Implemented initialization procedure.

This commit is contained in:
kel85uk 2018-01-04 15:50:04 +01:00
parent 89255da464
commit e2513038c4
6 changed files with 243 additions and 336 deletions

View File

@ -1,31 +0,0 @@
#ifndef OPM_AQUCT_HEADER_INCLUDED
#define OPM_AQUCT_HEADER_INCLUDED
struct AQUCT_params{
// Aquifer ID
int aquiferID;
// Table IDs
int inftableID, pvttableID;
// Perforation cell id
int cell_id;
// Variables constants
double phi_aq , //aquifer porosity
d0, //aquifer datum depth
C_t , //total compressibility
r_o , //aquifer inner radius
k_a , //aquifer permeability
c1, // 0.008527 (METRIC, PVT-M); 0.006328 (FIELD); 3.6 (LAB)
h , //aquifer thickness
theta , //angle subtended by the aquifer boundary
c2 ; //6.283 (METRIC, PVT-M); 1.1191 (FIELD); 6.283 (LAB).
std::vector<double> td, pi;
};
#endif

View File

@ -23,6 +23,7 @@
#include <Eigen/QR>
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
@ -30,10 +31,12 @@
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <string>
#include <memory>
#include <vector>
#include <algorithm>
#include <map>
#include <cassert>
@ -65,44 +68,30 @@ namespace Opm
typedef double Scalar;
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
typedef Opm::BlackOilFluidState<Eval, FluidSystem> FluidState;
typedef typename FluidSystem::WaterPvt WaterPvt;
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
static const bool has_solvent = GET_PROP_VALUE(TypeTag, EnableSolvent);
static const bool has_polymer = GET_PROP_VALUE(TypeTag, EnablePolymer);
static const int contiSolventEqIdx = BlackoilIndices::contiSolventEqIdx;
static const int contiPolymerEqIdx = BlackoilIndices::contiPolymerEqIdx;
AquiferCarterTracy(const std::vector<int>& cell_id)
: phi_aq_ (1.0), //
C_t_ (1.0), //
r_o_ (1.0), //
k_a_ (1.0), //
c1_ (1.0),
h_ (1.0), //
theta_ (1.0), //
c2_ (1.0), //
d0_ (1.0),
cell_idx_ (cell_id)
{
mu_w_ = 1e-3;
aqutab_td_.push_back(1.0);
aqutab_pi_.push_back(1.0);
aquiferID_ = 1;
inftableID_ = 1;
pvttableID_ = 1;
init_quantities();
}
explicit AquiferCarterTracy( const AquiferCT::AQUCT_data& params, const AquiferCT::AQUANCON_data& aquanconParams,
const int numComponents, const Scalar gravity )
explicit AquiferCarterTracy( const AquiferCT::AQUCT_data& params, const Aquancon::AquanconOutput& connection,
const int numComponents, const Scalar gravity, const Simulator& ebosSimulator )
: phi_aq_ (params.phi_aq), //
C_t_ (params.C_t), //
r_o_ (params.r_o), //
k_a_ (params.k_a), //
c1_ (params.c1),
h_ (params.h), //
p0_defaulted_ (params.p0_defaulted),
pa0_ (params.p0),
theta_ (params.theta), //
c2_ (params.c2), //
d0_ (params.d0),
@ -111,12 +100,11 @@ namespace Opm
aquiferID_ (params.aquiferID),
inftableID_ (params.inftableID),
pvttableID_ (params.pvttableID),
cell_idx_ (params.cell_id),
num_components_ (numComponents),
gravity_ (gravity)
gravity_ (gravity),
ebos_simulator_ (ebosSimulator)
{
mu_w_ = 1e-3;
init_quantities(aquanconParams);
init_quantities(connection);
}
inline const PhaseUsage&
@ -127,79 +115,35 @@ namespace Opm
return *phase_usage_;
}
inline int
flowPhaseToEbosCompIdx( const int phaseIdx ) const
{
const auto& pu = phaseUsage();
if (pu.phase_pos[Water] == phaseIdx)
return BlackoilIndices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
if (pu.phase_pos[Oil] == phaseIdx)
return BlackoilIndices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (pu.phase_pos[Gas] == phaseIdx)
