Moved implementation to .cpp file.

This commit is contained in:
Atgeirr Flø Rasmussen 2013-05-24 11:14:05 +02:00
parent 3d008c033d
commit e367f08732
2 changed files with 491 additions and 409 deletions

View File

@ -18,3 +18,466 @@
*/
#include <opm/autodiff/FullyImplicitBlackoilSolver.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/grid.h>
#include <opm/core/utility/ErrorMacros.hpp>
typedef AutoDiff::ForwardBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
namespace {
std::vector<int>
buildAllCells(const int nc)
{
std::vector<int> all_cells(nc);
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
return all_cells;
}
template <class GeoProps>
AutoDiff::ForwardBlock<double>::M
gravityOperator(const UnstructuredGrid& grid,
const HelperOps& ops ,
const GeoProps& geo )
{
const int nc = grid.number_of_cells;
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
for (int c = 0, i = 0; c < nc; ++c) {
for (; i < grid.cell_facepos[c + 1]; ++i) {
const int f = grid.cell_faces[ i ];
const int p = 0 + (grid.face_cells[2*f + 0] != c);
f2hf[2*f + p] = i;
}
}
typedef AutoDiff::ForwardBlock<double>::V V;
typedef AutoDiff::ForwardBlock<double>::M M;
const V& gpot = geo.gravityPotential();
const V& trans = geo.transmissibility();
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
typedef Eigen::Triplet<double> Tri;
std::vector<Tri> grav; grav.reserve(2 * ni);
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
const int f = ops.internal_faces[ i ];
const int c1 = grid.face_cells[2*f + 0];
const int c2 = grid.face_cells[2*f + 1];
assert ((c1 >= 0) && (c2 >= 0));
const double dG1 = gpot[ f2hf[2*f + 0] ];
const double dG2 = gpot[ f2hf[2*f + 1] ];
const double t = trans[ f ];
grav.push_back(Tri(i, c1, t * dG1));
grav.push_back(Tri(i, c2, - t * dG2));
}
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
return G;
}
template <class PU>
std::vector<bool>
activePhases(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<bool> active(maxnp, false);
for (int p = 0; p < pu.MaxNumPhases; ++p) {
active[ p ] = pu.phase_used[ p ] != 0;
}
return active;
}
template <class PU>
std::vector<int>
active2Canonical(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<int> act2can(maxnp, -1);
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[ phase ]) {
act2can[ pu.phase_pos[ phase ] ] = phase;
}
}
return act2can;
}
} // Anonymous namespace
namespace Opm {
FullyImplicitBlackoilSolver::FullyImplicitBlackoilSolver(const UnstructuredGrid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo )
: grid_ (grid)
, fluid_ (fluid)
, geo_ (geo)
, active_(activePhases(fluid.phaseUsage()))
, canph_ (active2Canonical(fluid.phaseUsage()))
, cells_ (buildAllCells(grid.number_of_cells))
, ops_ (grid)
, grav_ (gravityOperator(grid_, ops_, geo_))
, rq_ (fluid.numPhases())
{
allocateResidual();
}
void
FullyImplicitBlackoilSolver::step(const double dt,
BlackoilState& x)
{
const V dtpv = geo_.poreVolume() / dt;
{
const SolutionState state = constantState(x);
computeAccum(state, 0);
}
#if 0
const double atol = 1.0e-15;
const double rtol = 5.0e-10;
const int maxit = 15;
#endif
assemble(dtpv, x);
#if 0
const double r0 = residualNorm();
int it = 0;
bool resTooLarge = r0 > atol;
while (resTooLarge && (it < maxit)) {
solveJacobianSystem(x);
assemble(dtpv, x);
const double r = residualNorm();
resTooLarge = (r > atol) && (r > rtol*r0);
it += 1;
}
if (resTooLarge) {
THROW("Failed to compute converge solution");
}
#endif
}
