mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-25 10:40:21 -06:00
Moved implementation to .cpp file.
This commit is contained in:
parent
3d008c033d
commit
e367f08732
@ -18,3 +18,466 @@
|
||||
*/
|
||||
|
||||
#include <opm/autodiff/FullyImplicitBlackoilSolver.hpp>
|
||||
|
||||
|
||||
#include <opm/autodiff/AutoDiffBlock.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||
#include <opm/autodiff/GeoProps.hpp>
|
||||
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/core/grid.h>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
|
||||
|
||||
typedef AutoDiff::ForwardBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
typedef Eigen::Array<double,
|
||||
Eigen::Dynamic,
|
||||
Eigen::Dynamic,
|
||||
Eigen::RowMajor> DataBlock;
|
||||
|
||||
|
||||
namespace {
|
||||
std::vector<int>
|
||||
buildAllCells(const int nc)
|
||||
{
|
||||
std::vector<int> all_cells(nc);
|
||||
|
||||
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
||||
|
||||
return all_cells;
|
||||
}
|
||||
|
||||
template <class GeoProps>
|
||||
AutoDiff::ForwardBlock<double>::M
|
||||
gravityOperator(const UnstructuredGrid& grid,
|
||||
const HelperOps& ops ,
|
||||
const GeoProps& geo )
|
||||
{
|
||||
const int nc = grid.number_of_cells;
|
||||
|
||||
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
|
||||
for (int c = 0, i = 0; c < nc; ++c) {
|
||||
for (; i < grid.cell_facepos[c + 1]; ++i) {
|
||||
const int f = grid.cell_faces[ i ];
|
||||
const int p = 0 + (grid.face_cells[2*f + 0] != c);
|
||||
|
||||
f2hf[2*f + p] = i;
|
||||
}
|
||||
}
|
||||
|
||||
typedef AutoDiff::ForwardBlock<double>::V V;
|
||||
typedef AutoDiff::ForwardBlock<double>::M M;
|
||||
|
||||
const V& gpot = geo.gravityPotential();
|
||||
const V& trans = geo.transmissibility();
|
||||
|
||||
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
|
||||
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
std::vector<Tri> grav; grav.reserve(2 * ni);
|
||||
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
|
||||
const int f = ops.internal_faces[ i ];
|
||||
const int c1 = grid.face_cells[2*f + 0];
|
||||
const int c2 = grid.face_cells[2*f + 1];
|
||||
|
||||
assert ((c1 >= 0) && (c2 >= 0));
|
||||
|
||||
const double dG1 = gpot[ f2hf[2*f + 0] ];
|
||||
const double dG2 = gpot[ f2hf[2*f + 1] ];
|
||||
const double t = trans[ f ];
|
||||
|
||||
grav.push_back(Tri(i, c1, t * dG1));
|
||||
grav.push_back(Tri(i, c2, - t * dG2));
|
||||
}
|
||||
|
||||
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
|
||||
|
||||
return G;
|
||||
}
|
||||
|
||||
template <class PU>
|
||||
std::vector<bool>
|
||||
activePhases(const PU& pu)
|
||||
{
|
||||
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
||||
std::vector<bool> active(maxnp, false);
|
||||
|
||||
for (int p = 0; p < pu.MaxNumPhases; ++p) {
|
||||
active[ p ] = pu.phase_used[ p ] != 0;
|
||||
}
|
||||
|
||||
return active;
|
||||
}
|
||||
|
||||
template <class PU>
|
||||
std::vector<int>
|
||||
active2Canonical(const PU& pu)
|
||||
{
|
||||
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
||||
std::vector<int> act2can(maxnp, -1);
|
||||
|
||||
for (int phase = 0; phase < maxnp; ++phase) {
|
||||
if (pu.phase_used[ phase ]) {
|
||||
act2can[ pu.phase_pos[ phase ] ] = phase;
|
||||
}
|
||||
}
|
||||
|
||||
return act2can;
|
||||
}
|
||||
} // Anonymous namespace
|
||||
|
||||
|
||||
namespace Opm {
|
||||
|
||||
|
||||