return BlackoilIndices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// for other phases return the index
return phaseIdx;
}
inline int
flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
{
const auto& pu = phaseUsage();
if (pu.phase_pos[Water] == phaseIdx) {
return FluidSystem::waterPhaseIdx;
}
if (pu.phase_pos[Oil] == phaseIdx) {
return FluidSystem::oilPhaseIdx;
}
if (pu.phase_pos[Gas] == phaseIdx) {
return FluidSystem::gasPhaseIdx;
}
assert(phaseIdx < 3);
// for other phases return the index
return phaseIdx;
}
inline void calculateExplicitQuantities(const Simulator& ebosSimulator)
{
std::cout << "In CarterTracy<calculateExplicitQuantities>: I am aquifer #" << aquiferID_ << std::endl;
}
inline void assembleAquiferEq(Simulator& ebosSimulator, const SimulatorTimerInterface& timer)
{
std::cout << "In CarterTracy<assembleAquiferEq>: I am aquifer #" << aquiferID_ << std::endl;
// resAqui_ = 0.0;
dt_ = timer.currentStepLength();
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
auto& ebosResid = ebosSimulator.model().linearizer().residual();
// TODO: it probably can be static member for StandardWell
const double volume = 0.002831684659200; // 0.1 cu ft;
auto cellID = cell_idx_.begin();
size_t idx;
for ( idx = 0; cellID != cell_idx_.end(); ++cellID, ++idx )
{
Eval qinflow = 0.0;
// We are dereferencing the value of IntensiveQuantities because cachedIntensiveQuantities return a const pointer to
// IntensiveQuantities of that particular cell_id
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(*cellID, /*timeIdx=*/ 0));
const IntensiveQuantities intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(*cellID, /*timeIdx=*/ 0));
// This is the pressure at td + dt
get_current_Pressure_cell(pressure_current_,idx,intQuants);
get_current_density_cell(rhow_,idx,intQuants);
calculate_inflow_rate(idx, timer);
qinflow = Qai_[idx];
ebosResid[*cellID][flowPhaseToEbosCompIdx(FluidSystem::waterPhaseIdx)] -= qinflow.value();
qinflow = Qai_.at(idx);
ebosResid[*cellID][(FluidSystem::waterCompIdx)] -= qinflow.value();
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx)
{
// also need to consider the efficiency factor when manipulating the jacobians.
ebosJac[*cellID][*cellID][flowPhaseToEbosCompIdx(FluidSystem::waterPhaseIdx)][pvIdx] -= qinflow.derivative(pvIdx);
ebosJac[*cellID][*cellID][(FluidSystem::waterCompIdx)][pvIdx] -= qinflow.derivative(pvIdx);
}
std::cout << "In CarterTracy<assembleAquiferEq>: I am aquifer #" << aquiferID_
// << " -> P_wat[t+dt] = " << pressure_current_[idx] << std::endl
<< " Qai[t+dt] = " << Qai_[idx] << std::endl;
}
}
@ -214,50 +158,19 @@ namespace Opm
}
}
inline void after_time_step()
inline void after_time_step(const SimulatorTimerInterface& timer)
{
for (auto Qai = Qai_.begin(); Qai != Qai_.end(); ++Qai)
{
W_flux_ += (*Qai);
W_flux_ += (*Qai)*timer.currentStepLength();
}
std::cout << "Aquifer # " << aquiferID_ << ": My cumulative flux = " << W_flux_ << std::endl;
}
/* Made into public for testing only!!!!!!. Must be protected */
inline const Scalar time_constant() const
inline const double area_fraction(const size_t i)
{
Scalar Tc = mu_w_*phi_aq_*C_t_*r_o_*r_o_/(k_a_*c1_);
return Tc;
return alphai_.at(i);
}
/* Made into public for testing only!!!!!!. Must be protected */
inline const Scalar aquifer_influx_constant() const
{
Scalar beta = c2_*h_*theta_*phi_aq_*C_t_*r_o_*r_o_;
return beta;
}
// This is another hack to get the face area only for SPE1.