FullyImplicitBlackoilSolver::ReservoirResidualQuant::ReservoirResidualQuant()
: accum(2, ADB::null())
, mflux( ADB::null())
, b ( ADB::null())
, head ( ADB::null())
, mob ( ADB::null())
{
}
FullyImplicitBlackoilSolver::SolutionState::SolutionState(const int np)
: pressure ( ADB::null())
, saturation(np, ADB::null())
, Rs ( ADB::null())
{
}
void
FullyImplicitBlackoilSolver::allocateResidual()
{
residual_.reservoir.resize(fluid_.numPhases(), ADB::null());
}
FullyImplicitBlackoilSolver::SolutionState
FullyImplicitBlackoilSolver::constantState(const BlackoilState& x)
{
const int nc = grid_.number_of_cells;
const int np = x.numPhases();
const std::vector<int> bpat(np, nc);
SolutionState state(np);
assert (not x.pressure().empty());
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
state.pressure = ADB::constant(p, bpat);
assert (not x.saturation().empty());
const DataBlock s =
Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
const Opm::PhaseUsage pu = fluid_.phaseUsage();
{
V so = V::Ones(nc, 1);
if (active_[ Water ]) {
const int pos = pu.phase_pos[ Water ];
const V sw = s.col(pos);
so -= sw;
state.saturation[pos] = ADB::constant(sw, bpat);
}
if (active_[ Gas ]) {
const int pos = pu.phase_pos[ Gas ];
const V sg = s.col(pos);
so -= sg;
state.saturation[pos] = ADB::constant(sg, bpat);
}
if (active_[ Oil ]) {
const int pos = pu.phase_pos[ Oil ];
state.saturation[pos] = ADB::constant(so, bpat);
}
}
// Ignore miscibility effects (no dissolved gas) for now!
const V Rs = V::Zero(nc, 1);
state.Rs = ADB::constant(Rs, bpat);
return state;
}
FullyImplicitBlackoilSolver::SolutionState
FullyImplicitBlackoilSolver::variableState(const BlackoilState& x)
{
const int nc = grid_.number_of_cells;
const int np = x.numPhases();
std::vector<V> vars0;
vars0.reserve(np);
assert (not x.pressure().empty());
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
vars0.push_back(p);
assert (not x.saturation().empty());
const DataBlock s =
Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
const Opm::PhaseUsage pu = fluid_.phaseUsage();
if (active_[ Water ]) {
const V sw = s.col(pu.phase_pos[ Water ]);
vars0.push_back(sw);
}
if (active_[ Gas ]) {
const V sg = s.col(pu.phase_pos[ Gas ]);
vars0.push_back(sg);
}
std::vector<ADB> vars = ADB::variables(vars0);
SolutionState state(np);
state.pressure = vars[0];
const std::vector<int>& bpat = vars[0].blockPattern();
{
ADB so = ADB::constant(V::Ones(nc, 1), bpat);
int off = 1; // First saturation variable at offset 1.
if (active_[ Water ]) {
ADB& sw = vars[ off++ ];
state.saturation[ pu.phase_pos[ Water ] ] = sw;
so = so - sw;
}
if (active_[ Gas ]) {
ADB& sg = vars[ off++ ];
state.saturation[ pu.phase_pos[ Gas ] ] = sg;
so = so - sg;
}
if (active_[ Oil ]) {
state.saturation[ pu.phase_pos[ Oil ] ] = so;
}
}
// Ignore miscibility effects (no dissolved gas) for now!
V Rs = V::Zero(nc, 1);
state.Rs = ADB::constant(Rs, bpat);
return state;
}
void
FullyImplicitBlackoilSolver::computeAccum(const SolutionState& state,
const int aix )
{
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& press = state.pressure;
const std::vector<ADB>& sat = state.saturation;
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
for (int phase = 0; phase < maxnp; ++phase) {
if (active_[ phase ]) {
const int pos = pu.phase_pos[ phase ];
rq_[pos].b = fluidReciprocFVF(phase, press, cells_);
rq_[pos].accum[aix] = rq_[pos].b * sat[pos];
}
}
if (active_[ Oil ] && active_[ Gas ]) {
// Account for gas dissolved in oil.
