mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-11 23:55:34 -06:00
merge
This commit is contained in:
commit
dc0771ee3e
@ -18,26 +18,33 @@
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#if HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif // HAVE_CONFIG_H
|
||||
|
||||
#include <opm/core/pressure/IncompTpfa.hpp>
|
||||
#include <opm/core/pressure/FlowBCManager.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/GridManager.hpp>
|
||||
#include <opm/core/utility/writeVtkData.hpp>
|
||||
#include <opm/core/utility/linearInterpolation.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/newwells.h>
|
||||
#include <opm/core/WellsManager.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/utility/SimulatorTimer.hpp>
|
||||
#include <opm/core/utility/StopWatch.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
#include <opm/core/utility/writeVtkData.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
|
||||
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
|
||||
#include <opm/core/fluid/IncompPropertiesFromDeck.hpp>
|
||||
|
||||
#include <opm/core/linalg/LinearSolverUmfpack.hpp>
|
||||
// #include <opm/core/linalg/LinearSolverIstl.hpp>
|
||||
// #define EXPERIMENT_ISTL
|
||||
#ifdef EXPERIMENT_ISTL
|
||||
#include <opm/core/linalg/LinearSolverIstl.hpp>
|
||||
#endif
|
||||
|
||||
#include <opm/polymer/TransportModelPolymer.hpp>
|
||||
#include <opm/polymer/PolymerProperties.hpp>
|
||||
@ -66,79 +73,79 @@ class AdHocProps : public Opm::IncompPropertiesBasic
|
||||
{
|
||||
public:
|
||||
AdHocProps(const Opm::parameter::ParameterGroup& param, int dim, int num_cells)
|
||||
: Opm::IncompPropertiesBasic(param, dim, num_cells)
|
||||
: Opm::IncompPropertiesBasic(param, dim, num_cells)
|
||||
{
|
||||
ASSERT(numPhases() == 2);
|
||||
sw_.resize(3);
|
||||
sw_[0] = 0.2;
|
||||
sw_[1] = 0.7;
|
||||
sw_[2] = 1.0;
|
||||
krw_.resize(3);
|
||||
krw_[0] = 0.0;
|
||||
krw_[1] = 0.7;
|
||||
krw_[2] = 1.0;
|
||||
so_.resize(2);
|
||||
so_[0] = 0.3;
|
||||
so_[1] = 0.8;
|
||||
kro_.resize(2);
|
||||
kro_[0] = 0.0;
|
||||
kro_[1] = 1.0;
|
||||
ASSERT(numPhases() == 2);
|
||||
sw_.resize(3);
|
||||
sw_[0] = 0.2;
|
||||
sw_[1] = 0.7;
|
||||
sw_[2] = 1.0;
|
||||
krw_.resize(3);
|
||||
krw_[0] = 0.0;
|
||||
krw_[1] = 0.7;
|
||||
krw_[2] = 1.0;
|
||||
so_.resize(2);
|
||||
so_[0] = 0.3;
|
||||
so_[1] = 0.8;
|
||||
kro_.resize(2);
|
||||
kro_[0] = 0.0;
|
||||
kro_[1] = 1.0;
|
||||
}
|
||||
|
||||
virtual void relperm(const int n,
|
||||
const double* s,
|
||||
const int* /*cells*/,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
const double* s,
|
||||
const int* /*cells*/,
|
||||
double* kr,
|
||||
double* dkrds) const
|
||||
{
|
||||
// ASSERT(dkrds == 0);
|
||||
// We assume two phases flow
|
||||
for (int i = 0; i < n; ++i) {
|
||||
kr[2*i] = krw(s[2*i]);
|
||||
kr[2*i+1] = kro(s[2*i+1]);
|
||||
if (dkrds != 0) {
|
||||
dkrds[2*i] = krw_dsw(s[2*i]);
|
||||
dkrds[2*i+3] = kro_dso(s[2*i+1]);
|
||||
dkrds[2*i+1] = -dkrds[2*i+3];
|
||||
dkrds[2*i+2] = -dkrds[2*i];
|
||||
}
|
||||
}
|
||||
// ASSERT(dkrds == 0);
|
||||
// We assume two phases flow
|
||||
for (int i = 0; i < n; ++i) {
|
||||
kr[2*i] = krw(s[2*i]);
|
||||
kr[2*i+1] = kro(s[2*i+1]);
|
||||
if (dkrds != 0) {
|
||||
dkrds[2*i] = krw_dsw(s[2*i]);
|
||||
dkrds[2*i+3] = kro_dso(s[2*i+1]);
|
||||
dkrds[2*i+1] = -dkrds[2*i+3];
|
||||
dkrds[2*i+2] = -dkrds[2*i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual void satRange(const int n,
|
||||
const int* /*cells*/,
|
||||
double* smin,
|
||||
double* smax) const
|
||||
const int* /*cells*/,
|
||||
double* smin,
|
||||
double* smax) const
|
||||
{
|
||||
const int np = 2;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
smin[np*i + 0] = sw_[0];
|
||||
smax[np*i + 0] = sw_.back();
|
||||
smin[np*i + 1] = 1.0 - sw_[0];
|
||||
smax[np*i + 1] = 1.0 - sw_.back();
|
||||
}
|
||||
const int np = 2;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
smin[np*i + 0] = sw_[0];
|
||||
smax[np*i + 0] = sw_.back();
|
||||
smin[np*i + 1] = 1.0 - sw_[0];
|
||||
smax[np*i + 1] = 1.0 - sw_.back();
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
double krw(double s) const
|
||||
{
|
||||
return Opm::linearInterpolation(sw_, krw_, s);
|
||||
return Opm::linearInterpolation(sw_, krw_, s);
|
||||
}
|
||||
|
||||
double krw_dsw(double s) const
|
||||
{
|
||||
return Opm::linearInterpolationDerivative(sw_, krw_, s);
|
||||
return Opm::linearInterpolationDerivative(sw_, krw_, s);
|
||||
}
|
||||
|
||||
|
||||
double kro(double s) const
|
||||
{
|
||||
return Opm::linearInterpolation(so_, kro_, s);
|
||||
return Opm::linearInterpolation(so_, kro_, s);
|
||||
}
|
||||
|
||||
double kro_dso(double s) const
|
||||
{
|
||||
return Opm::linearInterpolationDerivative(so_, kro_, s);
|
||||
return Opm::linearInterpolationDerivative(so_, kro_, s);
|
||||
}
|
||||
|
||||
std::vector<double> sw_;
|
||||
@ -156,29 +163,72 @@ public:
|
||||
fpress_(g->number_of_faces, 0.0),
|
||||
flux_ (g->number_of_faces, 0.0),
|
||||
sat_ (2 * g->number_of_cells, 0.0),
|
||||
concentration_(g->number_of_cells, 0.0),
|
||||
cmax_(g->number_of_cells, 0.0)
|
||||
concentration_(g->number_of_cells, 0.0),
|
||||
cmax_(g->number_of_cells, 0.0)
|
||||
{
|
