Use Aquifer's Notion of Water Properties

This commit switches to using the analytic aquifer's intrinsic water
properties (i.e., the mass density and the viscosity), and to get
the time constant from the *_data structure instead of calculating
this value with separate logic.  Note that this switches to using a
single density value for the aquifer instead of separate density
values for each aquifer connection.

If the aquifer's initial pressure is defaulted we still compute an
equilibrated initial pressure value.  We then use the *_data
structure's 'finishInitialisation()' member function to derive the
aforementioned PVT properties.

Finally, report these values in the aquifer type-specific sub
structures of data::AquiferData for restart output purposes.
This commit is contained in:
Bård Skaflestad 2021-05-13 00:37:10 +02:00
parent 85ff6914fc
commit e4dd8a91e8
3 changed files with 72 additions and 72 deletions

View File

@ -84,6 +84,10 @@ public:
data.type = data::AquiferType::CarterTracy;
data.aquCT = std::make_shared<data::CarterTracyData>();
data.aquCT->timeConstant = this->aquct_data_.timeConstant();
data.aquCT->influxConstant = this->aquct_data_.influxConstant();
data.aquCT->waterDensity = this->aquct_data_.waterDensity();
data.aquCT->waterViscosity = this->aquct_data_.waterViscosity();
data.aquCT->dimensionless_time = this->dimensionless_time_;
data.aquCT->dimensionless_pressure = this->dimensionless_pressure_;
@ -92,10 +96,10 @@ public:
protected:
// Variables constants
const AquiferCT::AQUCT_data aquct_data_;
AquiferCT::AQUCT_data aquct_data_;
Scalar beta_; // Influx constant
// TODO: it is possible it should be a AD variable
Scalar mu_w_{1}; // water viscosity
Scalar fluxValue_{0}; // value of flux
Scalar dimensionless_time_{0};
@ -112,26 +116,31 @@ protected:
{
// We use the opm-common numeric linear interpolator
this->dimensionless_pressure_ =
linearInterpolation(this->aquct_data_.td,
this->aquct_data_.pi,
linearInterpolation(this->aquct_data_.dimensionless_time,
this->aquct_data_.dimensionless_pressure,
this->dimensionless_time_);
const auto PItd =
linearInterpolation(this->aquct_data_.td,
this->aquct_data_.pi, td_plus_dt);
linearInterpolation(this->aquct_data_.dimensionless_time,
this->aquct_data_.dimensionless_pressure,
td_plus_dt);
const auto PItdprime =
linearInterpolationDerivative(this->aquct_data_.td,
this->aquct_data_.pi, td_plus_dt);
linearInterpolationDerivative(this->aquct_data_.dimensionless_time,
this->aquct_data_.dimensionless_pressure,
td_plus_dt);
return std::make_pair(PItd, PItdprime);
}
Scalar dpai(const int idx) const
{
Scalar dp = this->pa0_
+ this->rhow_.at(idx).value() * this->gravity_() * (this->cell_depth_.at(idx) - this->aquiferDepth())
const auto gdz =
this->gravity_() * (this->cell_depth_.at(idx) - this->aquiferDepth());
const auto dp = this->pa0_ + this->rhow_*gdz
- this->pressure_previous_.at(idx);
return dp;
}
@ -162,48 +171,29 @@ protected:
inline void calculateAquiferConstants() override
{
// We calculate the influx constant
beta_ = aquct_data_.c2 * aquct_data_.h * aquct_data_.theta * aquct_data_.phi_aq * aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o;
// We calculate the time constant
this->Tc_ = mu_w_ * aquct_data_.phi_aq * aquct_data_.C_t * aquct_data_.r_o * aquct_data_.r_o
/ (aquct_data_.k_a * aquct_data_.c1);
this->Tc_ = this->aquct_data_.timeConstant();
this->beta_ = this->aquct_data_.influxConstant();
}
inline void calculateAquiferCondition() override
{
if (! this->aquct_data_.initial_pressure.has_value()) {
this->aquct_data_.initial_pressure =
this->calculateReservoirEquilibrium();
int pvttableIdx = aquct_data_.pvttableID - 1;
this->rhow_.resize(this->size(), 0.);
if (!aquct_data_.p0.first) {
this->pa0_ = this->calculateReservoirEquilibrium();
} else {
this->pa0_ = aquct_data_.p0.second;
const auto& tables = this->ebos_simulator_.vanguard()
.eclState().getTableManager();
this->aquct_data_.finishInitialisation(tables);
}
// use the thermodynamic state of the first active cell as a
// reference. there might be better ways to do this...
ElementContext elemCtx(this->ebos_simulator_);
auto elemIt = this->ebos_simulator_.gridView().template begin</*codim=*/0>();
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
// Initialize a FluidState object first
FluidState fs_aquifer;
// We use the temperature of the first cell connected to the aquifer
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
fs_aquifer.assign(iq0.fluidState());
Eval temperature_aq, pa0_mean, saltConcentration_aq;
temperature_aq = fs_aquifer.temperature(0);
saltConcentration_aq = fs_aquifer.saltConcentration();
pa0_mean = this->pa0_;
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean, saltConcentration_aq);
mu_w_ = mu_w_aquifer.value();
this->pa0_ = this->aquct_data_.initial_pressure.value();
this->rhow_ = this->aquct_data_.waterDensity();
}
virtual Scalar aquiferDepth() const override
{
return aquct_data_.d0;
return this->aquct_data_.datum_depth;
}
}; // class AquiferCarterTracy
} // namespace Opm