const int po = pu.phase_pos[ Oil ];
const int pg = pu.phase_pos[ Gas ];
rq_[pg].accum[aix] += state.Rs * rq_[po].accum[aix];
}
}
void
FullyImplicitBlackoilSolver::assemble(const V& dtpv, const BlackoilState& x)
{
const V transi = subset(geo_.transmissibility(),
ops_.internal_faces);
const SolutionState state = variableState(x);
const std::vector<ADB> kr = computeRelPerm(state);
computeAccum(state, 1);
for (int phase = 0; phase < fluid_.numPhases(); ++phase) {
computeMassFlux(phase, transi, kr, state);
residual_.reservoir[ phase ] =
dtpv*(rq_[phase].accum[1] - rq_[phase].accum[0])
+ ops_.div*rq_[phase].mflux;
}
if (active_[ Oil ] && active_[ Gas ]) {
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
const UpwindSelector<double> upwind(grid_, ops_,
rq_[po].head.value());
const ADB Rs = upwind.select(state.Rs);
residual_.reservoir[ Gas ] += ops_.div * (Rs * rq_[po].mflux);
}
}
std::vector<ADB>
FullyImplicitBlackoilSolver::computeRelPerm(const SolutionState& state)
{
const int nc = grid_.number_of_cells;
const std::vector<int>& bpat = state.pressure.blockPattern();
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: null);
const ADB so = (active_[ Oil ]
? state.saturation[ pu.phase_pos[ Oil ] ]
: null);
const ADB sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: null);
return fluid_.relperm(sw, so, sg, cells_);
}
void
FullyImplicitBlackoilSolver::computeMassFlux(const int actph ,
const V& transi,
const std::vector<ADB>& kr ,
const SolutionState& state )
{
const int phase = canph_[ actph ];
const ADB mu = fluidViscosity(phase, state.pressure, cells_);
rq_[ actph ].mob = kr[ phase ] / mu;
const ADB rho = fluidDensity(phase, state.pressure, cells_);
const ADB gflux = grav_ * rho;
ADB& head = rq_[ actph ].head;
head = transi*(ops_.ngrad * state.pressure) + gflux;
UpwindSelector<double> upwind(grid_, ops_, head.value());
const ADB& b = rq_[ actph ].b;
const ADB& mob = rq_[ actph ].mob;
rq_[ actph ].mflux = upwind.select(b * mob) * head;
}
ADB
FullyImplicitBlackoilSolver::fluidViscosity(const int phase,
const ADB& p ,
const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.muWat(p, cells);
case Oil: {
ADB dummy_rs = V::Zero(p.size(), 1) * p;
return fluid_.muOil(p, dummy_rs, cells);
}
case Gas:
return fluid_.muGas(p, cells);
default:
THROW("Unknown phase index " << phase);
}
}
ADB
FullyImplicitBlackoilSolver::fluidReciprocFVF(const int phase,
const ADB& p ,
const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.bWat(p, cells);
case Oil: {
ADB dummy_rs = V::Zero(p.size(), 1) * p;
return fluid_.bOil(p, dummy_rs, cells);
}
case Gas:
return fluid_.bGas(p, cells);
default:
THROW("Unknown phase index " << phase);
}
}
ADB
FullyImplicitBlackoilSolver::fluidDensity(const int phase,
const ADB& p ,
const std::vector<int>& cells) const
{
const double* rhos = fluid_.surfaceDensity();
ADB b = fluidReciprocFVF(phase, p, cells);
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
return rho;
}
} // namespace Opm

View File

@ -24,104 +24,6 @@
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/grid.h>
#include <opm/core/utility/ErrorMacros.hpp>
namespace {
std::vector<int>
buildAllCells(const int nc)
{
std::vector<int> all_cells(nc);
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
return all_cells;
}
template <class GeoProps>
AutoDiff::ForwardBlock<double>::M
gravityOperator(const UnstructuredGrid& grid,
const HelperOps& ops ,
const GeoProps& geo )
{
const int nc = grid.number_of_cells;
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
for (int c = 0, i = 0; c < nc; ++c) {
for (; i < grid.cell_facepos[c + 1]; ++i) {
const int f = grid.cell_faces[ i ];
const int p = 0 + (grid.face_cells[2*f + 0] != c);
f2hf[2*f + p] = i;
}
}
typedef AutoDiff::ForwardBlock<double>::V V;
typedef AutoDiff::ForwardBlock<double>::M M;