||||
for (int cell = 0; cell < g->number_of_cells; ++cell) {
|
||||
sat_[2*cell] = init_sat;
|
||||
sat_[2*cell + 1] = 1.0 - init_sat;
|
||||
}
|
||||
for (int cell = 0; cell < g->number_of_cells; ++cell) {
|
||||
sat_[2*cell] = init_sat;
|
||||
sat_[2*cell + 1] = 1.0 - init_sat;
|
||||
}
|
||||
}
|
||||
|
||||
enum ExtremalSat { MinSat, MaxSat };
|
||||
|
||||
void setToMinimumWaterSat(const Opm::IncompPropertiesInterface& props)
|
||||
{
|
||||
const int n = props.numCells();
|
||||
std::vector<int> cells(n);
|
||||
for (int i = 0; i < n; ++i) {
|
||||
cells[i] = i;
|
||||
}
|
||||
std::vector<double> smin(2*n);
|
||||
std::vector<double> smax(2*n);
|
||||
props.satRange(n, &cells[0], &smin[0], &smax[0]);
|
||||
for (int cell = 0; cell < n; ++cell) {
|
||||
sat_[2*cell] = smin[2*cell];
|
||||
sat_[2*cell + 1] = 1.0 - smin[2*cell];
|
||||
}
|
||||
const int n = props.numCells();
|
||||
std::vector<int> cells(n);
|
||||
for (int i = 0; i < n; ++i) {
|
||||
cells[i] = i;
|
||||
}
|
||||
setWaterSat(cells, props, MinSat);
|
||||
}
|
||||
|
||||
void setWaterSat(const std::vector<int>& cells,
|
||||
const Opm::IncompPropertiesInterface& props,
|
||||
ExtremalSat es)
|
||||
{
|
||||
const int n = cells.size();
|
||||
std::vector<double> smin(2*n);
|
||||
std::vector<double> smax(2*n);
|
||||
props.satRange(n, &cells[0], &smin[0], &smax[0]);
|
||||
const double* svals = (es == MinSat) ? &smin[0] : &smax[0];
|
||||
for (int ci = 0; ci < n; ++ci) {
|
||||
const int cell = cells[ci];
|
||||
sat_[2*cell] = svals[2*ci];
|
||||
sat_[2*cell + 1] = 1.0 - sat_[2*cell];
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize saturations so that there is water below woc,
|
||||
// and oil above.
|
||||
// TODO: add 'anitialiasing', obtaining a more precise woc
|
||||
// by f. ex. subdividing cells cut by the woc.
|
||||
void initWaterOilContact(const UnstructuredGrid& grid,
|
||||
const Opm::IncompPropertiesInterface& props,
|
||||
const double woc)
|
||||
{
|
||||
// Find out which cells should have water and which should have oil.
|
||||
std::vector<int> oil;
|
||||
std::vector<int> water;
|
||||
const int num_cells = grid.number_of_cells;
|
||||
oil.reserve(num_cells);
|
||||
water.reserve(num_cells);
|
||||
const int dim = grid.dimensions;
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
const double z = grid.cell_centroids[dim*c + dim - 1];
|
||||
if (z > woc) {
|
||||
// Z is depth, we put water in the deepest parts
|
||||
// (even if oil is heavier...).
|
||||
water.push_back(c);
|
||||
} else {
|
||||
oil.push_back(c);
|
||||
}
|
||||
}
|
||||
|
||||
// Set saturations.
|
||||
setWaterSat(oil, props, MinSat);
|
||||
setWaterSat(water, props, MaxSat);
|
||||
}
|
||||
|
||||
int numPhases() const { return sat_.size()/press_.size(); }
|
||||
@ -208,22 +258,61 @@ private:
|
||||
|
||||
|
||||
|
||||
|
||||
static void outputState(const UnstructuredGrid& grid,
|
||||
const ReservoirState& state,
|
||||
const int step,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
// Write data in VTK format.
|
||||
std::ostringstream vtkfilename;
|
||||
vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
|
||||
std::ofstream vtkfile(vtkfilename.str().c_str());
|
||||
if (!vtkfile) {
|
||||
THROW("Failed to open " << vtkfilename.str());
|
||||
}
|
||||
Opm::DataMap dm;
|
||||
dm["saturation"] = &state.saturation();
|
||||
dm["pressure"] = &state.pressure();
|
||||
dm["concentration"] = &state.concentration();
|
||||
dm["cmax"] = &state.cmax();
|
||||
std::vector<double> cell_velocity;
|
||||
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
|
||||
dm["velocity"] = &cell_velocity;
|
||||
Opm::writeVtkData(grid, dm, vtkfile);
|
||||
|
||||
// Write data (not grid) in Matlab format
|
||||
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
|
||||
std::ostringstream fname;
|
||||
fname << output_dir << "/" << it->first << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
|
||||
std::ofstream file(fname.str().c_str());
|
||||
if (!file) {
|
||||
THROW("Failed to open " << fname.str());
|
||||
}
|
||||
const std::vector<double>& d = *(it->second);
|
||||
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
class PolymerInflow
|
||||
{
|
||||
public:
|
||||
PolymerInflow(const double starttime,
|
||||
const double endtime,
|
||||
const double amount)
|
||||
: stime_(starttime), etime_(endtime), amount_(amount)
|
||||
const double endtime,
|
||||
const double amount)
|
||||
: stime_(starttime), etime_(endtime), amount_(amount)
|
||||
{
|
||||
}
|
||||
double operator()(double time)
|
||||
{
|
||||
if (time >= stime_ && time < etime_) {
|
||||
return amount_;
|
||||
} else {
|
||||
return 0.0;
|
||||
}
|
||||
if (time >= stime_ && time < etime_) {
|
||||
return amount_;
|
||||
} else {
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
private:
|
||||
double stime_;
|
||||
@ -233,44 +322,19 @@ private:
|
||||
|
||||
|
||||
|
||||
|
||||
template <class State>
|
||||
void outputState(const UnstructuredGrid* grid,
|
||||
const State& state,
|
||||
const int step,
|
||||
const std::string& output_dir)
|
||||
static void outputWaterCut(const Opm::Watercut& watercut,
|
||||
const std::string& output_dir)
|
||||
{
|
||||
// Write data in VTK format.
