mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
flow_ebos: do no longer use the legacy object for geologic properties
it was already almost unused (except for output). Besides making the overall flow_ebos code leaner because it reduces redundancies, this patch also implies a small reduduction of memory consumption and a minor performance improvement. the latter is due to the fact that the transmissibilities now do not need to be calculated more often than necessary anymore.
This commit is contained in:
parent
9dda677a28
commit
e2e0e3290d
@ -90,18 +90,6 @@ SET_BOOL_PROP(EclFlowProblem, EnableSwatinit, false);
|
||||
}}
|
||||
|
||||
namespace Opm {
|
||||
|
||||
|
||||
class ParameterGroup;
|
||||
class DerivedGeology;
|
||||
class RockCompressibility;
|
||||
class NewtonIterationBlackoilInterface;
|
||||
class VFPProperties;
|
||||
class SimulationDataContainer;
|
||||
|
||||
|
||||
|
||||
|
||||
/// A model implementation for three-phase black oil.
|
||||
///
|
||||
/// The simulator is capable of handling three-phase problems
|
||||
@ -152,7 +140,6 @@ namespace Opm {
|
||||
/// \param[in] param parameters
|
||||
/// \param[in] grid grid data structure
|
||||
/// \param[in] fluid fluid properties
|
||||
/// \param[in] geo rock properties
|
||||
/// \param[in] wells well structure
|
||||
/// \param[in] vfp_properties Vertical flow performance tables
|
||||
/// \param[in] linsolver linear solver
|
||||
@ -161,7 +148,6 @@ namespace Opm {
|
||||
BlackoilModelEbos(Simulator& ebosSimulator,
|
||||
const ModelParameters& param,
|
||||
const BlackoilPropsAdFromDeck& fluid,
|
||||
const DerivedGeology& geo ,
|
||||
const StandardWellsDense<TypeTag>& well_model,
|
||||
const NewtonIterationBlackoilInterface& linsolver,
|
||||
const bool terminal_output)
|
||||
@ -169,7 +155,6 @@ namespace Opm {
|
||||
, grid_(ebosSimulator_.gridManager().grid())
|
||||
, istlSolver_( dynamic_cast< const ISTLSolverType* > (&linsolver) )
|
||||
, fluid_ (fluid)
|
||||
, geo_ (geo)
|
||||
, vfp_properties_(
|
||||
eclState().getTableManager().getVFPInjTables(),
|
||||
eclState().getTableManager().getVFPProdTables())
|
||||
@ -184,9 +169,6 @@ namespace Opm {
|
||||
, dx_old_(AutoDiffGrid::numCells(grid_))
|
||||
, isBeginReportStep_(false)
|
||||
{
|
||||
const double gravity = detail::getGravity(geo_.gravity(), UgGridHelpers::dimensions(grid_));
|
||||
const std::vector<double> pv(geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size());
|
||||
const std::vector<double> depth(geo_.z().data(), geo_.z().data() + geo_.z().size());
|
||||
// Wells are active if they are active wells on at least
|
||||
// one process.
|
||||
int wellsActive = localWellsActive() ? 1 : 0;
|
||||
@ -194,7 +176,6 @@ namespace Opm {
|
||||
wellModel().setWellsActive( wellsActive );
|
||||
// compute global sum of number of cells
|
||||
global_nc_ = detail::countGlobalCells(grid_);
|
||||
well_model_.init(fluid_.phaseUsage(), active_, &vfp_properties_, gravity, depth, pv, &rate_converter_, global_nc_);
|
||||
if (!istlSolver_)
|
||||
{
|
||||
OPM_THROW(std::logic_error,"solver down cast to ISTLSolver failed");
|
||||
@ -881,8 +862,6 @@ namespace Opm {
|
||||
|
||||
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
||||
|
||||
const auto& pv = geo_.poreVolume();
|
||||
|
||||
const int numComp = numComponents();
|
||||
Vector R_sum(numComp);
|
||||
Vector B_avg(numComp);
|
||||
@ -927,6 +906,16 @@ namespace Opm {
|
||||
}
|
||||
}
|
||||
|
||||
Vector pv_vector;
|
||||
pv_vector.resize(nc);
|
||||
const auto& ebosModel = ebosSimulator_.model();
|
||||
const auto& ebosProblem = ebosSimulator_.problem();
|
||||
for (int cellIdx = 0; cellIdx < nc; ++cellIdx) {
|
||||
pv_vector[cellIdx] =
|
||||
ebosProblem.porosity(cellIdx)*
|
||||
ebosModel.dofTotalVolume(cellIdx);
|
||||
}
|
||||
|
||||
