mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge remote-tracking branch 'atgeirr/master'
This commit is contained in:
commit
e4cbc2c7f2
137
sim_simple.cpp
137
sim_simple.cpp
@ -110,6 +110,43 @@ struct HelperOps
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/// Returns fw(sw).
|
||||||
|
template <class ADB>
|
||||||
|
ADB fluxFunc(const Opm::IncompPropertiesInterface& props,
|
||||||
|
const std::vector<int>& cells,
|
||||||
|
const typename ADB::V& sw)
|
||||||
|
{
|
||||||
|
typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol;
|
||||||
|
typedef Eigen::Array<double, Eigen::Dynamic, 4, Eigen::RowMajor> FourCol;
|
||||||
|
typedef typename ADB::V V;
|
||||||
|
typedef typename ADB::M M;
|
||||||
|
const int nc = props.numCells();
|
||||||
|
TwoCol s(nc, 2);
|
||||||
|
s.leftCols<1>() = sw;
|
||||||
|
s.rightCols<1>() = 1.0 - s.leftCols<1>();
|
||||||
|
TwoCol kr(nc, 2);
|
||||||
|
FourCol dkr(nc, 4);
|
||||||
|
props.relperm(nc, s.data(), cells.data(), kr.data(), dkr.data());
|
||||||
|
V krw = kr.leftCols<1>();
|
||||||
|
V kro = kr.rightCols<1>();
|
||||||
|
V dkrw = dkr.leftCols<1>(); // Left column is top-left of dkr/ds 2x2 matrix.
|
||||||
|
V dkro = -dkr.rightCols<1>(); // Right column is bottom-right of dkr/ds 2x2 matrix.
|
||||||
|
M krwjac(nc,nc);
|
||||||
|
M krojac(nc,nc);
|
||||||
|
auto sizes = Eigen::ArrayXi::Ones(nc);
|
||||||
|
krwjac.reserve(sizes);
|
||||||
|
krojac.reserve(sizes);
|
||||||
|
for (int c = 0; c < nc; ++c) {
|
||||||
|
krwjac.insert(c,c) = dkrw(c);
|
||||||
|
krojac.insert(c,c) = dkro(c);
|
||||||
|
}
|
||||||
|
const double* mu = props.viscosity();
|
||||||
|
ADB mw_ad = ADB::function(krw/mu[0], { krwjac/mu[0] });
|
||||||
|
ADB mo_ad = ADB::function(kro/mu[1], { krojac/mu[1] });
|
||||||
|
ADB fw = mw_ad / (mw_ad + mo_ad);
|
||||||
|
// std::cout << mw_ad << mo_ad << (mw_ad + mo_ad) << fw;
|
||||||
|
return fw;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
int main()
|
int main()
|
||||||
@ -120,14 +157,24 @@ int main()
|
|||||||
|
|
||||||
Opm::time::StopWatch clock;
|
Opm::time::StopWatch clock;
|
||||||
clock.start();
|
clock.start();
|
||||||
Opm::GridManager gm(50, 50, 10);
|
Opm::GridManager gm(3,3);//(50, 50, 10);
|
||||||
const UnstructuredGrid& grid = *gm.c_grid();
|
const UnstructuredGrid& grid = *gm.c_grid();
|
||||||
using namespace Opm::unit;
|
using namespace Opm::unit;
|
||||||
using namespace Opm::prefix;
|
using namespace Opm::prefix;
|
||||||
Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Quadratic,
|
// Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
|
||||||
{ 1000.0, 800.0 },
|
// { 1000.0, 800.0 },
|
||||||
{ 1.0*centi*Poise, 5.0*centi*Poise },
|
// { 1.0*centi*Poise, 5.0*centi*Poise },
|
||||||
0.2, 100*milli*darcy,
|
// 0.2, 100*milli*darcy,
|
||||||
|
// grid.dimensions, grid.number_of_cells);
|
||||||
|
// Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
|
||||||
|
// { 1000.0, 1000.0 },
|
||||||
|
// { 1.0, 1.0 },
|
||||||
|
// 1.0, 1.0,
|
||||||
|
// grid.dimensions, grid.number_of_cells);
|
||||||
|