const V& gpot = geo.gravityPotential();
const V& trans = geo.transmissibility();
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
typedef Eigen::Triplet<double> Tri;
std::vector<Tri> grav; grav.reserve(2 * ni);
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
const int f = ops.internal_faces[ i ];
const int c1 = grid.face_cells[2*f + 0];
const int c2 = grid.face_cells[2*f + 1];
assert ((c1 >= 0) && (c2 >= 0));
const double dG1 = gpot[ f2hf[2*f + 0] ];
const double dG2 = gpot[ f2hf[2*f + 1] ];
const double t = trans[ f ];
grav.push_back(Tri(i, c1, t * dG1));
grav.push_back(Tri(i, c2, - t * dG2));
}
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
return G;
}
template <class PU>
std::vector<bool>
activePhases(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<bool> active(maxnp, false);
for (int p = 0; p < pu.MaxNumPhases; ++p) {
active[ p ] = pu.phase_used[ p ] != 0;
}
return active;
}
template <class PU>
std::vector<int>
active2Canonical(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<int> act2can(maxnp, -1);
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[ phase ]) {
act2can[ pu.phase_pos[ phase ] ] = phase;
}
}
return act2can;
}
} // Anonymous namespace
struct UnstructuredGrid;
struct Wells;
@ -132,67 +34,26 @@ namespace Opm {
class BlackoilState;
class WellState;
/// A fully implicit TPFA-based solver for the black-oil problem.
class FullyImplicitBlackoilSolver
{
public:
FullyImplicitBlackoilSolver(const UnstructuredGrid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo )
: grid_ (grid)
, fluid_ (fluid)
, geo_ (geo)
, active_(activePhases(fluid.phaseUsage()))
, canph_ (active2Canonical(fluid.phaseUsage()))
, cells_ (buildAllCells(grid.number_of_cells))
, ops_ (grid)
, grav_ (gravityOperator(grid_, ops_, geo_))
, rq_ (fluid.numPhases())
{
allocateResidual();
}
const DerivedGeology& geo );
/// Take a single forward step, modifiying
/// state.pressure()
/// state.faceflux()
/// state.saturation()
/// state.surfacevol()
void
step(const double dt,
BlackoilState& x)
{
const V dtpv = geo_.poreVolume() / dt;
{
const SolutionState state = constantState(x);
computeAccum(state, 0);
}
#if 0
const double atol = 1.0e-15;
const double rtol = 5.0e-10;
const int maxit = 15;
#endif
assemble(dtpv, x);
#if 0
const double r0 = residualNorm();
int it = 0;
bool resTooLarge = r0 > atol;
while (resTooLarge && (it < maxit)) {
solveJacobianSystem(x);
assemble(dtpv, x);
const double r = residualNorm();
resTooLarge = (r > atol) && (r > rtol*r0);
it += 1;
}
if (resTooLarge) {
THROW("Failed to compute converge solution");
}
#endif
}
BlackoilState& state);
private:
// Types and enums
typedef AutoDiff::ForwardBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
@ -202,15 +63,7 @@ namespace Opm {
Eigen::RowMajor> DataBlock;
struct ReservoirResidualQuant {
ReservoirResidualQuant()
: accum(2, ADB::null())
, mflux( ADB::null())
, b ( ADB::null())
, head ( ADB::null())
, mob ( ADB::null())
{
}
ReservoirResidualQuant();
std::vector<ADB> accum; // Accumulations
ADB mflux; // Mass flux (surface conditions)
ADB b; // Reciprocal FVF
@ -219,18 +72,17 @@ namespace Opm {
};
struct SolutionState {
SolutionState(const int np)
: pressure ( ADB::null())
, saturation(np, ADB::null())
, Rs ( ADB::null())
{
}
SolutionState(const int np);
ADB pressure;
std::vector<ADB> saturation;
ADB Rs;
};
enum { Water = BlackoilPropsAdInterface::Water,
Oil = BlackoilPropsAdInterface::Oil ,
Gas = BlackoilPropsAdInterface::Gas };
// Member data
const UnstructuredGrid& grid_;
const BlackoilPropsAdInterface& fluid_;
const DerivedGeology& geo_;
@ -248,279 +100,46 @@ namespace Opm {
std::vector<ADB> reservoir;
} residual_;
enum { Water = BlackoilPropsAdInterface::Water,
Oil = BlackoilPropsAdInterface::Oil ,
Gas = BlackoilPropsAdInterface::Gas };
// Private methods.