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
|
||||
{
|
||||
//tempV.col(compIdx) = R2.col(compIdx).abs()/pv;
|
||||
@ -934,11 +923,10 @@ namespace Opm {
|
||||
Vector& R2_idx = R2[ compIdx ];
|
||||
for( int cell_idx = 0; cell_idx < nc; ++cell_idx )
|
||||
{
|
||||
tempV_idx[ cell_idx ] = std::abs( R2_idx[ cell_idx ] ) / pv[ cell_idx ];
|
||||
tempV_idx[ cell_idx ] = std::abs( R2_idx[ cell_idx ] ) / pv_vector[ cell_idx ];
|
||||
}
|
||||
}
|
||||
|
||||
Vector pv_vector (geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size());
|
||||
Vector wellResidual = wellModel().residual();
|
||||
|
||||
const double pvSum = convergenceReduction(grid_.comm(), global_nc_, numComp,
|
||||
@ -1416,8 +1404,8 @@ namespace Opm {
|
||||
std::stringstream errlog;
|
||||
errlog << "Finding the bubble point pressure failed for " << failed_cells_pb.size() << " cells [";
|
||||
errlog << failed_cells_pb[0];
|
||||
const int max_elems = std::min(max_num_cells_faillog, failed_cells_pb.size());
|
||||
for (int i = 1; i < max_elems; ++i) {
|
||||
const size_t max_elems = std::min(max_num_cells_faillog, failed_cells_pb.size());
|
||||
for (size_t i = 1; i < max_elems; ++i) {
|
||||
errlog << ", " << failed_cells_pb[i];
|
||||
}
|
||||
if (failed_cells_pb.size() > max_num_cells_faillog) {
|
||||
@ -1430,8 +1418,8 @@ namespace Opm {
|
||||
std::stringstream errlog;
|
||||
errlog << "Finding the dew point pressure failed for " << failed_cells_pd.size() << " cells [";
|
||||
errlog << failed_cells_pd[0];
|
||||
const int max_elems = std::min(max_num_cells_faillog, failed_cells_pd.size());
|
||||
for (int i = 1; i < max_elems; ++i) {
|
||||
const size_t max_elems = std::min(max_num_cells_faillog, failed_cells_pd.size());
|
||||
for (size_t i = 1; i < max_elems; ++i) {
|
||||
errlog << ", " << failed_cells_pd[i];
|
||||
}
|
||||
if (failed_cells_pd.size() > max_num_cells_faillog) {
|
||||
@ -1468,7 +1456,6 @@ namespace Opm {
|
||||
const Grid& grid_;
|
||||
const ISTLSolverType* istlSolver_;
|
||||
const BlackoilPropsAdFromDeck& fluid_;
|
||||
const DerivedGeology& geo_;
|
||||
VFPProperties vfp_properties_;
|
||||
// For each canonical phase -> true if active
|
||||
const std::vector<bool> active_;
|
||||
|
@ -404,9 +404,6 @@ namespace Opm
|
||||
materialLawManager(),
|
||||
grid));
|
||||
|
||||
// Geological properties
|
||||
bool use_local_perm = param_.getDefault("use_local_perm", true);
|
||||
geoprops_.reset(new DerivedGeology(grid, *fluidprops_, eclState(), use_local_perm, &ebosProblem().gravity()[0]));
|
||||
}
|
||||
|
||||
const Deck& deck() const
|
||||
@ -565,19 +562,16 @@ namespace Opm
|
||||
eclIO_.reset(new EclipseIO(eclState(), UgGridHelpers::createEclipseGrid( grid , inputGrid )));
|
||||
}
|
||||
|
||||
const NNC* nnc = &geoprops_->nonCartesianConnections();
|
||||
eclIO_->writeInitial(computeLegacySimProps_(), eclState().getInputNNC());
|
||||
const NNC* nnc = &eclState().getInputNNC();
|
||||
data::Solution globaltrans;
|
||||
|
||||
if ( must_distribute_ )
|
||||
{
|
||||
// dirty and dangerous hack!
|
||||
// We rely on opmfil in GeoProps being hardcoded to true
|
||||
// which prevents the pinch processing from running.
|
||||
// Ergo the nncs are unchanged.
|
||||
nnc = &eclState().getInputNNC();
|
||||
|
||||
// Gather the global simProps
|
||||
data::Solution localtrans = geoprops_->simProps(this->grid());
|
||||
data::Solution localtrans = computeLegacySimProps_();
|
||||
for( const auto& localkeyval: localtrans)
|
||||
{
|
||||
auto& globalval = globaltrans[localkeyval.first].data;
|
||||
@ -593,7 +587,7 @@ namespace Opm
|
||||
}
|
||||
else
|
||||
{
|
||||
globaltrans = geoprops_->simProps(grid);
|
||||
globaltrans = computeLegacySimProps_();
|
||||
}
|
||||
|
||||
if( output_cout_ )
|
||||
@ -690,7 +684,6 @@ namespace Opm
|
||||
// Create the simulator instance.
