parser/eclipse/EclipseState/Aquifer/NumericalAquifer/SingleNumericalAquifer.hpp> #include <opm/parser/eclipse/EclipseState/Aquifer/NumericalAquifer/SingleNumericalAquifer.hpp>
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <unordered_map>
#include <utility> #include <utility>
#include <vector>
namespace Opm namespace Opm
{ {
@ -54,29 +60,49 @@ public:
const std::unordered_map<int, int>& cartesian_to_compressed, const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebos_simulator, const Simulator& ebos_simulator,
const int* global_cell) const int* global_cell)
: id_(aquifer.id()) : id_ (aquifer.id())
, ebos_simulator_(ebos_simulator) , ebos_simulator_ (ebos_simulator)
, flux_rate_(0.) , flux_rate_ (0.0)
, cumulative_flux_(0.) , cumulative_flux_(0.0)
, global_cell_(global_cell) , global_cell_ (global_cell)
, init_pressure_(aquifer.numCells(), 0.0) , init_pressure_ (aquifer.numCells(), 0.0)
{ {
this->cell_to_aquifer_cell_idx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1); this->cell_to_aquifer_cell_idx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
for (size_t idx = 0; idx < aquifer.numCells(); ++idx) { auto aquifer_on_process = false;
for (std::size_t idx = 0; idx < aquifer.numCells(); ++idx) {
const auto* cell = aquifer.getCellPrt(idx); const auto* cell = aquifer.getCellPrt(idx);
// Due to parallelisation, the cell might not exist in the current process // Due to parallelisation, the cell might not exist in the current process
auto search = cartesian_to_compressed.find(cell->global_index); auto search = cartesian_to_compressed.find(cell->global_index);
if (search != cartesian_to_compressed.end()) { if (search != cartesian_to_compressed.end()) {
this->cell_to_aquifer_cell_idx_[search->second] = idx; this->cell_to_aquifer_cell_idx_[search->second] = idx;
aquifer_on_process = true;
} }
} }
if (aquifer_on_process) {
this->checkConnectsToReservoir();
}
} }
void initFromRestart([[maybe_unused]]const data::Aquifers& aquiferSoln) void initFromRestart(const data::Aquifers& aquiferSoln)
{ {
// NOT handling Restart for now auto xaqPos = aquiferSoln.find(this->aquiferID());
if (xaqPos == aquiferSoln.end())
return;
if (this->connects_to_reservoir_) {
this->cumulative_flux_ = xaqPos->second.volume;
}
if (const auto* aqData = xaqPos->second.typeData.template get<data::AquiferType::Numerical>();
aqData != nullptr)
{
this->init_pressure_ = aqData->initPressure;
}
this->solution_set_from_restart_ = true;
} }
void endTimeStep() void endTimeStep()
@ -102,6 +128,10 @@ public:
void initialSolutionApplied() void initialSolutionApplied()
{ {
if (this->solution_set_from_restart_) {
return;
}
this->pressure_ = this->calculateAquiferPressure(this->init_pressure_); this->pressure_ = this->calculateAquiferPressure(this->init_pressure_);
this->flux_rate_ = 0.; this->flux_rate_ = 0.;
this->cumulative_flux_ = 0.; this->cumulative_flux_ = 0.;
@ -113,17 +143,41 @@ public:
} }
private: private:
const size_t id_; const std::size_t id_;
const Simulator& ebos_simulator_; const Simulator& ebos_simulator_;
double flux_rate_; // aquifer influx rate double flux_rate_; // aquifer influx rate
double cumulative_flux_; // cumulative aquifer influx double cumulative_flux_; // cumulative aquifer influx
const int* global_cell_; // mapping to global index const int* global_cell_; // mapping to global index
std::vector<double> init_pressure_{}; std::vector<double> init_pressure_{};
double pressure_; // aquifer pressure double pressure_; // aquifer pressure
bool solution_set_from_restart_ {false};
bool connects_to_reservoir_ {false};
// TODO: maybe unordered_map can also do the work to save memory? // TODO: maybe unordered_map can also do the work to save memory?