// Ideally it should be a map which given a cell_id, it returns the area fraction
inline const double area_fraction(const int i)
{
return 1000.0*20.0*0.092903/(1000.0*1000.0*0.092903*2 + 1000.0*20.0*0.092903*4);
}
inline void print_private_members() const
{
std::cout << "Aquifer CT #" << aquiferID_ << std::endl;
auto ita = aqutab_td_.cbegin();
auto f_lambda = [&ita] (double i) {std::cout << *ita++ << " " << i << std::endl;};
std::for_each( aqutab_pi_.cbegin(), aqutab_pi_.cend(), f_lambda );
for (auto i = coeff_.begin(); i != coeff_.end(); ++i )
{
std::cout << "Coeff = " << *i << std::endl;
}
}
/* Made into public for testing only!!!!!!. Must be protected */
inline const std::vector<int> cell_id() const
{
return cell_idx_;
@ -269,9 +182,9 @@ namespace Opm
}
protected:
private:
const PhaseUsage* phase_usage_;
const Simulator& ebos_simulator_;
// Aquifer ID, and other IDs
@ -279,14 +192,17 @@ namespace Opm
int num_components_;
// Grid variables
std::vector<int> cell_idx_;
std::vector<size_t> cell_idx_;
std::vector<Scalar> faceArea_connected_;
// Quantities at each grid id
std::vector<Scalar> cell_depth_;
std::vector<Scalar> pressure_previous_;
std::vector<Scalar> pressure_current_;
std::vector<Scalar> Qai_;
std::vector<Scalar> rhow_;
std::vector<Eval> pressure_previous_;
std::vector<Eval> pressure_current_;
std::vector<Eval> Qai_;
std::vector<Eval> rhow_;
std::vector<Scalar> alphai_;
// Variables constants
Scalar mu_w_ , //water viscosity
@ -304,8 +220,9 @@ namespace Opm
std::vector<Scalar> aqutab_td_, aqutab_pi_;
// Cumulative flux
Scalar W_flux_, dt_, pa0_, gravity_;
Scalar dt_, pa0_, gravity_;
bool p0_defaulted_;
Eval W_flux_;
// Also return the polynomial fit
std::vector<Scalar> coeff_;
@ -316,7 +233,7 @@ namespace Opm
inline void polynomial_fit( const std::vector<Scalar> &X, const std::vector<Scalar> &y,
std::vector<Scalar> &coeff, int order, bool bias) const
{
int colNum = (bias)? order + 1 : order;
size_t colNum = (bias)? order + 1 : order;
Eigen::MatrixXd A(X.size(), colNum);
Eigen::VectorXd y_mapped = Eigen::VectorXd::Map(&y.front(), y.size());
Eigen::VectorXd result;
@ -337,60 +254,200 @@ namespace Opm
coeff[i] = result[i];
}
inline void init_quantities(const AquiferCT::AQUANCON_data& aquanconParams)
inline void get_influence_table_values(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
{
// http://kluge.in-chemnitz.de/opensource/spline/
}
inline void init_quantities(const Aquancon::AquanconOutput& connection)
{
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
W_flux_ = 0.;
// pa0_ is the initial aquifer water pressure. Must be calculated from equilibrium if left default,
// or we get the information from the deck Hacked to make it at 45e6 Pa
pa0_ = 45e6;
// We next get our connections to the aquifer and initialize these quantities using the initialize_connections function
initialize_connections(connection);
calculate_aquifer_condition();
pressure_previous_.resize(cell_idx_.size(), 0.);
pressure_current_.resize(cell_idx_.size(), 0.);
// We hack the cell depth values for now. We can actually get it from elementcontext pos
cell_depth_.resize(cell_idx_.size(), d0_);
rhow_.resize(cell_idx_.size(), 998.0);
Qai_.resize(cell_idx_.size(), 0.);
Qai_.resize(cell_idx_.size(), 0.0);
polynomial_fit(aqutab_td_, aqutab_pi_, coeff_, 2, true);
polynomial_fit(aqutab_td_, aqutab_pi_, coeff_, 1, true);
}