FullyImplicitBlackoilSolver::FullyImplicitBlackoilSolver(const UnstructuredGrid& grid ,
|
||||
const BlackoilPropsAdInterface& fluid,
|
||||
const DerivedGeology& geo )
|
||||
: grid_ (grid)
|
||||
, fluid_ (fluid)
|
||||
, geo_ (geo)
|
||||
, active_(activePhases(fluid.phaseUsage()))
|
||||
, canph_ (active2Canonical(fluid.phaseUsage()))
|
||||
, cells_ (buildAllCells(grid.number_of_cells))
|
||||
, ops_ (grid)
|
||||
, grav_ (gravityOperator(grid_, ops_, geo_))
|
||||
, rq_ (fluid.numPhases())
|
||||
{
|
||||
allocateResidual();
|
||||
}
|
||||
|
||||
void
|
||||
FullyImplicitBlackoilSolver::step(const double dt,
|
||||
BlackoilState& x)
|
||||
{
|
||||
const V dtpv = geo_.poreVolume() / dt;
|
||||
|
||||
{
|
||||
const SolutionState state = constantState(x);
|
||||
computeAccum(state, 0);
|
||||
}
|
||||
|
||||
#if 0
|
||||
const double atol = 1.0e-15;
|
||||
const double rtol = 5.0e-10;
|
||||
const int maxit = 15;
|
||||
#endif
|
||||
|
||||
assemble(dtpv, x);
|
||||
|
||||
#if 0
|
||||
const double r0 = residualNorm();
|
||||
int it = 0;
|
||||
bool resTooLarge = r0 > atol;
|
||||
while (resTooLarge && (it < maxit)) {
|
||||
solveJacobianSystem(x);
|
||||
|
||||
assemble(dtpv, x);
|
||||
|
||||
const double r = residualNorm();
|
||||
|
||||
resTooLarge = (r > atol) && (r > rtol*r0);
|
||||
|
||||
it += 1;
|
||||
}
|
||||
|
||||
if (resTooLarge) {
|
||||
THROW("Failed to compute converge solution");
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
FullyImplicitBlackoilSolver::ReservoirResidualQuant::ReservoirResidualQuant()
|
||||
: accum(2, ADB::null())
|
||||
, mflux( ADB::null())
|
||||
, b ( ADB::null())
|
||||
, head ( ADB::null())
|
||||
, mob ( ADB::null())
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
FullyImplicitBlackoilSolver::SolutionState::SolutionState(const int np)
|
||||
: pressure ( ADB::null())
|
||||
, saturation(np, ADB::null())
|
||||
, Rs ( ADB::null())
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
FullyImplicitBlackoilSolver::allocateResidual()
|
||||
{
|
||||
residual_.reservoir.resize(fluid_.numPhases(), ADB::null());
|
||||
}
|
||||
|
||||
FullyImplicitBlackoilSolver::SolutionState
|
||||
FullyImplicitBlackoilSolver::constantState(const BlackoilState& x)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = x.numPhases();
|
||||
|
||||
const std::vector<int> bpat(np, nc);
|
||||
|
||||
SolutionState state(np);
|
||||
|
||||
assert (not x.pressure().empty());
|
||||
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
|
||||
state.pressure = ADB::constant(p, bpat);
|
||||
|
||||
assert (not x.saturation().empty());
|
||||
const DataBlock s =
|
||||
Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
|
||||
|
||||
const Opm::PhaseUsage pu = fluid_.phaseUsage();
|
||||
|
||||
{
|
||||
V so = V::Ones(nc, 1);
|
||||
if (active_[ Water ]) {
|
||||
const int pos = pu.phase_pos[ Water ];
|
||||
const V sw = s.col(pos);
|
||||
so -= sw;
|
||||
|
||||
state.saturation[pos] = ADB::constant(sw, bpat);
|
||||
}
|
||||
if (active_[ Gas ]) {
|
||||
const int pos = pu.phase_pos[ Gas ];
|
||||
const V sg = s.col(pos);
|
||||
so -= sg;
|
||||
|
||||
state.saturation[pos] = ADB::constant(sg, bpat);
|
||||
}
|
||||
if (active_[ Oil ]) {
|
||||
const int pos = pu.phase_pos[ Oil ];
|
||||
state.saturation[pos] = ADB::constant(so, bpat);
|
||||
}
|
||||
}
|
||||
|
||||
// Ignore miscibility effects (no dissolved gas) for now!