|
||||
std::ostringstream vtkfilename;
|
||||
vtkfilename << output_dir << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
|
||||
std::ofstream vtkfile(vtkfilename.str().c_str());
|
||||
if (!vtkfile) {
|
||||
THROW("Failed to open " << vtkfilename.str());
|
||||
}
|
||||
Opm::DataMap dm;
|
||||
dm["saturation"] = &state.saturation();
|
||||
dm["pressure"] = &state.pressure();
|
||||
dm["concentration"] = &state.concentration();
|
||||
Opm::writeVtkData(grid, dm, vtkfile);
|
||||
|
||||
// Write data (not grid) in Matlab format
|
||||
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
|
||||
std::ostringstream fname;
|
||||
fname << output_dir << "/" << it->first << "-" << std::setw(3) << std::setfill('0') << step << ".dat";
|
||||
std::ofstream file(fname.str().c_str());
|
||||
if (!file) {
|
||||
THROW("Failed to open " << fname.str());
|
||||
}
|
||||
const std::vector<double>& d = *(it->second);
|
||||
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
|
||||
// Write water cut curve.
|
||||
std::string fname = output_dir + "/watercut.txt";
|
||||
std::ofstream os(fname.c_str());
|
||||
if (!os) {
|
||||
THROW("Failed to open " << fname);
|
||||
}
|
||||
watercut.write(os);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// ----------------- Main program -----------------
|
||||
int
|
||||
main(int argc, char** argv)
|
||||
@ -280,83 +344,101 @@ main(int argc, char** argv)
|
||||
std::cout << "--------------- Reading parameters ---------------" << std::endl;
|
||||
|
||||
// Reading various control parameters.
|
||||
const int num_psteps = param.getDefault("num_psteps", 1);
|
||||
const double stepsize_days = param.getDefault("stepsize_days", 1.0);
|
||||
const double stepsize = Opm::unit::convert::from(stepsize_days, Opm::unit::day);
|
||||
const bool output = param.getDefault("output", true);
|
||||
std::string output_dir;
|
||||
int output_interval = 1;
|
||||
if (output) {
|
||||
output_dir = param.getDefault("output_dir", std::string("output"));
|
||||
// Ensure that output dir exists
|
||||
boost::filesystem::path fpath(output_dir);
|
||||
create_directories(fpath);
|
||||
output_dir = param.getDefault("output_dir", std::string("output"));
|
||||
// Ensure that output dir exists
|
||||
boost::filesystem::path fpath(output_dir);
|
||||
create_directories(fpath);
|
||||
output_interval = param.getDefault("output_interval", output_interval);
|
||||
}
|
||||
|
||||
// If we have a "deck_filename", grid and props will be read from that.
|
||||
bool use_deck = param.has("deck_filename");
|
||||
boost::scoped_ptr<Opm::GridManager> grid;
|
||||
boost::scoped_ptr<Opm::IncompPropertiesInterface> props;
|
||||
boost::scoped_ptr<Opm::WellsManager> wells;
|
||||
Opm::SimulatorTimer simtimer;
|
||||
double water_oil_contact = 0.0;
|
||||
bool woc_set = false;
|
||||
Opm::PolymerProperties polydata;
|
||||
if (use_deck) {
|
||||
std::string deck_filename = param.get<std::string>("deck_filename");
|
||||
Opm::EclipseGridParser deck(deck_filename);
|
||||
polydata.readFromDeck(deck);
|
||||
// Grid init
|
||||
// grid.reset(new Opm::GridManager(deck));
|
||||
const int nx = param.getDefault("nx", 100);
|
||||
const int ny = param.getDefault("ny", 100);
|
||||
const int nz = param.getDefault("nz", 1);
|
||||
const double dx = param.getDefault("dx", 1.0);
|
||||
const double dy = param.getDefault("dy", 1.0);
|
||||
const double dz = param.getDefault("dz", 1.0);
|
||||
grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz));
|
||||
// Rock and fluid init
|
||||
const int* gc = grid->c_grid()->global_cell;
|
||||
std::vector<int> global_cell(gc, gc + grid->c_grid()->number_of_cells);
|
||||
props.reset(new Opm::IncompPropertiesFromDeck(deck, global_cell));
|
||||
// props.reset(new AdHocProps(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
||||
std::string deck_filename = param.get<std::string>("deck_filename");
|
||||
Opm::EclipseGridParser deck(deck_filename);
|
||||
// Grid init
|
||||
grid.reset(new Opm::GridManager(deck));
|
||||
// Rock and fluid init
|
||||
const int* gc = grid->c_grid()->global_cell;
|
||||
std::vector<int> global_cell(gc, gc + grid->c_grid()->number_of_cells);
|
||||
props.reset(new Opm::IncompPropertiesFromDeck(deck, global_cell));
|
||||
// props.reset(new AdHocProps(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
||||
// Wells init.
|
||||
wells.reset(new Opm::WellsManager(deck, *grid->c_grid(), props->permeability()));
|
||||
// Timer init.
|
||||
if (deck.hasField("TSTEP")) {
|
||||
simtimer.init(deck);
|
||||
} else {
|
||||
simtimer.init(param);
|
||||
}
|
||||
// Water-oil contact.
|
||||
if (deck.hasField("EQUIL")) {
|
||||
water_oil_contact = deck.getEQUIL().equil[0].water_oil_contact_depth_;
|
||||
woc_set = true;
|
||||
} else if (param.has("water_oil_contact")) {
|
||||
water_oil_contact = param.get<double>("water_oil_contact");
|
||||
woc_set = true;
|
||||
}
|
||||
polydata.readFromDeck(deck);
|
||||
} else {
|
||||
// Grid init.