Opm::IncompPropertiesBasic props(2, Opm::SaturationPropsBasic::Linear,
|
||||||
|
{ 1000.0, 1000.0 },
|
||||||
|
{ 1.0, 30.0 },
|
||||||
|
1.0, 1.0,
|
||||||
grid.dimensions, grid.number_of_cells);
|
grid.dimensions, grid.number_of_cells);
|
||||||
std::vector<double> htrans(grid.cell_facepos[grid.number_of_cells]);
|
std::vector<double> htrans(grid.cell_facepos[grid.number_of_cells]);
|
||||||
tpfa_htrans_compute((UnstructuredGrid*)&grid, props.permeability(), htrans.data());
|
tpfa_htrans_compute((UnstructuredGrid*)&grid, props.permeability(), htrans.data());
|
||||||
@ -159,15 +206,15 @@ int main()
|
|||||||
q[0] = 1.0;
|
q[0] = 1.0;
|
||||||
q[nc-1] = -1.0;
|
q[nc-1] = -1.0;
|
||||||
|
|
||||||
// s - this is explicit now
|
// s0 - this is explicit now
|
||||||
typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol;
|
typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol;
|
||||||
TwoCol s(nc, 2);
|
TwoCol s0(nc, 2);
|
||||||
s.leftCols<1>().setZero();
|
s0.leftCols<1>().setZero();
|
||||||
s.rightCols<1>().setOnes();
|
s0.rightCols<1>().setOnes();
|
||||||
|
|
||||||
// totmob - explicit as well
|
// totmob - explicit as well
|
||||||
TwoCol kr(nc, 2);
|
TwoCol kr(nc, 2);
|
||||||
props.relperm(nc, s.data(), allcells.data(), kr.data(), 0);
|
props.relperm(nc, s0.data(), allcells.data(), kr.data(), 0);
|
||||||
V krw = kr.leftCols<1>();
|
V krw = kr.leftCols<1>();
|
||||||
V kro = kr.rightCols<1>();
|
V kro = kr.rightCols<1>();
|
||||||
const double* mu = props.viscosity();
|
const double* mu = props.viscosity();
|
||||||
@ -199,11 +246,6 @@ int main()
|
|||||||
ADB residual = ops.div*flux - ADB::constant(q, block_pattern);
|
ADB residual = ops.div*flux - ADB::constant(q, block_pattern);
|
||||||
std::cerr << "Construct AD residual " << clock.secsSinceLast() << std::endl;
|
std::cerr << "Construct AD residual " << clock.secsSinceLast() << std::endl;
|
||||||
|
|
||||||
// std::cout << div << pdiff_face;
|
|
||||||
// std::cout << div*pdiff_face;
|
|
||||||
// std::cout << q << std::endl;
|
|
||||||
// std::cout << residual << std::endl;
|
|
||||||
|
|
||||||
// It's the residual we want to be zero. We know it's linear in p,
|
// It's the residual we want to be zero. We know it's linear in p,
|
||||||
// so we just need a single linear solve. Since we have formulated
|
// so we just need a single linear solve. Since we have formulated
|
||||||
// ourselves with a residual and jacobian we do this with a single
|
// ourselves with a residual and jacobian we do this with a single
|
||||||
@ -226,7 +268,68 @@ int main()
|
|||||||
// std::cerr << "Solve failure!\n";
|
// std::cerr << "Solve failure!\n";
|
||||||
// return 1;
|
// return 1;
|
||||||
// }
|
// }
|
||||||
V p_new = p0 - x.array();
|
V p1 = p0 - x.array();
|
||||||
std::cerr << "Solve " << clock.secsSinceLast() << std::endl;
|
std::cerr << "Solve " << clock.secsSinceLast() << std::endl;
|
||||||
std::cout << p_new << std::endl;
|
// std::cout << p1 << std::endl;
|
||||||
|
|
||||||
|
// ------ Transport solve ------
|
||||||
|
|
||||||
|
// Now we'll try to do a transport step as well.