void
allocateResidual()
{
residual_.reservoir.resize(fluid_.numPhases(), ADB::null());
}
allocateResidual();
SolutionState
constantState(const BlackoilState& x)
{
const int nc = grid_.number_of_cells;
const int np = x.numPhases();
const std::vector<int> bpat(np, nc);
SolutionState state(np);
assert (not x.pressure().empty());
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
state.pressure = ADB::constant(p, bpat);
assert (not x.saturation().empty());
const DataBlock s =
Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
const Opm::PhaseUsage pu = fluid_.phaseUsage();
{
V so = V::Ones(nc, 1);
if (active_[ Water ]) {
const int pos = pu.phase_pos[ Water ];
const V sw = s.col(pos);
so -= sw;
state.saturation[pos] = ADB::constant(sw, bpat);
}
if (active_[ Gas ]) {
const int pos = pu.phase_pos[ Gas ];
const V sg = s.col(pos);
so -= sg;
state.saturation[pos] = ADB::constant(sg, bpat);
}
if (active_[ Oil ]) {
const int pos = pu.phase_pos[ Oil ];
state.saturation[pos] = ADB::constant(so, bpat);
}
}
// Ignore miscibility effects (no dissolved gas) for now!
const V Rs = V::Zero(nc, 1);
state.Rs = ADB::constant(Rs, bpat);
return state;
}
constantState(const BlackoilState& x);
SolutionState
variableState(const BlackoilState& x)
{
const int nc = grid_.number_of_cells;
const int np = x.numPhases();
std::vector<V> vars0;
vars0.reserve(np);
assert (not x.pressure().empty());
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
vars0.push_back(p);
assert (not x.saturation().empty());
const DataBlock s =
Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
const Opm::PhaseUsage pu = fluid_.phaseUsage();
if (active_[ Water ]) {
const V sw = s.col(pu.phase_pos[ Water ]);
vars0.push_back(sw);
}
if (active_[ Gas ]) {
const V sg = s.col(pu.phase_pos[ Gas ]);
vars0.push_back(sg);
}
std::vector<ADB> vars = ADB::variables(vars0);
SolutionState state(np);
state.pressure = vars[0];
const std::vector<int>& bpat = vars[0].blockPattern();
{
ADB so = ADB::constant(V::Ones(nc, 1), bpat);
int off = 1; // First saturation variable at offset 1.
if (active_[ Water ]) {
ADB& sw = vars[ off++ ];
state.saturation[ pu.phase_pos[ Water ] ] = sw;
so = so - sw;
}
if (active_[ Gas ]) {
ADB& sg = vars[ off++ ];
state.saturation[ pu.phase_pos[ Gas ] ] = sg;
so = so - sg;
}
if (active_[ Oil ]) {
state.saturation[ pu.phase_pos[ Oil ] ] = so;
}
}
// Ignore miscibility effects (no dissolved gas) for now!