|
||||
const int nx = param.getDefault("nx", 100);
|
||||
const int ny = param.getDefault("ny", 100);
|
||||
const int nz = param.getDefault("nz", 1);
|
||||
const double dx = param.getDefault("dx", 1.0);
|
||||
const double dy = param.getDefault("dy", 1.0);
|
||||
const double dz = param.getDefault("dz", 1.0);
|
||||
grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz));
|
||||
// Rock and fluid init.
|
||||
// props.reset(new Opm::IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
||||
props.reset(new AdHocProps(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
||||
// Setting polydata defaults to mimic a simple example case.
|
||||
|
||||
double c_max = param.getDefault("c_max_limit", 5.0);
|
||||
double mix_param = param.getDefault("mix_param", 1.0);
|
||||
double rock_density = param.getDefault("rock_density", 1000.0);
|
||||
double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15);
|
||||
std::vector<double> c_vals_visc(2, -1e100);
|
||||
c_vals_visc[0] = 0.0;
|
||||
c_vals_visc[1] = 7.0;
|
||||
std::vector<double> visc_mult_vals(2, -1e100);
|
||||
visc_mult_vals[0] = 1.0;
|
||||
// polydata.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
|
||||
visc_mult_vals[1] = 20.0;
|
||||
std::vector<double> c_vals_ads(3, -1e100);
|
||||
c_vals_ads[0] = 0.0;
|
||||
c_vals_ads[1] = 2.0;
|
||||
c_vals_ads[2] = 8.0;
|
||||
std::vector<double> ads_vals(3, -1e100);
|
||||
ads_vals[0] = 0.0;
|
||||
// polydata.ads_vals[1] = param.getDefault("c_max_ads", 0.0025);
|
||||
ads_vals[1] = 0.0015;
|
||||
ads_vals[2] = 0.0025;
|
||||
polydata.set(c_max, mix_param, rock_density, dead_pore_vol, c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals);
|
||||
// Grid init.
|
||||
const int nx = param.getDefault("nx", 100);
|
||||
const int ny = param.getDefault("ny", 100);
|
||||
const int nz = param.getDefault("nz", 1);
|
||||
const double dx = param.getDefault("dx", 1.0);
|
||||
const double dy = param.getDefault("dy", 1.0);
|
||||
const double dz = param.getDefault("dz", 1.0);
|
||||
grid.reset(new Opm::GridManager(nx, ny, nz, dx, dy, dz));
|
||||
// Rock and fluid init.
|
||||
// props.reset(new Opm::IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
||||
props.reset(new AdHocProps(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
|
||||
// Wells init.
|
||||
wells.reset(new Opm::WellsManager());
|
||||
// Timer init.
|
||||
simtimer.init(param);
|
||||
if (param.has("water_oil_contact")) {
|
||||
water_oil_contact = param.get<double>("water_oil_contact");
|
||||
woc_set = true;
|
||||
}
|
||||
// Setting polydata defaults to mimic a simple example case.
|
||||
double c_max = param.getDefault("c_max_limit", 5.0);
|
||||
double mix_param = param.getDefault("mix_param", 1.0);
|
||||
double rock_density = param.getDefault("rock_density", 1000.0);
|
||||
double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15);
|
||||
std::vector<double> c_vals_visc(2, -1e100);
|
||||
c_vals_visc[0] = 0.0;
|
||||
c_vals_visc[1] = 7.0;
|
||||
std::vector<double> visc_mult_vals(2, -1e100);
|
||||
visc_mult_vals[0] = 1.0;
|
||||
// polydata.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
|
||||
visc_mult_vals[1] = 20.0;
|
||||
std::vector<double> c_vals_ads(3, -1e100);
|
||||
c_vals_ads[0] = 0.0;
|
||||
c_vals_ads[1] = 2.0;
|
||||
c_vals_ads[2] = 8.0;
|
||||
std::vector<double> ads_vals(3, -1e100);
|
||||
ads_vals[0] = 0.0;
|
||||
// polydata.ads_vals[1] = param.getDefault("c_max_ads", 0.0025);
|
||||
ads_vals[1] = 0.0015;
|
||||
ads_vals[2] = 0.0025;
|
||||
polydata.set(c_max, mix_param, rock_density, dead_pore_vol, c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Initialize polymer inflow function.
|
||||
double poly_start = param.getDefault("poly_start_days", 300.0)*Opm::unit::day;
|
||||
double poly_end = param.getDefault("poly_end_days", 800.0)*Opm::unit::day;
|
||||
double poly_amount = param.getDefault("poly_amount", 5.0);
|
||||
double poly_amount = param.getDefault("poly_amount", polydata.cMax());
|
||||
PolymerInflow poly_inflow(poly_start, poly_end, poly_amount);
|
||||
|
||||
// Extra rock init.
|
||||
@ -369,31 +451,35 @@ main(int argc, char** argv)
|
||||
double g = param.getDefault("gravity", 0.0);
|
||||
bool use_gravity = g != 0.0;
|
||||
if (use_gravity) {
|
||||
gravity[grid->c_grid()->dimensions - 1] = g;
|
||||
if (props->density()[0] == props->density()[1]) {
|
||||
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
|
||||
}
|
||||
gravity[grid->c_grid()->dimensions - 1] = g;
|
||||
if (props->density()[0] == props->density()[1]) {
|
||||
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
// Solvers init.
|
||||
// Pressure solver.
|
||||
#ifdef EXPERIMENT_ISTL
|
||||
Opm::LinearSolverIstl linsolver(param);
|
||||
#else
|
||||
Opm::LinearSolverUmfpack linsolver;
|
||||
// Opm::LinearSolverIstl linsolver(param);
|
||||
#endif // EXPERIMENT_ISTL
|
||||
const double *grav = use_gravity ? &gravity[0] : 0;
|
||||
Opm::IncompTpfa psolver(*grid->c_grid(), props->permeability(), grav, linsolver);
|
||||
|
||||
// Reordering solver.