|
||||||
|
// Residual formula is
|
||||||
|
// R_w = s_w - s_w^0 + dt/pv * (div v_w)
|
||||||
|
// where
|
||||||
|
// v_w = f_w v
|
||||||
|
// and f_w is (for now) based on averaged mobilities, not upwind.
|
||||||
|
|
||||||
|
double res_norm = 1e100;
|
||||||
|
V s1 = /*s0.leftCols<1>()*/0.5*V::Ones(nc,1); // Initial guess.
|
||||||
|
do {
|
||||||
|
const std::vector<int>& bp = block_pattern;
|
||||||
|
ADB s = ADB::variable(0, s1, bp);
|
||||||
|
const double dt = 0.0005;
|
||||||
|
V pv = Eigen::Map<const V>(props.porosity(), nc, 1)
|
||||||
|
* Eigen::Map<const V>(grid.cell_volumes, nc, 1);
|
||||||
|
V dtpv = dt/pv;
|
||||||
|
// std::cout << dtpv;
|
||||||
|
V ngradp1 = ops.ngrad*p1.matrix();
|
||||||
|
// std::cout << ngradp1 << std::endl;
|
||||||
|
ADB fw_cell = fluxFunc<ADB>(props, allcells, s.value());
|
||||||
|
// std::cout << fw_cell;
|
||||||
|
ADB fw_face = ops.caver*fw_cell;
|
||||||
|
// std::cout << fw_face;
|
||||||
|
ADB flux1 = fw_face*ADB::constant(ngradp1, bp);
|
||||||
|
// std::cout << flux1;
|
||||||
|
V qneg = dtpv*q;
|
||||||
|
V qpos = dtpv*q;
|
||||||
|
// Cheating a bit...
|
||||||
|
qneg[0] = 0.0;
|
||||||
|
qpos[nc-1] = 0.0;
|
||||||
|
ADB qtr_ad = ADB::constant(qpos, bp) + fw_cell*ADB::constant(qneg, bp);
|
||||||
|
ADB transport_residual = s - ADB::constant(s0.leftCols<1>(), bp)
|
||||||
|
+ ADB::constant(dtpv, bp)*(ops.div*flux1)
|
||||||
|
- qtr_ad;
|
||||||
|
res_norm = transport_residual.value().matrix().norm();
|
||||||
|
std::cout << "res_norm = " << res_norm << std::endl;
|
||||||
|
|
||||||
|
matr = transport_residual.derivative()[0];
|
||||||
|
matr.makeCompressed();
|
||||||
|
// std::cout << transport_residual;
|
||||||
|
solver.compute(matr);
|
||||||
|
// if (solver.info() != Eigen::Succeeded) {
|
||||||
|
// std::cerr << "Decomposition error!\n";
|
||||||
|
// return 1;
|
||||||
|
// }
|
||||||
|
x = solver.solve(transport_residual.value().matrix());
|
||||||
|
// if (solver.info() != Eigen::Succeeded) {
|
||||||
|
// std::cerr << "Solve failure!\n";
|
||||||
|
// return 1;
|
||||||
|
// }
|
||||||
|
// std::cout << x << std::endl;
|
||||||
|
s1 = s.value() - x.array();
|
||||||
|
std::cerr << "Solve for s " << clock.secsSinceLast() << std::endl;
|
||||||
|
for (int c = 0; c < nc; ++c) {
|
||||||
|
s1[c] = std::min(1.0, std::max(0.0, s1[c]));
|
||||||
|
}
|
||||||
|
std::cout << "s1 = \n" << s1 << std::endl;
|
||||||
|
} while (res_norm > 1e-7);
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user