|
||||
const V Rs = V::Zero(nc, 1);
|
||||
state.Rs = ADB::constant(Rs, bpat);
|
||||
|
||||
return state;
|
||||
}
|
||||
|
||||
FullyImplicitBlackoilSolver::SolutionState
|
||||
FullyImplicitBlackoilSolver::variableState(const BlackoilState& x)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = x.numPhases();
|
||||
|
||||
std::vector<V> vars0;
|
||||
vars0.reserve(np);
|
||||
|
||||
assert (not x.pressure().empty());
|
||||
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
|
||||
vars0.push_back(p);
|
||||
|
||||
assert (not x.saturation().empty());
|
||||
const DataBlock s =
|
||||
Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
|
||||
|
||||
const Opm::PhaseUsage pu = fluid_.phaseUsage();
|
||||
|
||||
if (active_[ Water ]) {
|
||||
const V sw = s.col(pu.phase_pos[ Water ]);
|
||||
vars0.push_back(sw);
|
||||
}
|
||||
if (active_[ Gas ]) {
|
||||
const V sg = s.col(pu.phase_pos[ Gas ]);
|
||||
vars0.push_back(sg);
|
||||
}
|
||||
|
||||
std::vector<ADB> vars = ADB::variables(vars0);
|
||||
|
||||
SolutionState state(np);
|
||||
state.pressure = vars[0];
|
||||
|
||||
const std::vector<int>& bpat = vars[0].blockPattern();
|
||||
{
|
||||
ADB so = ADB::constant(V::Ones(nc, 1), bpat);
|
||||
int off = 1; // First saturation variable at offset 1.
|
||||
|
||||
if (active_[ Water ]) {
|
||||
ADB& sw = vars[ off++ ];
|
||||
state.saturation[ pu.phase_pos[ Water ] ] = sw;
|
||||
|
||||
so = so - sw;
|
||||
}
|
||||
if (active_[ Gas ]) {
|
||||
ADB& sg = vars[ off++ ];
|
||||
state.saturation[ pu.phase_pos[ Gas ] ] = sg;
|
||||
|
||||
so = so - sg;
|
||||
}
|
||||
if (active_[ Oil ]) {
|
||||
state.saturation[ pu.phase_pos[ Oil ] ] = so;
|
||||
}
|
||||
}
|
||||
|
||||
// Ignore miscibility effects (no dissolved gas) for now!
|
||||
V Rs = V::Zero(nc, 1);
|
||||
state.Rs = ADB::constant(Rs, bpat);
|
||||
|
||||
return state;
|
||||
}
|
||||
|
||||
void
|
||||
FullyImplicitBlackoilSolver::computeAccum(const SolutionState& state,
|
||||
const int aix )
|
||||
{
|
||||
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
||||
|
||||
const ADB& press = state.pressure;
|
||||
const std::vector<ADB>& sat = state.saturation;
|
||||
|
||||
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
||||
for (int phase = 0; phase < maxnp; ++phase) {
|
||||
if (active_[ phase ]) {
|
||||
const int pos = pu.phase_pos[ phase ];
|
||||
rq_[pos].b = fluidReciprocFVF(phase, press, cells_);
|
||||
rq_[pos].accum[aix] = rq_[pos].b * sat[pos];
|
||||
}
|
||||
}
|
||||
|
||||
if (active_[ Oil ] && active_[ Gas ]) {
|
||||
// Account for gas dissolved in oil.