inline void get_current_Pressure_cell(std::vector<Scalar>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
inline void get_current_Pressure_cell(std::vector<Eval>& pressure_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water[idx] = fs.pressure(FluidSystem::waterPhaseIdx).value();
pressure_water.at(idx) = fs.pressure(FluidSystem::waterPhaseIdx);
}
inline void get_current_density_cell(std::vector<Scalar>& rho_water, const int idx, const IntensiveQuantities& intQuants)
inline void get_current_density_cell(std::vector<Eval>& rho_water, const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
rho_water[idx] = fs.density(FluidSystem::waterPhaseIdx).value();
rho_water.at(idx) = fs.density(FluidSystem::waterPhaseIdx);
}
inline Scalar dpai(int idx)
{
Scalar dp = pa0_ - rhow_[idx]*gravity_*(cell_depth_[idx] - d0_) - pressure_previous_[idx];
Scalar dp = pa0_ + rhow_.at(idx).value()*gravity_*(cell_depth_.at(idx) - d0_) - pressure_previous_.at(idx).value();
return dp;
}
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
inline void calculate_a_b_constants(Scalar& a, Scalar& b, const int idx, const SimulatorTimerInterface& timer)
{
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
Scalar beta = aquifer_influx_constant();
Scalar Tc = time_constant();
Scalar td_plus_dt = (timer.currentStepLength() + timer.simulationTimeElapsed()) / Tc;
Scalar td = timer.simulationTimeElapsed() / Tc;
Scalar PItdprime = coeff_[1] + 2.0*coeff_[2]*(td_plus_dt);
Scalar PItd = coeff_[0] + coeff_[1]*td_plus_dt + coeff_[2]*td_plus_dt*td_plus_dt;
a = 1.0/Tc * ( (beta * dpai(idx)) - (W_flux_ * PItdprime) ) / ( PItd - td*PItdprime );
b = beta / Tc / ( PItd - td*PItdprime);
Scalar PItdprime = coeff_.at(1);
Scalar PItd = coeff_.at(0) + coeff_.at(1)*td_plus_dt;
a = 1.0/Tc * ( (beta * dpai(idx)) - (W_flux_.value() * PItdprime) ) / ( PItd - td*PItdprime );
b = beta / (Tc * ( PItd - td*PItdprime));
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
inline void calculate_inflow_rate(int idx, const SimulatorTimerInterface& timer)
{
Scalar a, b;
calculate_a_b_constants(a,b,idx,timer);
// This function implements Eq 5.7 of the EclipseTechnicalDescription
Qai_[idx] = area_fraction(idx)*( a - b * ( pressure_current_[idx] - pressure_previous_[idx] ) );
Qai_.at(idx) = area_fraction(idx)*( a - b * ( pressure_current_.at(idx) - pressure_previous_.at(idx).value() ) );
}
inline const Scalar time_constant() const
{
Scalar Tc = mu_w_*phi_aq_*C_t_*r_o_*r_o_/(k_a_*c1_);
return Tc;
}
inline const Scalar aquifer_influx_constant() const
{
Scalar beta = c2_*h_*theta_*phi_aq_*C_t_*r_o_*r_o_;
return beta;
}
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
inline void initialize_connections(const Aquancon::AquanconOutput& connection)
{
const auto& eclState = ebos_simulator_.vanguard().eclState();
const auto& ugrid = ebos_simulator_.vanguard().grid();
const auto& grid = eclState.getInputGrid();
cell_idx_ = connection.global_index;
assert( cell_idx_ == connection.global_index);
assert( (cell_idx_.size() == connection.influx_coeff.size()) );
assert( (connection.influx_coeff.size() == connection.influx_multiplier.size()) );
assert( (connection.influx_multiplier.size() == connection.reservoir_face_dir.size()) );
// We hack the cell depth values for now. We can actually get it from elementcontext pos
cell_depth_.resize(cell_idx_.size(), d0_);
alphai_.resize(cell_idx_.size(), 1.0);