std::vector<int> cell_to_aquifer_cell_idx_; std::vector<int> cell_to_aquifer_cell_idx_;
void checkConnectsToReservoir()
{
ElementContext elem_ctx(this->ebos_simulator_);
auto elemIt = std::find_if(this->ebos_simulator_.gridView().template begin</*codim=*/0>(),
this->ebos_simulator_.gridView().template end</*codim=*/0>(),
[&elem_ctx, this](const auto& elem) -> bool
{
elem_ctx.updateStencil(elem);
const auto cell_index = elem_ctx
.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
return this->cell_to_aquifer_cell_idx_[cell_index] == 0;
});
assert ((elemIt != this->ebos_simulator_.gridView().template end</*codim=*/0>())
&& "Internal error locating numerical aquifer's connecting cell");
this->connects_to_reservoir_ =
elemIt->partitionType() == Dune::InteriorEntity;
}
double calculateAquiferPressure() const double calculateAquiferPressure() const
{ {
auto capture = std::vector<double>(this->init_pressure_.size(), 0.0); auto capture = std::vector<double>(this->init_pressure_.size(), 0.0);
@ -183,21 +237,25 @@ private:
double calculateAquiferFluxRate() const double calculateAquiferFluxRate() const
{ {
double aquifer_flux = 0.; double aquifer_flux = 0.0;
ElementContext elem_ctx(this->ebos_simulator_); if (! this->connects_to_reservoir_) {
return aquifer_flux;
}
ElementContext elem_ctx(this->ebos_simulator_);
const auto& gridView = this->ebos_simulator_.gridView(); const auto& gridView = this->ebos_simulator_.gridView();
auto elemIt = gridView.template begin</*codim=*/0>(); auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>(); const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) { for (; elemIt != elemEndIt; ++elemIt) {
const auto &elem = *elemIt; const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity) { if (elem.partitionType() != Dune::InteriorEntity) {
continue; continue;
} }
// elem_ctx.updatePrimaryStencil(elem); // elem_ctx.updatePrimaryStencil(elem);
elem_ctx.updateStencil(elem); elem_ctx.updateStencil(elem);
const size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const std::size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const int idx = this->cell_to_aquifer_cell_idx_[cell_index]; const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
// we only need the first aquifer cell // we only need the first aquifer cell
if (idx != 0) { if (idx != 0) {
@ -206,19 +264,19 @@ private:
elem_ctx.updateAllIntensiveQuantities(); elem_ctx.updateAllIntensiveQuantities();
elem_ctx.updateAllExtensiveQuantities(); elem_ctx.updateAllExtensiveQuantities();
const size_t num_interior_faces = elem_ctx.numInteriorFaces(/*timeIdx*/ 0); const std::size_t num_interior_faces = elem_ctx.numInteriorFaces(/*timeIdx*/ 0);
// const auto &problem = elem_ctx.problem(); // const auto &problem = elem_ctx.problem();
const auto &stencil = elem_ctx.stencil(0); const auto& stencil = elem_ctx.stencil(0);
// const auto& inQuants = elem_ctx.intensiveQuantities(0, /*timeIdx*/ 0); // const auto& inQuants = elem_ctx.intensiveQuantities(0, /*timeIdx*/ 0);
for (size_t face_idx = 0; face_idx < num_interior_faces; ++face_idx) { for (std::size_t face_idx = 0; face_idx < num_interior_faces; ++face_idx) {
const auto &face = stencil.interiorFace(face_idx); const auto& face = stencil.interiorFace(face_idx);
// dof index // dof index
const size_t i = face.interiorIndex(); const std::size_t i = face.interiorIndex();
const size_t j = face.exteriorIndex(); const std::size_t j = face.exteriorIndex();
// compressed index // compressed index
// const size_t I = stencil.globalSpaceIndex(i); // const size_t I = stencil.globalSpaceIndex(i);
const size_t J = stencil.globalSpaceIndex(j); const std::size_t J = stencil.globalSpaceIndex(j);
assert(stencil.globalSpaceIndex(i) == cell_index); assert(stencil.globalSpaceIndex(i) == cell_index);
@ -227,11 +285,11 @@ private:
if (this->cell_to_aquifer_cell_idx_[J] > 0) { if (this->cell_to_aquifer_cell_idx_[J] > 0) {
continue; continue;
} }
const auto &exQuants = elem_ctx.extensiveQuantities(face_idx, /*timeIdx*/ 0); const auto& exQuants = elem_ctx.extensiveQuantities(face_idx, /*timeIdx*/ 0);
const double water_flux = Toolbox::value(exQuants.volumeFlux(waterPhaseIdx)); const double water_flux = Toolbox::value(exQuants.volumeFlux(waterPhaseIdx));
const size_t up_id = water_flux >= 0. ? i : j; const std::size_t up_id = water_flux >= 0.0 ? i : j;
const auto &intQuantsIn = elem_ctx.intensiveQuantities(up_id, 0); const auto& intQuantsIn = elem_ctx.intensiveQuantities(up_id, 0);
const double invB = Toolbox::value(intQuantsIn.fluidState().invB(waterPhaseIdx)); const double invB = Toolbox::value(intQuantsIn.fluidState().invB(waterPhaseIdx));
const double face_area = face.area(); const double face_area = face.area();
aquifer_flux += water_flux * invB * face_area; aquifer_flux += water_flux * invB * face_area;

View File

@ -38,6 +38,7 @@
#include <opm/output/eclipse/RestartIO.hpp> #include <opm/output/eclipse/RestartIO.hpp>
#include <opm/io/eclipse/ERst.hpp> #include <opm/io/eclipse/ERst.hpp>
#include <opm/io/eclipse/RestartFileView.hpp> #include <opm/io/eclipse/RestartFileView.hpp>
#include <opm/io/eclipse/rst/aquifer.hpp>
#include <opm/io/eclipse/rst/state.hpp> #include <opm/io/eclipse/rst/state.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp> #include <opm/parser/eclipse/Deck/Deck.hpp>
@ -230,36 +231,70 @@ void readDeck(int rank, std::string& deckFilename, std::unique_ptr<Opm::Deck>& d
eclipseState = std::make_unique<Opm::EclipseState>(*deck); eclipseState = std::make_unique<Opm::EclipseState>(*deck);
#endif #endif
} }
/*
For the time being initializing wells and groups from the
restart file is not possible, but work is underways and it is
included here as a switch.