|
||||
const int po = pu.phase_pos[ Oil ];
|
||||
const int pg = pu.phase_pos[ Gas ];
|
||||
|
||||
rq_[pg].accum[aix] += state.Rs * rq_[po].accum[aix];
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
FullyImplicitBlackoilSolver::assemble(const V& dtpv, const BlackoilState& x)
|
||||
{
|
||||
const V transi = subset(geo_.transmissibility(),
|
||||
ops_.internal_faces);
|
||||
|
||||
const SolutionState state = variableState(x);
|
||||
const std::vector<ADB> kr = computeRelPerm(state);
|
||||
|
||||
computeAccum(state, 1);
|
||||
|
||||
for (int phase = 0; phase < fluid_.numPhases(); ++phase) {
|
||||
computeMassFlux(phase, transi, kr, state);
|
||||
|
||||
residual_.reservoir[ phase ] =
|
||||
dtpv*(rq_[phase].accum[1] - rq_[phase].accum[0])
|
||||
+ ops_.div*rq_[phase].mflux;
|
||||
}
|
||||
|
||||
if (active_[ Oil ] && active_[ Gas ]) {
|
||||
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
|
||||
const UpwindSelector<double> upwind(grid_, ops_,
|
||||
rq_[po].head.value());
|
||||
const ADB Rs = upwind.select(state.Rs);
|
||||
|
||||
residual_.reservoir[ Gas ] += ops_.div * (Rs * rq_[po].mflux);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<ADB>
|
||||
FullyImplicitBlackoilSolver::computeRelPerm(const SolutionState& state)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const std::vector<int>& bpat = state.pressure.blockPattern();
|
||||
|
||||
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
|
||||
|
||||
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
||||
const ADB sw = (active_[ Water ]
|
||||
? state.saturation[ pu.phase_pos[ Water ] ]
|
||||
: null);
|
||||
|
||||
const ADB so = (active_[ Oil ]
|
||||
? state.saturation[ pu.phase_pos[ Oil ] ]
|
||||
: null);
|
||||
|
||||
const ADB sg = (active_[ Gas ]
|
||||
? state.saturation[ pu.phase_pos[ Gas ] ]
|
||||
: null);
|
||||
|
||||
return fluid_.relperm(sw, so, sg, cells_);
|
||||
}
|
||||
|
||||
void
|
||||
FullyImplicitBlackoilSolver::computeMassFlux(const int actph ,
|
||||
const V& transi,
|
||||
const std::vector<ADB>& kr ,
|
||||
const SolutionState& state )
|
||||
{
|
||||
const int phase = canph_[ actph ];
|
||||
const ADB mu = fluidViscosity(phase, state.pressure, cells_);
|
||||
|
||||
rq_[ actph ].mob = kr[ phase ] / mu;
|
||||
|
||||
const ADB rho = fluidDensity(phase, state.pressure, cells_);
|
||||
const ADB gflux = grav_ * rho;
|
||||
|
||||
ADB& head = rq_[ actph ].head;
|
||||
head = transi*(ops_.ngrad * state.pressure) + gflux;
|
||||
|
||||
UpwindSelector<double> upwind(grid_, ops_, head.value());
|
||||
|
||||
const ADB& b = rq_[ actph ].b;
|
||||
const ADB& mob = rq_[ actph ].mob;
|
||||
rq_[ actph ].mflux = upwind.select(b * mob) * head;
|
||||
}
|
||||
|
||||
ADB
|
||||
FullyImplicitBlackoilSolver::fluidViscosity(const int phase,
|
||||
const ADB& p ,
|
||||
const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.muWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.muOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.muGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
ADB
|
||||
FullyImplicitBlackoilSolver::fluidReciprocFVF(const int phase,
|
||||
const ADB& p ,
|
||||
const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.bWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.bOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.bGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
|
||||
ADB
|
||||
FullyImplicitBlackoilSolver::fluidDensity(const int phase,
|
||||
const ADB& p ,
|
||||
const std::vector<int>& cells) const
|
||||
{
|
||||
const double* rhos = fluid_.surfaceDensity();
|
||||
ADB b = fluidReciprocFVF(phase, p, cells);
|
||||
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
||||
return rho;
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
|
@ -24,104 +24,6 @@
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||
|