faceArea_connected_.resize(cell_idx_.size(),0.0);
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(ugrid);
auto faceCells = Opm::AutoDiffGrid::faceCells(ugrid);
// Translate the C face tag into the enum used by opm-parser's TransMult class
Opm::FaceDir::DirEnum faceDirection;
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.;
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
auto cellFacesRange = cell2Faces[cell_idx_.at(idx)];
for(auto cellFaceIter = cellFacesRange.begin(); cellFaceIter != cellFacesRange.end(); ++cellFaceIter)
{
// The index of the face in the compressed grid
const int faceIdx = *cellFaceIter;
// the logically-Cartesian direction of the face
const int faceTag = Opm::UgGridHelpers::faceTag(ugrid, cellFaceIter);
if (faceTag == 0) // left
faceDirection = Opm::FaceDir::XMinus;
else if (faceTag == 1) // right
faceDirection = Opm::FaceDir::XPlus;
else if (faceTag == 2) // back
faceDirection = Opm::FaceDir::YMinus;
else if (faceTag == 3) // front
faceDirection = Opm::FaceDir::YPlus;
else if (faceTag == 4) // bottom
faceDirection = Opm::FaceDir::ZMinus;
else if (faceTag == 5) // top
faceDirection = Opm::FaceDir::ZPlus;
if (faceDirection == connection.reservoir_face_dir.at(idx))
{
faceArea_connected_.at(idx) = Opm::UgGridHelpers::faceArea(ugrid, faceIdx);
denom_face_areas += faceArea_connected_.at(idx);
}
}
auto cellCenter = grid.getCellCenter(cell_idx_.at(idx));
cell_depth_.at(idx) = cellCenter[2];
}
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
alphai_.at(idx) = faceArea_connected_.at(idx)/denom_face_areas;
}
}
inline void calculate_aquifer_condition()
{
int pvttableIdx = pvttableID_ - 1;
rhow_.resize(cell_idx_.size(),0.);
if (p0_defaulted_)
{
pa0_ = calculate_reservoir_equilibrium(rhow_);
}
// Initialize a FluidState object first
FluidState fs_aquifer;
// We use the temperature of the first cell connected to the aquifer
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
fs_aquifer.assign( ebos_simulator_.model().cachedIntensiveQuantities(cell_idx_.at(0), /*timeIdx=*/ 0)->fluidState() );
Eval temperature_aq, pa0_mean;
temperature_aq = fs_aquifer.temperature(0);
pa0_mean = pa0_;
// rho_mean = FluidSystem::referenceDensity(waterPhaseIdx, pvttableIdx)
// *FluidSystem::waterPvt().inverseFormationVolumeFactor(pvttableIdx, temperature_aq, pa0_mean);
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean);
std::cout << "Pa0 = " << pa0_mean << ", viscosity = " << mu_w_aquifer.value() << std::endl;
mu_w_ = mu_w_aquifer.value();
}
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
inline Scalar calculate_reservoir_equilibrium(std::vector<Eval>& rho_water_reservoir)
{
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
std::vector<Scalar> water_pressure_reservoir, pw_aquifer;
for (size_t idx = 0; idx < cell_idx_.size(); ++idx)
{
size_t cellIDx = cell_idx_.at(idx);
const auto& intQuants = *(ebos_simulator_.model().cachedIntensiveQuantities(cellIDx, /*timeIdx=*/ 0));
const auto& fs = intQuants.fluidState();
water_pressure_reservoir.push_back( fs.pressure(FluidSystem::waterPhaseIdx).value() );
rho_water_reservoir.at(idx) = fs.density(FluidSystem::waterPhaseIdx);
pw_aquifer.push_back( (water_pressure_reservoir.at(idx) - rho_water_reservoir.at(idx).value()*gravity_*(cell_depth_.at(idx) - d0_))*area_fraction(idx) );
}
// We take the average of the calculated equilibrium pressures.
Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.)/pw_aquifer.size();
return aquifer_pres_avg;
}

View File

@ -3,11 +3,6 @@
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
@ -40,6 +35,7 @@
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/AquiferCT.hpp>
#include <opm/parser/eclipse/EclipseState/Aquancon.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
@ -49,7 +45,6 @@
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/RateConverter.hpp>
#include <opm/autodiff/AquiferCarterTracy.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
@ -86,8 +81,6 @@ namespace Opm {
static const int numEq = BlackoilIndices::numEq;
static const int solventSaturationIdx = BlackoilIndices::solventSaturationIdx;
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
typedef AquiferCarterTracy<TypeTag> Aquifer_object;
BlackoilAquiferModel(Simulator& ebosSimulator,
@ -102,7 +95,7 @@ namespace Opm {
// called at the beginning of a time step
void beginTimeStep();
// called at the end of a time step
void timeStepSucceeded();
void timeStepSucceeded(const SimulatorTimerInterface& timer);
// called at the beginning of a report step
void beginReportStep(const int time_step);
@ -117,7 +110,7 @@ namespace Opm {
return ebosSimulator_;
}
/// Hack function to get what I need from parser
// This initialization function is used to connect the parser objects with the ones needed by AquiferCarterTracy
void init(const Simulator& ebosSimulator, std::vector<Aquifer_object>& aquifers);
protected:
@ -141,17 +134,9 @@ namespace Opm {
SimulatorReport last_report_;
const Schedule& schedule() const
{ return ebosSimulator_.gridManager().schedule(); }
void updatePrimaryVariables();
void initPrimaryVariablesEvaluation() const;
void updateConnectionIntensiveQuantities() const;
void calculateExplicitQuantities();
// The number of components in the model.
int numComponents() const;
@ -159,8 +144,6 @@ namespace Opm {
int numPhases() const;
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const;
void assembleAquiferEq(const SimulatorTimerInterface& timer);
SimulatorReport solveAquiferEq(const SimulatorTimerInterface& timer);

View File

@ -12,7 +12,7 @@ namespace Opm {
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
{
const auto& eclState = ebosSimulator_.gridManager().eclState();
const auto& eclState = ebosSimulator_.vanguard().eclState();
phase_usage_ = phaseUsageFromDeck(eclState);
active_.resize(phase_usage_.MaxNumPhases, false);
@ -38,17 +38,17 @@ namespace Opm {
void
BlackoilAquiferModel<TypeTag>:: beginTimeStep()
{
// Right now it doesn't do shit.
}
// called at the end of a time step
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: timeStepSucceeded()
BlackoilAquiferModel<TypeTag>:: timeStepSucceeded(const SimulatorTimerInterface& timer)
{
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
aquifer->after_time_step();
aquifer->after_time_step(timer);
}
}
@ -57,7 +57,7 @@ namespace Opm {
void
BlackoilAquiferModel<TypeTag>:: beginReportStep(const int time_step)
{
// Right now it doesn't do shit.
}
// called at the end of a report step
@ -65,14 +65,7 @@ namespace Opm {
void
BlackoilAquiferModel<TypeTag>:: endReportStep()
{
// Right now it just spits out the constants for each aquifers
// We are using the simple integer indexing for the aquifers
for (int i = 0; i < numAquifers(); ++i)
{
std::cout << "Aquifer[" << i << "]"
<< " : Tc = " << aquifers()[i].time_constant()
<< ", beta = " << aquifers()[i].aquifer_influx_constant() << std::endl;
}
}
// Get the last report step
@ -80,9 +73,6 @@ namespace Opm {
const SimulatorReport&
BlackoilAquiferModel<TypeTag>:: lastReport() const
{
for (auto i = aquifers_.begin(); i != aquifers_.end(); ++i){
(*i).print_private_members();
}
return last_report_;
}
@ -93,7 +83,6 @@ namespace Opm {
const int iterationIdx )
{
last_report_ = SimulatorReport();
// We need to update the reservoir pressures connected to the aquifer
updateConnectionIntensiveQuantities();
@ -103,35 +92,14 @@ namespace Opm {
prepareTimeStep(timer);
}
if (iterationIdx == 0) {
calculateExplicitQuantities();
}
if (param_.solve_aquifereq_initially_ && iterationIdx == 0) {
// solve the aquifer equations as a pre-processing step
last_report_ = solveAquiferEq(timer);
}
assembleAquiferEq(timer);
last_report_.converged = true;
}
// Protected function: Update the primary variables
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: updatePrimaryVariables()
{
// Right now it doesn't do shit.
}
// Protected function: Init the primary variables
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: initPrimaryVariablesEvaluation() const
{
// Right now it doesn't do shit.