V Rs = V::Zero(nc, 1);
state.Rs = ADB::constant(Rs, bpat);
return state;
}
variableState(const BlackoilState& x);
void
computeAccum(const SolutionState& state,
const int aix )
{
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& press = state.pressure;
const std::vector<ADB>& sat = state.saturation;
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
for (int phase = 0; phase < maxnp; ++phase) {
if (active_[ phase ]) {
const int pos = pu.phase_pos[ phase ];
rq_[pos].b = fluidReciprocFVF(phase, press, cells_);
rq_[pos].accum[aix] = rq_[pos].b * sat[pos];
}
}
if (active_[ Oil ] && active_[ Gas ]) {
// Account for gas dissolved in oil.
const int po = pu.phase_pos[ Oil ];
const int pg = pu.phase_pos[ Gas ];
rq_[pg].accum[aix] += state.Rs * rq_[po].accum[aix];
}
}
const int aix );
void
assemble(const V& dtpv, const BlackoilState& x)
{
const V transi = subset(geo_.transmissibility(),
ops_.internal_faces);
const SolutionState state = variableState(x);
const std::vector<ADB> kr = computeRelPerm(state);
computeAccum(state, 1);
for (int phase = 0; phase < fluid_.numPhases(); ++phase) {
computeMassFlux(phase, transi, kr, state);
residual_.reservoir[ phase ] =
dtpv*(rq_[phase].accum[1] - rq_[phase].accum[0])
+ ops_.div*rq_[phase].mflux;
}
if (active_[ Oil ] && active_[ Gas ]) {
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
const UpwindSelector<double> upwind(grid_, ops_,
rq_[po].head.value());
const ADB Rs = upwind.select(state.Rs);
residual_.reservoir[ Gas ] += ops_.div * (Rs * rq_[po].mflux);
}
}
assemble(const V& dtpv, const BlackoilState& x);
std::vector<ADB>
computeRelPerm(const SolutionState& state)
{
const int nc = grid_.number_of_cells;
const std::vector<int>& bpat = state.pressure.blockPattern();
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: null);
const ADB so = (active_[ Oil ]
? state.saturation[ pu.phase_pos[ Oil ] ]
: null);
const ADB sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: null);
return fluid_.relperm(sw, so, sg, cells_);
}
computeRelPerm(const SolutionState& state);
void
computeMassFlux(const int actph ,
const V& transi,
const std::vector<ADB>& kr ,
const SolutionState& state )
{
const int phase = canph_[ actph ];
const ADB mu = fluidViscosity(phase, state.pressure, cells_);
rq_[ actph ].mob = kr[ phase ] / mu;
const ADB rho = fluidDensity(phase, state.pressure, cells_);
const ADB gflux = grav_ * rho;
ADB& head = rq_[ actph ].head;
head = transi*(ops_.ngrad * state.pressure) + gflux;
UpwindSelector<double> upwind(grid_, ops_, head.value());
const ADB& b = rq_[ actph ].b;
const ADB& mob = rq_[ actph ].mob;
rq_[ actph ].mflux = upwind.select(b * mob) * head;
}
const SolutionState& state );
ADB
fluidViscosity(const int phase,
const ADB& p ,
const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.muWat(p, cells);
case Oil: {
ADB dummy_rs = V::Zero(p.size(), 1) * p;
return fluid_.muOil(p, dummy_rs, cells);
}
case Gas:
return fluid_.muGas(p, cells);
default:
THROW("Unknown phase index " << phase);
}
}
const std::vector<int>& cells) const;
ADB
fluidReciprocFVF(const int phase,
const ADB& p ,
const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.bWat(p, cells);
case Oil: {
ADB dummy_rs = V::Zero(p.size(), 1) * p;
return fluid_.bOil(p, dummy_rs, cells);
}
case Gas:
return fluid_.bGas(p, cells);
default:
THROW("Unknown phase index " << phase);
}
}
const std::vector<int>& cells) const;
ADB
fluidDensity(const int phase,
const ADB& p ,
const std::vector<int>& cells) const
{
const double* rhos = fluid_.surfaceDensity();
ADB b = fluidReciprocFVF(phase, p, cells);
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
return rho;
}
const std::vector<int>& cells) const;
};
} // namespace Opm