||||
#include <opm/autodiff/GeoProps.hpp>
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
|
||||
#include <opm/core/grid.h>
|
||||
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
|
||||
namespace {
|
||||
std::vector<int>
|
||||
buildAllCells(const int nc)
|
||||
{
|
||||
std::vector<int> all_cells(nc);
|
||||
|
||||
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
||||
|
||||
return all_cells;
|
||||
}
|
||||
|
||||
template <class GeoProps>
|
||||
AutoDiff::ForwardBlock<double>::M
|
||||
gravityOperator(const UnstructuredGrid& grid,
|
||||
const HelperOps& ops ,
|
||||
const GeoProps& geo )
|
||||
{
|
||||
const int nc = grid.number_of_cells;
|
||||
|
||||
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
|
||||
for (int c = 0, i = 0; c < nc; ++c) {
|
||||
for (; i < grid.cell_facepos[c + 1]; ++i) {
|
||||
const int f = grid.cell_faces[ i ];
|
||||
const int p = 0 + (grid.face_cells[2*f + 0] != c);
|
||||
|
||||
f2hf[2*f + p] = i;
|
||||
}
|
||||
}
|
||||
|
||||
typedef AutoDiff::ForwardBlock<double>::V V;
|
||||
typedef AutoDiff::ForwardBlock<double>::M M;
|
||||
|
||||
const V& gpot = geo.gravityPotential();
|
||||
const V& trans = geo.transmissibility();
|
||||
|
||||
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
|
||||
|
||||
typedef Eigen::Triplet<double> Tri;
|
||||
std::vector<Tri> grav; grav.reserve(2 * ni);
|
||||
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
|
||||
const int f = ops.internal_faces[ i ];
|
||||
const int c1 = grid.face_cells[2*f + 0];
|
||||
const int c2 = grid.face_cells[2*f + 1];
|
||||
|
||||
assert ((c1 >= 0) && (c2 >= 0));
|
||||
|
||||
const double dG1 = gpot[ f2hf[2*f + 0] ];
|
||||
const double dG2 = gpot[ f2hf[2*f + 1] ];
|
||||
const double t = trans[ f ];
|
||||
|
||||
grav.push_back(Tri(i, c1, t * dG1));
|
||||
grav.push_back(Tri(i, c2, - t * dG2));
|
||||
}
|
||||
|
||||
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
|
||||
|
||||
return G;
|
||||
}
|
||||
|
||||
template <class PU>
|
||||
std::vector<bool>
|
||||
activePhases(const PU& pu)
|
||||
{
|
||||
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
||||
std::vector<bool> active(maxnp, false);
|
||||
|
||||
for (int p = 0; p < pu.MaxNumPhases; ++p) {
|
||||
active[ p ] = pu.phase_used[ p ] != 0;
|
||||
}
|
||||
|
||||
return active;
|
||||
}
|
||||
|
||||
template <class PU>
|
||||
std::vector<int>
|
||||
active2Canonical(const PU& pu)
|
||||
{
|
||||
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
||||
std::vector<int> act2can(maxnp, -1);
|
||||
|
||||
for (int phase = 0; phase < maxnp; ++phase) {
|
||||
if (pu.phase_used[ phase ]) {
|
||||
act2can[ pu.phase_pos[ phase ] ] = phase;
|
||||
}
|
||||
}
|
||||
|
||||
return act2can;
|
||||
}
|
||||
} // Anonymous namespace
|
||||
|
||||
|
||||
struct UnstructuredGrid;
|
||||
struct Wells;
|
||||
|
||||
@ -132,67 +34,26 @@ namespace Opm {
|
||||
class BlackoilState;
|
||||
class WellState;
|
||||
|
||||
|
||||
/// A fully implicit TPFA-based solver for the black-oil problem.
|
||||
class FullyImplicitBlackoilSolver
|
||||
{
|
||||
public:
|
||||
FullyImplicitBlackoilSolver(const UnstructuredGrid& grid ,
|
||||
const BlackoilPropsAdInterface& fluid,
|
||||
const DerivedGeology& geo )
|
||||
: grid_ (grid)
|
||||
, fluid_ (fluid)
|
||||
, geo_ (geo)
|
||||
, active_(activePhases(fluid.phaseUsage()))
|
||||
, canph_ (active2Canonical(fluid.phaseUsage()))
|
||||
, cells_ (buildAllCells(grid.number_of_cells))
|
||||
, ops_ (grid)
|
||||
, grav_ (gravityOperator(grid_, ops_, geo_))
|
||||
, rq_ (fluid.numPhases())
|
||||
{
|
||||
allocateResidual();
|
||||
}
|
||||
const DerivedGeology& geo );
|
||||
|
||||
/// Take a single forward step, modifiying
|
||||
/// state.pressure()
|
||||
/// state.faceflux()
|
||||
/// state.saturation()
|
||||
/// state.surfacevol()
|
||||
void
|
||||