}
template<typename TypeTag>
void
@ -149,17 +117,6 @@ namespace Opm {
}
}
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: calculateExplicitQuantities()
{
// for (auto aqui = aquifers_.begin(); aqui!= aquifers_.end(); ++aqui)
// {
// std::cout << "calculateExplicitQuantities: Aquifer id = " << aqui->aquiferID() << std::endl;
// aqui->calculateExplicitQuantities(ebosSimulator_);
// }
}
template<typename TypeTag>
SimulatorReport
@ -200,30 +157,10 @@ namespace Opm {
int
BlackoilAquiferModel<TypeTag>:: numPhases() const
{
// Not implemented yet!!!!!!!!!!!!
const auto& pu = phase_usage_;
return pu.num_phases;
}
// Protected function: returns the phase index in ebos
template<typename TypeTag>
int
BlackoilAquiferModel<TypeTag>:: flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
{
const auto& pu = phase_usage_;
if (active_[Water] && pu.phase_pos[Water] == phaseIdx)
return FluidSystem::waterPhaseIdx;
if (active_[Oil] && pu.phase_pos[Oil] == phaseIdx)
return FluidSystem::oilPhaseIdx;
if (active_[Gas] && pu.phase_pos[Gas] == phaseIdx)
return FluidSystem::gasPhaseIdx;
assert(phaseIdx < 3);
// for other phases return the index
return phaseIdx;
}
// Protected function which calls the individual aquifer models
template<typename TypeTag>
void
@ -231,7 +168,6 @@ namespace Opm {
{
for (auto aquifer = aquifers_.begin(); aquifer != aquifers_.end(); ++aquifer)
{
std::cout << "assembleAquiferEq: Aquifer id = " << aquifer->aquiferID() << std::endl;
aquifer->assembleAquiferEq(ebosSimulator_, timer);
}
}
@ -261,47 +197,27 @@ namespace Opm {
// Initialize the aquifers in the deck
template<typename TypeTag>
void
BlackoilAquiferModel<TypeTag>:: init(const Simulator& ebosSimulator, std::vector< AquiferCarterTracy<TypeTag> >& aquifers)//, std::vector< AquiferCarterTracy<TypeTag> >& aquifers)
BlackoilAquiferModel<TypeTag>:: init(const Simulator& ebosSimulator, std::vector< AquiferCarterTracy<TypeTag> >& aquifers)
{
const auto& deck = ebosSimulator.gridManager().deck();
const auto& eclState = ebosSimulator.gridManager().eclState();
updateConnectionIntensiveQuantities();
const auto& deck = ebosSimulator.vanguard().deck();
const auto& eclState = ebosSimulator.vanguard().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
AquiferCT aquiferct = AquiferCT(eclState,deck);
Aquancon aquifer_connect = Aquancon(eclState.getInputGrid(), deck);
std::vector<AquiferCT::AQUCT_data> aquifersData = aquiferct.getAquifers();
std::vector<AquiferCT::AQUANCON_data> aquanconData = aquiferct.getAquancon();
std::vector<Aquancon::AquanconOutput> aquifer_connection = aquifer_connect.getAquOutput();
// for (auto aquiferData = aquifersData.begin(); aquiferData != aquifersData.end(); ++aquiferData)
// {
assert( aquifersData.size() == aquifer_connect.size() );
// }
auto ita = aquifersData.cbegin();
auto f_lambda = [&] (AquiferCT::AQUANCON_data i) {
aquifers.push_back( AquiferCarterTracy<TypeTag> (*ita++, i, numComponents(), gravity_ ) );
};
std::for_each( aquanconData.cbegin(), aquanconData.cend(), f_lambda );
}
// Begin the hack to initialize the aquifers in the deck
template<typename TypeTag>
std::vector< AquiferCarterTracy<TypeTag> >
BlackoilAquiferModel<TypeTag>:: hack_init(const Simulator& ebosSimulator)//, std::vector< AquiferCarterTracy<TypeTag> >& aquifers)
for (int i = 0; i < aquifersData.size(); ++i)
{
std::vector< AquiferCarterTracy<TypeTag> > aquifers;
/** Begin hack!!!!! */
const auto& deck = ebosSimulator.gridManager().deck();
const auto& eclState = ebosSimulator.gridManager().eclState();