|
||||
const double nltol = param.getDefault("nl_tolerance", 1e-9);
|
||||
const int maxit = param.getDefault("nl_maxiter", 30);
|
||||
Opm::TransportModelPolymer::SingleCellMethod method;
|
||||
std::string method_string = param.getDefault("single_cell_method", std::string("Bracketing"));
|
||||
if (method_string == "Bracketing") {
|
||||
method = Opm::TransportModelPolymer::Bracketing;
|
||||
method = Opm::TransportModelPolymer::Bracketing;
|
||||
} else if (method_string == "Newton") {
|
||||
method = Opm::TransportModelPolymer::Newton;
|
||||
method = Opm::TransportModelPolymer::Newton;
|
||||
} else {
|
||||
THROW("Unknown method: " << method_string);
|
||||
THROW("Unknown method: " << method_string);
|
||||
}
|
||||
const double nltol = param.getDefault("nl_tolerance", 1e-9);
|
||||
const int maxit = param.getDefault("nl_maxiter", 30);
|
||||
Opm::TransportModelPolymer tmodel(*grid->c_grid(), props->porosity(), &porevol[0], *props, polydata,
|
||||
method, nltol, maxit);
|
||||
method, nltol, maxit);
|
||||
|
||||
// Boundary conditions.
|
||||
Opm::FlowBCManager bcs;
|
||||
@ -401,45 +487,140 @@ main(int argc, char** argv)
|
||||
// State-related and source-related variables init.
|
||||
int num_cells = grid->c_grid()->number_of_cells;
|
||||
std::vector<double> totmob;
|
||||
std::vector<double> omega; // Empty dummy unless/until we include gravity here.
|
||||
std::vector<double> omega; // Will remain empty if no gravity.
|
||||
double init_sat = param.getDefault("init_sat", 0.0);
|
||||
ReservoirState state(grid->c_grid(), init_sat);
|
||||
if (!param.has("init_sat")) {
|
||||
state.setToMinimumWaterSat(*props);
|
||||
state.setToMinimumWaterSat(*props);
|
||||
}
|
||||
// We need a separate reorder_sat, because the reorder
|
||||
// code expects a scalar sw, not both sw and so.
|
||||
std::vector<double> reorder_sat(num_cells);
|
||||
double flow_per_sec = 0.1*tot_porevol/Opm::unit::day;
|
||||
if (param.has("injection_rate_per_day")) {
|
||||
flow_per_sec = param.get<double>("injection_rate_per_day")/Opm::unit::day;
|
||||
}
|
||||
std::vector<double> src(num_cells, 0.0);
|
||||
src[0] = flow_per_sec;
|
||||
src[num_cells - 1] = -flow_per_sec;
|
||||
int scenario = param.getDefault("scenario", woc_set ? 4 : 0);
|
||||
switch (scenario) {
|
||||
case 0:
|
||||
{
|
||||
std::cout << "==== Scenario 0: simple wells or single-cell source and sink.\n";
|
||||
if (wells->c_wells()) {
|
||||
Opm::wellsToSrc(*wells->c_wells(), num_cells, src);
|
||||
} else {
|
||||
double flow_per_sec = 0.1*tot_porevol/Opm::unit::day;
|
||||
if (param.has("injection_rate_per_day")) {
|
||||
flow_per_sec = param.get<double>("injection_rate_per_day")/Opm::unit::day;
|
||||
}
|
||||
src[0] = flow_per_sec;
|
||||
src[num_cells - 1] = -flow_per_sec;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 1:
|
||||
{
|
||||
std::cout << "==== Scenario 1: half source, half sink.\n";
|
||||
double flow_per_sec = 0.1*porevol[0]/Opm::unit::day;
|
||||
std::fill(src.begin(), src.begin() + src.size()/2, flow_per_sec);
|
||||
std::fill(src.begin() + src.size()/2, src.end(), -flow_per_sec);
|
||||
break;
|
||||
}
|
||||
case 2:
|
||||
{
|
||||
std::cout << "==== Scenario 2: gravity convection.\n";
|
||||
if (!use_gravity) {
|
||||
std::cout << "**** Warning: running gravity convection scenario, but gravity is zero." << std::endl;
|
||||
}
|
||||
if (use_deck) {
|
||||
std::cout << "**** Warning: running gravity convection scenario, which expects a cartesian grid."
|
||||
<< std::endl;
|
||||
}
|
||||
if (grid->c_grid()->cartdims[2] <= 1) {
|
||||
std::cout << "**** Warning: running gravity convection scenario, which expects nz > 1." << std::endl;
|
||||
}
|
||||
std::vector<int> left_cells;
|
||||
left_cells.reserve(num_cells/2);
|
||||
const int *glob_cell = grid->c_grid()->global_cell;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
const int* cd = grid->c_grid()->cartdims;
|
||||
const int gc = glob_cell == 0 ? cell : glob_cell[cell];
|
||||
bool left = (gc % cd[0]) < cd[0]/2;
|
||||
if (left) {
|
||||
left_cells.push_back(cell);
|
||||
}
|
||||
}
|
||||
state.setWaterSat(left_cells, *props, ReservoirState::MaxSat);
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
std::cout << "==== Scenario 3: gravity segregation.\n";
|
||||
if (!use_gravity) {
|
||||
std::cout << "**** Warning: running gravity segregation scenario, but gravity is zero." << std::endl;
|
||||
}
|
||||
if (use_deck) {
|
||||
std::cout << "**** Warning: running gravity segregation scenario, which expects a cartesian grid."
|
||||
<< std::endl;
|
||||
}
|
||||
if (grid->c_grid()->cartdims[2] <= 1) {
|
||||
std::cout << "**** Warning: running gravity segregation scenario, which expects nz > 1." << std::endl;
|
||||
}
|
||||
std::vector<double>& sat = state.saturation();
|
||||
const int *glob_cell = grid->c_grid()->global_cell;
|
||||
// Water on top
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
const int* cd = grid->c_grid()->cartdims;
|
||||
const int gc = glob_cell == 0 ? cell : glob_cell[cell];
|
||||
bool top = (gc / cd[0] / cd[1]) < cd[2]/2;
|
||||
sat[2*cell] = top ? 1.0 : 0.0;
|
||||
sat[2*cell + 1 ] = 1.0 - sat[2*cell];
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 4:
|
||||
{
|
||||
std::cout << "==== Scenario 4: water-oil contact and simple wells or sources\n";
|
||||
if (!use_gravity) {
|
||||
std::cout << "**** Warning: initializing segregated water and oil zones, but gravity is zero." << std::endl;
|
||||
}
|
||||
state.initWaterOilContact(*grid->c_grid(), *props, water_oil_contact);
|
||||
if (wells->c_wells()) {
|
||||
Opm::wellsToSrc(*wells->c_wells(), num_cells, src);
|
||||
} else {
|
||||
double flow_per_sec = 0.01*tot_porevol/Opm::unit::day;
|
||||
src[0] = flow_per_sec;
|
||||
src[grid->c_grid()->number_of_cells - 1] = -flow_per_sec;
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
THROW("==== Scenario " << scenario << " is unknown.");
|
||||
}
|
||||
}
|
||||
std::vector<double> reorder_src = src;
|
||||
|
||||
// Control init.