step(const double dt,
|
||||
BlackoilState& x)
|
||||
{
|
||||
const V dtpv = geo_.poreVolume() / dt;
|
||||
|
||||
{
|
||||
const SolutionState state = constantState(x);
|
||||
computeAccum(state, 0);
|
||||
}
|
||||
|
||||
#if 0
|
||||
const double atol = 1.0e-15;
|
||||
const double rtol = 5.0e-10;
|
||||
const int maxit = 15;
|
||||
#endif
|
||||
|
||||
assemble(dtpv, x);
|
||||
|
||||
#if 0
|
||||
const double r0 = residualNorm();
|
||||
int it = 0;
|
||||
bool resTooLarge = r0 > atol;
|
||||
while (resTooLarge && (it < maxit)) {
|
||||
solveJacobianSystem(x);
|
||||
|
||||
assemble(dtpv, x);
|
||||
|
||||
const double r = residualNorm();
|
||||
|
||||
resTooLarge = (r > atol) && (r > rtol*r0);
|
||||
|
||||
it += 1;
|
||||
}
|
||||
|
||||
if (resTooLarge) {
|
||||
THROW("Failed to compute converge solution");
|
||||
}
|
||||
#endif
|
||||
}
|
||||
BlackoilState& state);
|
||||
|
||||
private:
|
||||
// Types and enums
|
||||
typedef AutoDiff::ForwardBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
@ -202,15 +63,7 @@ namespace Opm {
|
||||
Eigen::RowMajor> DataBlock;
|
||||
|
||||
struct ReservoirResidualQuant {
|
||||
ReservoirResidualQuant()
|
||||
: accum(2, ADB::null())
|
||||
, mflux( ADB::null())
|
||||
, b ( ADB::null())
|
||||
, head ( ADB::null())
|
||||
, mob ( ADB::null())
|
||||
{
|
||||
}
|
||||
|
||||
ReservoirResidualQuant();
|
||||
std::vector<ADB> accum; // Accumulations
|
||||
ADB mflux; // Mass flux (surface conditions)
|
||||
ADB b; // Reciprocal FVF
|
||||
@ -219,18 +72,17 @@ namespace Opm {
|
||||
};
|
||||
|
||||
struct SolutionState {
|
||||
SolutionState(const int np)
|
||||
: pressure ( ADB::null())
|
||||
, saturation(np, ADB::null())
|
||||
, Rs ( ADB::null())
|
||||
{
|
||||
}
|
||||
|
||||
SolutionState(const int np);
|
||||
ADB pressure;
|
||||
std::vector<ADB> saturation;
|
||||
ADB Rs;
|
||||
};
|
||||
|
||||
enum { Water = BlackoilPropsAdInterface::Water,
|
||||
Oil = BlackoilPropsAdInterface::Oil ,
|
||||
Gas = BlackoilPropsAdInterface::Gas };
|
||||
|
||||
// Member data
|
||||
const UnstructuredGrid& grid_;
|
||||
const BlackoilPropsAdInterface& fluid_;
|
||||
const DerivedGeology& geo_;
|
||||
@ -248,279 +100,46 @@ namespace Opm {
|
||||
std::vector<ADB> reservoir;
|
||||
} residual_;
|
||||
|
||||
enum { Water = BlackoilPropsAdInterface::Water,
|
||||
Oil = BlackoilPropsAdInterface::Oil ,
|
||||
Gas = BlackoilPropsAdInterface::Gas };
|
||||
|
||||
// Private methods.
|
||||
void
|
||||
allocateResidual()
|
||||
{
|
||||
residual_.reservoir.resize(fluid_.numPhases(), ADB::null());
|
||||
}
|
||||
allocateResidual();
|
||||
|
||||
SolutionState
|
||||
constantState(const BlackoilState& x)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = x.numPhases();
|
||||
|
||||
const std::vector<int> bpat(np, nc);
|
||||
|
||||
SolutionState state(np);
|
||||
|
||||
assert (not x.pressure().empty());
|
||||
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
|
||||
state.pressure = ADB::constant(p, bpat);
|
||||
|
||||
assert (not x.saturation().empty());
|
||||
const DataBlock s =
|
||||
Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
|
||||
|
||||
const Opm::PhaseUsage pu = fluid_.phaseUsage();
|
||||
|
||||
{
|
||||
V so = V::Ones(nc, 1);
|
||||
if (active_[ Water ]) {
|
||||
const int pos = pu.phase_pos[ Water ];
|
||||
const V sw = s.col(pos);
|
||||
so -= sw;
|
||||
|
||||
state.saturation[pos] = ADB::constant(sw, bpat);
|
||||
}
|
||||
if (active_[ Gas ]) {
|
||||
const int pos = pu.phase_pos[ Gas ];
|
||||
const V sg = s.col(pos);
|
||||
so -= sg;
|
||||
|
||||
state.saturation[pos] = ADB::constant(sg, bpat);
|
||||
}
|
||||
if (active_[ Oil ]) {
|
||||
const int pos = pu.phase_pos[ Oil ];
|
||||
state.saturation[pos] = ADB::constant(so, bpat);
|
||||
}
|
||||
}
|
||||
|
||||
// Ignore miscibility effects (no dissolved gas) for now!