// Get all the carter tracy aquifer properties data and put it in aquifers vector
AquiferCT aquiferct = AquiferCT(eclState,deck);
std::vector<AquiferCT::AQUCT_data> aquifersData = aquiferct.getAquifers();
for (auto aquiferData = aquifersData.begin(); aquiferData != aquifersData.end(); ++aquiferData)
{
aquifers.push_back( AquiferCarterTracy<TypeTag> (*aquiferData, numComponents(), gravity_ ) );
aquifers.push_back(
AquiferCarterTracy<TypeTag> (aquifersData.at(i), aquifer_connection.at(i), numComponents(), gravity_, ebosSimulator_)
);
}
}

View File

@ -29,10 +29,10 @@
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/BlackoilWellModel.hpp>
#include <opm/autodiff/WellConnectionAuxiliaryModule.hpp>
#include <opm/autodiff/BlackoilAquiferModel.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/WellConnectionAuxiliaryModule.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
@ -350,12 +350,12 @@ namespace Opm {
const ReservoirState& reservoir_state,
WellState& well_state)
{
DUNE_UNUSED_PARAMETER(timer);
// DUNE_UNUSED_PARAMETER(timer);
DUNE_UNUSED_PARAMETER(reservoir_state);
DUNE_UNUSED_PARAMETER(well_state);
wellModel().timeStepSucceeded();
aquiferModel().timeStepSucceeded();
aquiferModel().timeStepSucceeded(timer);
ebosSimulator_.problem().endTimeStep();
}
@ -599,7 +599,6 @@ namespace Opm {
virtual void apply( const X& x, Y& y ) const
{
A_.mv( x, y );
// add well model modification to y
wellMod_.apply(x, y );
@ -613,7 +612,6 @@ namespace Opm {
virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const
{
A_.usmv(alpha,x,y);
// add scaled well model modification to y
wellMod_.applyScaleAdd( alpha, x, y );
@ -1129,29 +1127,14 @@ namespace Opm {
const BlackoilAquiferModel<TypeTag>&
aquiferModel() const { return aquifer_model_; }
int flowPhaseToEbosCompIdx( const int phaseIdx ) const
int ebosPhaseToFlowCanonicalPhaseIdx( const int phaseIdx ) const
{
const auto& pu = phaseUsage_;
if (active_[Water] && pu.phase_pos[Water] == phaseIdx)
return Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
if (active_[Oil] && pu.phase_pos[Oil] == phaseIdx)
return Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (active_[Gas] && pu.phase_pos[Gas] == phaseIdx)
return Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
// for other phases return the index
return phaseIdx;
}
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
{
const auto& pu = phaseUsage_;
if (active_[Water] && pu.phase_pos[Water] == phaseIdx)
return FluidSystem::waterPhaseIdx;
if (active_[Oil] && pu.phase_pos[Oil] == phaseIdx)
return FluidSystem::oilPhaseIdx;
if (active_[Gas] && pu.phase_pos[Gas] == phaseIdx)
return FluidSystem::gasPhaseIdx;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && FluidSystem::waterPhaseIdx == phaseIdx)
return Water;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::oilPhaseIdx == phaseIdx)
return Oil;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && FluidSystem::gasPhaseIdx == phaseIdx)
return Gas;
assert(phaseIdx < 3);
// for other phases return the index
@ -1170,7 +1153,6 @@ namespace Opm {
private:
double dpMaxRel() const { return param_.dp_max_rel_; }
double dsMax() const { return param_.ds_max_; }
double drMaxRel() const { return param_.dr_max_rel_; }

View File

@ -190,8 +190,8 @@ public:
auto auxMod = std::make_shared<WellConnectionAuxiliaryModule<TypeTag> >(schedule(), grid());
ebosSimulator_.model().addAuxiliaryModule(auxMod);
}
AquiferModel aquifer_model(ebosSimulator_, model_param_, terminal_output_);
// aquifer_model.hack_init(ebosSimulator_);
// Main simulation loop.
while (!timer.done()) {