|
||||
double current_time = 0.0;
|
||||
double total_time = stepsize*num_psteps;
|
||||
// Dirichlet boundary conditions.
|
||||
if (param.getDefault("use_pside", false)) {
|
||||
int pside = param.get<int>("pside");
|
||||
double pside_pressure = param.get<double>("pside_pressure");
|
||||
bcs.pressureSide(*grid->c_grid(), Opm::FlowBCManager::Side(pside), pside_pressure);
|
||||
}
|
||||
|
||||
// The allcells vector is used in calls to computeTotalMobility()
|
||||
// and computeTotalMobilityOmega().
|
||||
std::vector<int> allcells(num_cells);
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
allcells[cell] = cell;
|
||||
allcells[cell] = cell;
|
||||
}
|
||||
|
||||
// Warn if any parameters are unused.
|
||||
if (param.anyUnused()) {
|
||||
std::cout << "-------------------- Unused parameters: --------------------\n";
|
||||
param.displayUsage();
|
||||
std::cout << "----------------------------------------------------------------" << std::endl;
|
||||
std::cout << "-------------------- Unused parameters: --------------------\n";
|
||||
param.displayUsage();
|
||||
std::cout << "----------------------------------------------------------------" << std::endl;
|
||||
}
|
||||
|
||||
// Write parameters used for later reference.
|
||||
if (output) {
|
||||
param.writeParam(output_dir + "/spu_2p.param");
|
||||
param.writeParam(output_dir + "/spu_2p.param");
|
||||
}
|
||||
|
||||
// Main simulation loop.
|
||||
@ -450,66 +631,135 @@ main(int argc, char** argv)
|
||||
Opm::time::StopWatch total_timer;
|
||||
total_timer.start();
|
||||
std::cout << "\n\n================ Starting main simulation loop ===============" << std::endl;
|
||||
for (int pstep = 0; pstep < num_psteps; ++pstep) {
|
||||
std::cout << "\n\n--------------- Simulation step number " << pstep
|
||||
<< " ---------------"
|
||||
<< "\n Current time (days) " << Opm::unit::convert::to(current_time, Opm::unit::day)
|
||||
<< "\n Current stepsize (days) " << Opm::unit::convert::to(stepsize, Opm::unit::day)
|
||||
<< "\n Total time (days) " << Opm::unit::convert::to(total_time, Opm::unit::day)
|
||||
<< "\n" << std::endl;
|
||||
double init_satvol[2] = { 0.0 };
|
||||
double init_polymass = 0.0;
|
||||
double satvol[2] = { 0.0 };
|
||||
double polymass = 0.0;
|
||||
double polymass_adsorbed = 0.0;
|
||||
double injected[2] = { 0.0 };
|
||||
double produced[2] = { 0.0 };
|
||||
double polyinj = 0.0;
|
||||
double polyprod = 0.0;
|
||||
double tot_injected[2] = { 0.0 };
|
||||
double tot_produced[2] = { 0.0 };
|
||||
double tot_polyinj = 0.0;
|
||||
double tot_polyprod = 0.0;
|
||||
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
|
||||
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol
|
||||
<< " " << init_satvol[1]/tot_porevol << std::endl;
|
||||
Opm::Watercut watercut;
|
||||
watercut.push(0.0, 0.0, 0.0);
|
||||
for (; !simtimer.done(); ++simtimer) {
|
||||
// Report timestep and (optionally) write state to disk.
|
||||
simtimer.report(std::cout);
|
||||
if (output && (simtimer.currentStepNum() % output_interval == 0)) {
|
||||
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir);
|
||||
}
|
||||
|
||||
if (output) {
|
||||
outputState(grid->c_grid(), state, pstep, output_dir);
|
||||
}
|
||||
// Solve pressure.
|
||||
if (use_gravity) {
|
||||
computeTotalMobilityOmega(*props, polydata, allcells, state.saturation(), state.concentration(),
|
||||
totmob, omega);
|
||||
} else {
|
||||
computeTotalMobility(*props, polydata, allcells, state.saturation(), state.concentration(),
|
||||
totmob);
|
||||
}
|
||||
pressure_timer.start();
|
||||
psolver.solve(totmob, omega, src, bcs.c_bcs(), state.pressure(), state.faceflux());
|
||||
pressure_timer.stop();
|
||||
double pt = pressure_timer.secsSinceStart();
|
||||
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
|
||||
ptime += pt;
|
||||
|
||||
if (use_gravity) {
|
||||
computeTotalMobilityOmega(*props, polydata, allcells, state.saturation(), state.concentration(),
|
||||
totmob, omega);
|
||||
} else {
|
||||
computeTotalMobility(*props, polydata, allcells, state.saturation(), state.concentration(),
|
||||
totmob);
|
||||
}
|
||||
pressure_timer.start();
|
||||
psolver.solve(totmob, omega, src, bcs.c_bcs(), state.pressure(), state.faceflux());
|
||||
pressure_timer.stop();
|
||||
double pt = pressure_timer.secsSinceStart();
|
||||
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
|
||||
ptime += pt;
|
||||
// Process transport sources (to include bdy terms).
|
||||
Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0, reorder_src);
|
||||
|
||||
const double inflowc0 = poly_inflow(current_time + 1e-5*stepsize);
|
||||
const double inflowc1 = poly_inflow(current_time + (1.0 - 1e-5)*stepsize);
|
||||
if (inflowc0 != inflowc1) {
|
||||
std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
|
||||
}
|
||||
const double inflow_c = inflowc0;
|
||||
Opm::toWaterSat(state.saturation(), reorder_sat);
|
||||
// We must treat reorder_src here,
|
||||
// if we are to handle anything but simple water
|
||||
// injection, since it is expected to be
|
||||
// equal to total outflow (if negative)
|
||||
// and water inflow (if positive).