|
||||
const V Rs = V::Zero(nc, 1);
|
||||
state.Rs = ADB::constant(Rs, bpat);
|
||||
|
||||
return state;
|
||||
}
|
||||
constantState(const BlackoilState& x);
|
||||
|
||||
SolutionState
|
||||
variableState(const BlackoilState& x)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const int np = x.numPhases();
|
||||
|
||||
std::vector<V> vars0;
|
||||
vars0.reserve(np);
|
||||
|
||||
assert (not x.pressure().empty());
|
||||
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
|
||||
vars0.push_back(p);
|
||||
|
||||
assert (not x.saturation().empty());
|
||||
const DataBlock s =
|
||||
Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
|
||||
|
||||
const Opm::PhaseUsage pu = fluid_.phaseUsage();
|
||||
|
||||
if (active_[ Water ]) {
|
||||
const V sw = s.col(pu.phase_pos[ Water ]);
|
||||
vars0.push_back(sw);
|
||||
}
|
||||
if (active_[ Gas ]) {
|
||||
const V sg = s.col(pu.phase_pos[ Gas ]);
|
||||
vars0.push_back(sg);
|
||||
}
|
||||
|
||||
std::vector<ADB> vars = ADB::variables(vars0);
|
||||
|
||||
SolutionState state(np);
|
||||
state.pressure = vars[0];
|
||||
|
||||
const std::vector<int>& bpat = vars[0].blockPattern();
|
||||
{
|
||||
ADB so = ADB::constant(V::Ones(nc, 1), bpat);
|
||||
int off = 1; // First saturation variable at offset 1.
|
||||
|
||||
if (active_[ Water ]) {
|
||||
ADB& sw = vars[ off++ ];
|
||||
state.saturation[ pu.phase_pos[ Water ] ] = sw;
|
||||
|
||||
so = so - sw;
|
||||
}
|
||||
if (active_[ Gas ]) {
|
||||
ADB& sg = vars[ off++ ];
|
||||
state.saturation[ pu.phase_pos[ Gas ] ] = sg;
|
||||
|
||||
so = so - sg;
|
||||
}
|
||||
if (active_[ Oil ]) {
|
||||
state.saturation[ pu.phase_pos[ Oil ] ] = so;
|
||||
}
|
||||
}
|
||||
|
||||
// Ignore miscibility effects (no dissolved gas) for now!
|
||||
V Rs = V::Zero(nc, 1);
|
||||
state.Rs = ADB::constant(Rs, bpat);
|
||||
|
||||
return state;
|
||||
}
|
||||
variableState(const BlackoilState& x);
|
||||
|
||||
void
|
||||
computeAccum(const SolutionState& state,
|
||||
const int aix )
|
||||
{
|
||||
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
||||
|
||||
const ADB& press = state.pressure;
|
||||
const std::vector<ADB>& sat = state.saturation;
|
||||
|
||||
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
||||
for (int phase = 0; phase < maxnp; ++phase) {
|
||||
if (active_[ phase ]) {
|
||||
const int pos = pu.phase_pos[ phase ];
|
||||
rq_[pos].b = fluidReciprocFVF(phase, press, cells_);
|
||||
rq_[pos].accum[aix] = rq_[pos].b * sat[pos];
|
||||
}
|
||||
}
|
||||
|
||||
if (active_[ Oil ] && active_[ Gas ]) {
|
||||
// Account for gas dissolved in oil.