*/
const auto& init_config = eclipseState->getInitConfig(); const auto& init_config = eclipseState->getInitConfig();
if (init_config.restartRequested() && initFromRestart) { if (init_config.restartRequested()) {
// Analytic aquifers must always be loaded from the restart
// file in restarted runs and the corresponding keywords
// (e.g., AQUANCON and AQUCT) do not exist in the input deck
// in this case. In other words, there's no way to check if
// there really are analytic aquifers in the run until we
// attempt to read the specifications from the restart file.
// If the loader determines that there are no analytic
// aquifers, then 'EclipseState::loadRestartAquifers()' does
// nothing.
const int report_step = init_config.getRestartStep(); const int report_step = init_config.getRestartStep();
const auto rst_filename = eclipseState->getIOConfig().getRestartFileName( init_config.getRestartRootName(), report_step, false ); const auto rst_filename = eclipseState->getIOConfig().getRestartFileName( init_config.getRestartRootName(), report_step, false );
auto rst_file = std::make_shared<EclIO::ERst>(rst_filename); auto rst_file = std::make_shared<EclIO::ERst>(rst_filename);
auto rst_view = std::make_shared<EclIO::RestartFileView>(std::move(rst_file), report_step); auto rst_view = std::make_shared<EclIO::RestartFileView>(std::move(rst_file), report_step);
const auto rst_state = Opm::RestartIO::RstState::load(std::move(rst_view));
if (!schedule) // Note: RstState::load() will just *read* from the grid
schedule = std::make_unique<Opm::Schedule>(*deck, *eclipseState, *parseContext, *errorGuard, python, outputInterval, &rst_state); // structure, and only do so if the case actually includes
udqState = std::make_unique<Opm::UDQState>( schedule->operator[](0).udq().params().undefinedValue() ); // analytic aquifers. The pointer to the input grid is just
// to allow 'nullptr' to signify "don't load aquifers" in
// certain unit tests. Passing an optional<EclipseGrid> is
// too expensive however since doing so will create a copy
// of the grid inside the optional<>.
const auto rst_state = RestartIO::RstState::
load(std::move(rst_view), &eclipseState->getInputGrid());
eclipseState->loadRestartAquifers(rst_state.aquifers);
// For the time being initializing wells and groups from the
// restart file is not possible. Work is underway and the
// ability is included here contingent on user-level switch
// 'initFromRestart' (i.e., setting "--sched-restart=false"
// as a command line invocation parameter).
const auto* init_state = initFromRestart ? &rst_state : nullptr;
if (!schedule) {
schedule = std::make_unique<Schedule>(*deck, *eclipseState,
*parseContext, *errorGuard,
python, outputInterval, init_state);
}
udqState = std::make_unique<UDQState>((*schedule)[0].udq().params().undefinedValue());
udqState->load_rst(rst_state); udqState->load_rst(rst_state);
} }
else { else {
if (!schedule) if (!schedule) {
schedule = std::make_unique<Opm::Schedule>(*deck, *eclipseState, *parseContext, *errorGuard, python); schedule = std::make_unique<Schedule>(*deck, *eclipseState,
udqState = std::make_unique<Opm::UDQState>( schedule->operator[](0).udq().params().undefinedValue() ); *parseContext, *errorGuard,
python);
}
udqState = std::make_unique<UDQState>((*schedule)[0].udq().params().undefinedValue());
} }
if (Opm::OpmLog::hasBackend("STDOUT_LOGGER")) // loggers might not be set up!
{ if (Opm::OpmLog::hasBackend("STDOUT_LOGGER")) {
setupMessageLimiter(schedule->operator[](0).message_limits(), "STDOUT_LOGGER"); // loggers might not be set up!
setupMessageLimiter((*schedule)[0].message_limits(), "STDOUT_LOGGER");
} }
if (!summaryConfig)
summaryConfig = std::make_unique<Opm::SummaryConfig>(*deck, *schedule, eclipseState->fieldProps(), if (!summaryConfig) {
summaryConfig = std::make_unique<Opm::SummaryConfig>(*deck, *schedule, eclipseState->fieldProps(),
eclipseState->aquifer(), *parseContext, *errorGuard); eclipseState->aquifer(), *parseContext, *errorGuard);
}
Opm::checkConsistentArrayDimensions(*eclipseState, *schedule, *parseContext, *errorGuard); Opm::checkConsistentArrayDimensions(*eclipseState, *schedule, *parseContext, *errorGuard);
} }