|
||||
// Also, for anything but noflow boundaries,
|
||||
// boundary flows must be accumulated into
|
||||
// source term following the same convention.
|
||||
transport_timer.start();
|
||||
tmodel.solve(&state.faceflux()[0], &reorder_src[0], stepsize, inflow_c,
|
||||
&reorder_sat[0], &state.concentration()[0], &state.cmax()[0]);
|
||||
transport_timer.stop();
|
||||
double tt = transport_timer.secsSinceStart();
|
||||
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
|
||||
ttime += tt;
|
||||
Opm::toBothSat(reorder_sat, state.saturation());
|
||||
// Find inflow rate.
|
||||
const double current_time = simtimer.currentTime();
|
||||
const double stepsize = simtimer.currentStepLength();
|
||||
const double inflowc0 = poly_inflow(current_time + 1e-5*stepsize);
|
||||
const double inflowc1 = poly_inflow(current_time + (1.0 - 1e-5)*stepsize);
|
||||
if (inflowc0 != inflowc1) {
|
||||
std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
|
||||
}
|
||||
const double inflow_c = inflowc0;
|
||||
|
||||
current_time += stepsize;
|
||||
// Solve transport.
|
||||
transport_timer.start();
|
||||
Opm::toWaterSat(state.saturation(), reorder_sat);
|
||||
tmodel.solve(&state.faceflux()[0], &reorder_src[0], stepsize, inflow_c,
|
||||
&reorder_sat[0], &state.concentration()[0], &state.cmax()[0]);
|
||||
Opm::toBothSat(reorder_sat, state.saturation());
|
||||
transport_timer.stop();
|
||||
double tt = transport_timer.secsSinceStart();
|
||||
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
|
||||
ttime += tt;
|
||||
|
||||
// Report volume balances.
|
||||
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
|
||||
polymass = Opm::computePolymerMass(porevol, state.saturation(), state.concentration(), polydata.deadPoreVol());
|
||||
polymass_adsorbed = Opm::computePolymerAdsorbed(polydata, porevol, state.cmax());
|
||||
Opm::computeInjectedProduced(*props, polydata, state.saturation(), state.concentration(),
|
||||
src, simtimer.currentStepLength(), inflow_c,
|
||||
injected, produced, polyinj, polyprod);
|
||||
tot_injected[0] += injected[0];
|
||||
tot_injected[1] += injected[1];
|
||||
tot_produced[0] += produced[0];
|
||||
tot_produced[1] += produced[1];
|
||||
tot_polyinj += polyinj;
|
||||
tot_polyprod += polyprod;
|
||||
std::cout.precision(5);
|
||||
const int width = 18;
|
||||
std::cout << "\nVolume and polymer mass balance: "
|
||||
" water(pv) oil(pv) polymer(kg)\n";
|
||||
std::cout << " Saturated volumes: "
|
||||
<< std::setw(width) << satvol[0]/tot_porevol
|
||||
<< std::setw(width) << satvol[1]/tot_porevol
|
||||
<< std::setw(width) << polymass << std::endl;
|
||||
std::cout << " Adsorbed volumes: "
|
||||
<< std::setw(width) << 0.0
|
||||
<< std::setw(width) << 0.0
|
||||
<< std::setw(width) << polymass_adsorbed << std::endl;
|
||||
std::cout << " Injected volumes: "
|
||||
<< std::setw(width) << injected[0]/tot_porevol
|
||||
<< std::setw(width) << injected[1]/tot_porevol
|
||||
<< std::setw(width) << polyinj << std::endl;
|
||||
std::cout << " Produced volumes: "
|
||||
<< std::setw(width) << produced[0]/tot_porevol
|
||||
<< std::setw(width) << produced[1]/tot_porevol
|
||||
<< std::setw(width) << polyprod << std::endl;
|
||||
std::cout << " Total inj volumes: "
|
||||
<< std::setw(width) << tot_injected[0]/tot_porevol
|
||||
<< std::setw(width) << tot_injected[1]/tot_porevol
|
||||
<< std::setw(width) << tot_polyinj << std::endl;
|
||||
std::cout << " Total prod volumes: "
|
||||
<< std::setw(width) << tot_produced[0]/tot_porevol
|
||||
<< std::setw(width) << tot_produced[1]/tot_porevol
|
||||
<< std::setw(width) << tot_polyprod << std::endl;
|
||||
std::cout << " In-place + prod - inj: "
|
||||
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol
|
||||
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol
|
||||
<< std::setw(width) << (polymass + tot_polyprod - tot_polyinj + polymass_adsorbed) << std::endl;
|
||||
std::cout << " Init - now - pr + inj: "
|
||||
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol
|
||||
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol
|
||||
<< std::setw(width) << (init_polymass - polymass - tot_polyprod + tot_polyinj - polymass_adsorbed)
|
||||
<< std::endl;
|
||||
std::cout.precision(8);
|
||||
|
||||
watercut.push(simtimer.currentTime() + simtimer.currentStepLength(),
|
||||
produced[0]/(produced[0] + produced[1]),
|
||||
tot_produced[0]/tot_porevol);
|
||||
}
|
||||
total_timer.stop();
|
||||
|
||||
std::cout << "\n\n================ End of simulation ===============\n"
|
||||
<< "Total time taken: " << total_timer.secsSinceStart()
|
||||
<< "\n Pressure time: " << ptime
|
||||
<< "\n Transport time: " << ttime << std::endl;
|
||||
<< "Total time taken: " << total_timer.secsSinceStart()
|
||||
<< "\n Pressure time: " << ptime
|
||||
<< "\n Transport time: " << ttime << std::endl;
|
||||
|
||||
if (output) {
|
||||
outputState(grid->c_grid(), state, num_psteps, output_dir);
|
||||
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir);
|
||||
outputWaterCut(watercut, output_dir);
|
||||
}
|
||||
}
|
||||
|
@ -98,5 +98,115 @@ namespace Opm
|
||||
}
|
||||
|
||||
|
||||
/// @brief Computes injected and produced volumes of all phases,
|
||||
/// and injeced and produced polymer mass.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] polyprops polymer properties
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
/// @param[in] c polymer concentration
|
||||
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[in] inj_c injected concentration
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// @param[out] polyinj injected mass of polymer
|
||||
/// @param[out] polyprod produced mass of polymer