|
||||
simulator_.reset(new Simulator(*ebosSimulator_,
|
||||
param_,
|
||||
*geoprops_,
|
||||
*fluidprops_,
|
||||
*fis_solver_,
|
||||
FluidSystem::enableDissolvedGas(),
|
||||
@ -771,6 +764,48 @@ namespace Opm
|
||||
std::unordered_set<std::string> defunctWellNames() const
|
||||
{ return ebosSimulator_->gridManager().defunctWellNames(); }
|
||||
|
||||
data::Solution computeLegacySimProps_()
|
||||
{
|
||||
const int* dims = UgGridHelpers::cartDims(grid());
|
||||
const int globalSize = dims[0]*dims[1]*dims[2];
|
||||
|
||||
data::CellData tranx = {UnitSystem::measure::transmissibility, std::vector<double>( globalSize ), data::TargetType::INIT};
|
||||
data::CellData trany = {UnitSystem::measure::transmissibility, std::vector<double>( globalSize ), data::TargetType::INIT};
|
||||
data::CellData tranz = {UnitSystem::measure::transmissibility, std::vector<double>( globalSize ), data::TargetType::INIT};
|
||||
|
||||
const auto& eclTrans = ebosSimulator_->problem().eclTransmissibilities();
|
||||
const auto& globalCell = grid().globalCell();
|
||||
size_t num_faces = grid().numFaces();
|
||||
auto fc = UgGridHelpers::faceCells(grid());
|
||||
for (size_t i = 0; i < num_faces; ++i) {
|
||||
auto c1 = std::min(fc(i,0), fc(i,1));
|
||||
auto c2 = std::max(fc(i,0), fc(i,1));
|
||||
|
||||
if (c1 == -1 || c2 == -1)
|
||||
// boundary
|
||||
continue;
|
||||
|
||||
int gc1 = globalCell.size()?globalCell[c1]:c1;
|
||||
int gc2 = globalCell.size()?globalCell[c2]:c2;
|
||||
|
||||
if (gc2 - gc1 == 1) {
|
||||
tranx.data[c1] = eclTrans.transmissibility(c1, c2);
|
||||
}
|
||||
|
||||
if (gc2 - gc1 == dims[0]) {
|
||||
trany.data[c1] = eclTrans.transmissibility(c1, c2);
|
||||
}
|
||||
|
||||
if (gc2 - gc1 == dims[0]*dims[1]) {
|
||||
tranz.data[c1] = eclTrans.transmissibility(c1, c2);
|
||||
}
|
||||
}
|
||||
return
|
||||
{ {"TRANX" , tranx},
|
||||
{"TRANY" , trany} ,
|
||||
{"TRANZ" , tranz } };
|
||||
}
|
||||
|
||||
std::unique_ptr<EbosSimulator> ebosSimulator_;
|
||||
int mpi_rank_ = 0;
|
||||
bool output_cout_ = false;
|
||||
@ -779,7 +814,6 @@ namespace Opm
|
||||
bool output_to_files_ = false;
|
||||
std::string output_dir_ = std::string(".");
|
||||
std::unique_ptr<BlackoilPropsAdFromDeck> fluidprops_;
|
||||
std::unique_ptr<DerivedGeology> geoprops_;
|
||||
std::unique_ptr<ReservoirState> state_;
|
||||
std::unique_ptr<EclipseIO> eclIO_;
|
||||
std::unique_ptr<OutputWriter> output_writer_;
|
||||
|
@ -86,7 +86,6 @@ public:
|
||||
/// use_segregation_split (false) solve for gravity segregation (if false,
|
||||
/// segregation is ignored).
|
||||
///
|
||||
/// \param[in] geo derived geological properties
|
||||
/// \param[in] props fluid and rock properties
|
||||
/// \param[in] linsolver linear solver
|
||||
/// \param[in] has_disgas true for dissolved gas option
|
||||
@ -96,7 +95,6 @@ public:
|
||||
/// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow
|
||||
SimulatorFullyImplicitBlackoilEbos(Simulator& ebosSimulator,
|
||||
const ParameterGroup& param,
|
||||
DerivedGeology& geo,
|
||||
BlackoilPropsAdFromDeck& props,
|
||||
NewtonIterationBlackoilInterface& linsolver,
|
||||
const bool has_disgas,
|
||||
@ -109,7 +107,6 @@ public:
|
||||
model_param_(param),
|
||||
solver_param_(param),
|
||||
props_(props),
|
||||
geo_(geo),
|
||||
solver_(linsolver),
|
||||
has_disgas_(has_disgas),
|
||||
has_vapoil_(has_vapoil),
|
||||
@ -150,6 +147,8 @@ public:
|
||||
ExtraData extra;
|
||||
|
||||
failureReport_ = SimulatorReport();
|
||||
extractLegacyPoreVolume_();
|
||||
extractLegacyDepth_();
|
||||
|
||||
if (output_writer_.isRestart()) {
|
||||
// This is a restart, populate WellState and ReservoirState state objects from restart file
|
||||
@ -253,8 +252,7 @@ public:
|
||||
// Run a multiple steps of the solver depending on the time step control.