|
||||
const int po = pu.phase_pos[ Oil ];
|
||||
const int pg = pu.phase_pos[ Gas ];
|
||||
|
||||
rq_[pg].accum[aix] += state.Rs * rq_[po].accum[aix];
|
||||
}
|
||||
}
|
||||
const int aix );
|
||||
|
||||
void
|
||||
assemble(const V& dtpv, const BlackoilState& x)
|
||||
{
|
||||
const V transi = subset(geo_.transmissibility(),
|
||||
ops_.internal_faces);
|
||||
|
||||
const SolutionState state = variableState(x);
|
||||
const std::vector<ADB> kr = computeRelPerm(state);
|
||||
|
||||
computeAccum(state, 1);
|
||||
|
||||
for (int phase = 0; phase < fluid_.numPhases(); ++phase) {
|
||||
computeMassFlux(phase, transi, kr, state);
|
||||
|
||||
residual_.reservoir[ phase ] =
|
||||
dtpv*(rq_[phase].accum[1] - rq_[phase].accum[0])
|
||||
+ ops_.div*rq_[phase].mflux;
|
||||
}
|
||||
|
||||
if (active_[ Oil ] && active_[ Gas ]) {
|
||||
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
|
||||
const UpwindSelector<double> upwind(grid_, ops_,
|
||||
rq_[po].head.value());
|
||||
const ADB Rs = upwind.select(state.Rs);
|
||||
|
||||
residual_.reservoir[ Gas ] += ops_.div * (Rs * rq_[po].mflux);
|
||||
}
|
||||
}
|
||||
assemble(const V& dtpv, const BlackoilState& x);
|
||||
|
||||
std::vector<ADB>
|
||||
computeRelPerm(const SolutionState& state)
|
||||
{
|
||||
const int nc = grid_.number_of_cells;
|
||||
const std::vector<int>& bpat = state.pressure.blockPattern();
|
||||
|
||||
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
|
||||
|
||||
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
||||
const ADB sw = (active_[ Water ]
|
||||
? state.saturation[ pu.phase_pos[ Water ] ]
|
||||
: null);
|
||||
|
||||
const ADB so = (active_[ Oil ]
|
||||
? state.saturation[ pu.phase_pos[ Oil ] ]
|
||||
: null);
|
||||
|
||||
const ADB sg = (active_[ Gas ]
|
||||
? state.saturation[ pu.phase_pos[ Gas ] ]
|
||||
: null);
|
||||
|
||||
return fluid_.relperm(sw, so, sg, cells_);
|
||||
}
|
||||
computeRelPerm(const SolutionState& state);
|
||||
|
||||
void
|
||||
computeMassFlux(const int actph ,
|
||||
const V& transi,
|
||||
const std::vector<ADB>& kr ,
|
||||
const SolutionState& state )
|
||||
{
|
||||
const int phase = canph_[ actph ];
|
||||
const ADB mu = fluidViscosity(phase, state.pressure, cells_);
|
||||
|
||||
rq_[ actph ].mob = kr[ phase ] / mu;
|
||||
|
||||
const ADB rho = fluidDensity(phase, state.pressure, cells_);
|
||||
const ADB gflux = grav_ * rho;
|
||||
|
||||
ADB& head = rq_[ actph ].head;
|
||||
head = transi*(ops_.ngrad * state.pressure) + gflux;
|
||||
|
||||
UpwindSelector<double> upwind(grid_, ops_, head.value());
|
||||
|
||||
const ADB& b = rq_[ actph ].b;
|
||||
const ADB& mob = rq_[ actph ].mob;
|
||||
rq_[ actph ].mflux = upwind.select(b * mob) * head;
|
||||
}
|
||||
const SolutionState& state );
|
||||
|
||||
ADB
|
||||
fluidViscosity(const int phase,
|
||||
const ADB& p ,
|
||||
const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.muWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.muOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.muGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
const std::vector<int>& cells) const;
|
||||
|
||||
ADB
|
||||
fluidReciprocFVF(const int phase,
|
||||
const ADB& p ,
|
||||
const std::vector<int>& cells) const
|
||||
{
|
||||
switch (phase) {
|
||||
case Water:
|
||||
return fluid_.bWat(p, cells);
|
||||
case Oil: {
|
||||
ADB dummy_rs = V::Zero(p.size(), 1) * p;
|
||||
return fluid_.bOil(p, dummy_rs, cells);
|
||||
}
|
||||
case Gas:
|
||||
return fluid_.bGas(p, cells);
|
||||
default:
|
||||
THROW("Unknown phase index " << phase);
|
||||
}
|
||||
}
|
||||
const std::vector<int>& cells) const;
|
||||
|
||||
ADB
|
||||
fluidDensity(const int phase,
|
||||
const ADB& p ,
|
||||
const std::vector<int>& cells) const
|
||||
{
|
||||
const double* rhos = fluid_.surfaceDensity();
|
||||
ADB b = fluidReciprocFVF(phase, p, cells);
|
||||
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
||||
return rho;
|
||||
}
|
||||
const std::vector<int>& cells) const;
|
||||
};
|
||||
} // namespace Opm
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user