|
||||
void computeInjectedProduced(const IncompPropertiesInterface& props,
|
||||
const Opm::PolymerProperties& polyprops,
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& c,
|
||||
const std::vector<double>& src,
|
||||
const double dt,
|
||||
const double inj_c,
|
||||
double* injected,
|
||||
double* produced,
|
||||
double& polyinj,
|
||||
double& polyprod)
|
||||
{
|
||||
const int num_cells = src.size();
|
||||
const int np = s.size()/src.size();
|
||||
if (int(s.size()) != num_cells*np) {
|
||||
THROW("Sizes of s and src vectors do not match.");
|
||||
}
|
||||
std::fill(injected, injected + np, 0.0);
|
||||
std::fill(produced, produced + np, 0.0);
|
||||
polyinj = 0.0;
|
||||
polyprod = 0.0;
|
||||
std::vector<double> inv_eff_visc(np);
|
||||
const double* visc = props.viscosity();
|
||||
std::vector<double> mob(np);
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
if (src[cell] > 0.0) {
|
||||
injected[0] += src[cell]*dt;
|
||||
polyinj += src[cell]*dt*inj_c;
|
||||
} else if (src[cell] < 0.0) {
|
||||
const double flux = -src[cell]*dt;
|
||||
const double* sat = &s[np*cell];
|
||||
props.relperm(1, sat, &cell, &mob[0], 0);
|
||||
polyprops.effectiveInvVisc(c[cell], visc, &inv_eff_visc[0]);
|
||||
double totmob = 0.0;
|
||||
for (int p = 0; p < np; ++p) {
|
||||
mob[p] *= inv_eff_visc[p];
|
||||
totmob += mob[p];
|
||||
}
|
||||
for (int p = 0; p < np; ++p) {
|
||||
produced[p] += (mob[p]/totmob)*flux;
|
||||
}
|
||||
polyprod += (mob[0]/totmob)*flux*c[cell]; // TODO check this term.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// @brief Computes total polymer mass over all grid cells.
|
||||
/// @param[in] pv the pore volume by cell.
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
/// @param[in] c polymer concentration
|
||||
/// @param[in] dps dead pore space
|
||||
/// @return total polymer mass in grid.
|
||||
double computePolymerMass(const std::vector<double>& pv,
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& c,
|
||||
const double dps)
|
||||
{
|
||||
const int num_cells = pv.size();
|
||||
const int np = s.size()/pv.size();
|
||||
if (int(s.size()) != num_cells*np) {
|
||||
THROW("Sizes of s and pv vectors do not match.");
|
||||
}
|
||||
double polymass = 0.0;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
polymass += c[cell]*pv[cell]*(s[np*cell + 0] - dps);
|
||||
}
|
||||
return polymass;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// @brief Computes total absorbed polymer mass over all grid cells.
|
||||
/// @param[in] polyprops polymer properties
|
||||
/// @param[in] pv the pore volume by cell.
|
||||
/// @param[in] cmax max polymer concentration for cell
|
||||
/// @return total absorbed polymer mass.
|
||||
double computePolymerAdsorbed(const Opm::PolymerProperties& polyprops,
|
||||
const std::vector<double>& pv,
|
||||
const std::vector<double>& cmax)
|
||||
{
|
||||
const int num_cells = pv.size();
|
||||
const double rhor = polyprops.rockDensity();
|
||||
double abs_mass = 0.0;
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
abs_mass += polyprops.adsorbtion(cmax[cell])*pv[cell]*rhor;
|
||||
}
|
||||
return abs_mass;
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
|
@ -60,6 +60,58 @@ namespace Opm
|
||||
const std::vector<double>& c,
|
||||
std::vector<double>& totmob,
|
||||
std::vector<double>& omega);
|
||||
|
||||
/// @brief Computes injected and produced volumes of all phases,
|
||||
/// and injeced and produced polymer mass.
|
||||
/// Note 1: assumes that only the first phase is injected.
|
||||
/// Note 2: assumes that transport has been done with an
|
||||
/// implicit method, i.e. that the current state
|
||||
/// gives the mobilities used for the preceding timestep.
|
||||
/// @param[in] props fluid and rock properties.
|
||||
/// @param[in] polyprops polymer properties
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
/// @param[in] c polymer concentration
|
||||
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
|
||||
/// @param[in] dt timestep used
|
||||
/// @param[in] inj_c injected concentration
|
||||
/// @param[out] injected must point to a valid array with P elements,
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
/// @param[out] polyinj injected mass of polymer
|
||||
/// @param[out] polyprod produced mass of polymer
|
||||
void computeInjectedProduced(const IncompPropertiesInterface& props,
|
||||
const Opm::PolymerProperties& polyprops,
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& c,
|
||||
const std::vector<double>& src,
|
||||
const double dt,
|
||||
const double inj_c,
|
||||
double* injected,
|
||||
double* produced,
|
||||
double& polyinj,
|
||||
double& polyprod);
|
||||
|
||||
/// @brief Computes total (free) polymer mass over all grid cells.
|
||||
/// @param[in] pv the pore volume by cell.
|
||||
/// @param[in] s saturation values (for all P phases)
|
||||
/// @param[in] c polymer concentration
|
||||
/// @param[in] dps dead pore space
|
||||
/// @return total polymer mass in grid.
|
||||
double computePolymerMass(const std::vector<double>& pv,
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& c,
|
||||
const double dps);
|
||||
|
||||
/// @brief Computes total absorbed polymer mass over all grid cells.
|
||||
/// @param[in] polyprops polymer properties
|
||||
/// @param[in] pv the pore volume by cell.
|
||||
/// @param[in] cmax max polymer concentration for cell
|
||||
/// @return total absorbed polymer mass.
|
||||
double computePolymerAdsorbed(const Opm::PolymerProperties& polyprops,
|
||||
const std::vector<double>& pv,
|
||||
const std::vector<double>& cmax);
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user