|
||||
solver_timer.start();
|
||||
|
||||
const WellModel well_model(wells, &(wells_manager.wellCollection()), model_param_, terminal_output_);
|
||||
|
||||
WellModel well_model(wells, &(wells_manager.wellCollection()), model_param_, terminal_output_);
|
||||
auto solver = createSolver(well_model);
|
||||
|
||||
std::vector<std::vector<double>> currentFluidInPlace;
|
||||
@ -419,12 +417,30 @@ protected:
|
||||
const Wells* /* wells */)
|
||||
{ }
|
||||
|
||||
std::unique_ptr<Solver> createSolver(const WellModel& well_model)
|
||||
std::unique_ptr<Solver> createSolver(WellModel& well_model)
|
||||
{
|
||||
const auto& gridView = ebosSimulator_.gridView();
|
||||
const PhaseUsage& phaseUsage = props_.phaseUsage();
|
||||
const std::vector<bool> activePhases = detail::activePhases(phaseUsage);
|
||||
const double gravity = ebosSimulator_.problem().gravity()[2];
|
||||
|
||||
// calculate the number of elements of the compressed sequential grid. this needs
|
||||
// to be done in two steps because the dune communicator expects a reference as
|
||||
// argument for sum()
|
||||
int globalNumCells = gridView.size(/*codim=*/0);
|
||||
globalNumCells = gridView.comm().sum(globalNumCells);
|
||||
|
||||
well_model.init(phaseUsage,
|
||||
activePhases,
|
||||
/*vfpProperties=*/nullptr,
|
||||
gravity,
|
||||
legacyDepth_,
|
||||
legacyPoreVolume_,
|
||||
rateConverter_.get(),
|
||||
globalNumCells);
|
||||
auto model = std::unique_ptr<Model>(new Model(ebosSimulator_,
|
||||
model_param_,
|
||||
props_,
|
||||
geo_,
|
||||
well_model,
|
||||
solver_,
|
||||
terminal_output_));
|
||||
@ -807,11 +823,40 @@ protected:
|
||||
}
|
||||
}
|
||||
|
||||
void extractLegacyPoreVolume_()
|
||||
{
|
||||
const auto& grid = ebosSimulator_.gridManager().grid();
|
||||
const unsigned numCells = grid.size(/*codim=*/0);
|
||||
const auto& ebosProblem = ebosSimulator_.problem();
|
||||
const auto& ebosModel = ebosSimulator_.model();
|
||||
|
||||
legacyPoreVolume_.resize(numCells);
|
||||
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
||||
// todo (?): respect rock compressibility
|
||||
legacyPoreVolume_[cellIdx] =
|
||||
ebosModel.dofTotalVolume(cellIdx)
|
||||
*ebosProblem.porosity(cellIdx);
|
||||
}
|
||||
}
|
||||
|
||||
void extractLegacyDepth_()
|
||||
{
|
||||
const auto& grid = ebosSimulator_.gridManager().grid();
|
||||
const unsigned numCells = grid.size(/*codim=*/0);
|
||||
|
||||
legacyDepth_.resize(numCells);
|
||||
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
||||
legacyDepth_[cellIdx] =
|
||||
grid.cellCenterDepth(cellIdx);
|
||||
}
|
||||
}
|
||||
|
||||
// Data.
|
||||
Simulator& ebosSimulator_;
|
||||
|
||||
std::vector<int> legacyCellPvtRegionIdx_;
|
||||
std::vector<double> legacyPoreVolume_;
|
||||
std::vector<double> legacyDepth_;
|
||||
typedef RateConverter::SurfaceToReservoirVoidage<FluidSystem, std::vector<int> > RateConverterType;
|
||||
typedef typename Solver::SolverParameters SolverParameters;
|
||||
|
||||
@ -823,8 +868,6 @@ protected:
|
||||
|
||||
// Observed objects.
|
||||
BlackoilPropsAdFromDeck& props_;
|
||||
// Solvers
|
||||
DerivedGeology& geo_;
|
||||
NewtonIterationBlackoilInterface& solver_;
|
||||
// Misc. data
|
||||
const bool has_disgas_;
|
||||
|
Loading…
Reference in New Issue
Block a user