View File

@ -85,14 +85,16 @@ public:
data.type = data::AquiferType::Fetkovich;
data.aquFet = std::make_shared<data::FetkovichData>();
data.aquFet->initVolume = this->aqufetp_data_.initial_watvolume;
data.aquFet->prodIndex = this->aqufetp_data_.prod_index;
data.aquFet->timeConstant = this->aqufetp_data_.timeConstant();
return data;
}
protected:
// Aquifer Fetkovich Specific Variables
// TODO: using const reference here will cause segmentation fault, which is very strange
const Aquifetp::AQUFETP_data aqufetp_data_;
Aquifetp::AQUFETP_data aqufetp_data_;
Scalar aquifer_pressure_; // aquifer
void assignRestartData(const data::AquiferData& xaq) override
@ -109,52 +111,66 @@ protected:
inline Eval dpai(int idx)
{
const Eval dp = aquifer_pressure_ - this->pressure_current_.at(idx)
+ this->rhow_[idx] * this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth());
return dp;
const auto gdz =
this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth());
return this->aquifer_pressure_ + this->rhow_*gdz
- this->pressure_current_.at(idx);
}
// This function implements Eq 5.12 of the EclipseTechnicalDescription
inline Scalar aquiferPressure()
{
Scalar Flux = this->W_flux_.value();
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
comm.sum(&Flux, 1);
Scalar pa_ = this->pa0_ - Flux / (aqufetp_data_.C_t * aqufetp_data_.V0);
return pa_;
const auto denom =
this->aqufetp_data_.total_compr * this->aqufetp_data_.initial_watvolume;
return this->pa0_ - (Flux / denom);
}
inline void calculateAquiferConstants() override
{
this->Tc_ = (aqufetp_data_.C_t * aqufetp_data_.V0) / aqufetp_data_.J;
this->Tc_ = this->aqufetp_data_.timeConstant();
}
// This function implements Eq 5.14 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const Simulator& simulator) override
{
const Scalar td_Tc_ = simulator.timeStepSize() / this->Tc_;
const Scalar coef = (1 - exp(-td_Tc_)) / td_Tc_;
this->Qai_.at(idx) = this->alphai_[idx] * aqufetp_data_.J * dpai(idx) * coef;
this->Qai_.at(idx) = coef * this->alphai_[idx] *
this->aqufetp_data_.prod_index * dpai(idx);
}
inline void calculateAquiferCondition() override
{
this->rhow_.resize(this->size(), 0.);
if (this->solution_set_from_restart_) {
return;
}
if (!aqufetp_data_.p0.first) {
this->pa0_ = this->calculateReservoirEquilibrium();
} else {
this->pa0_ = aqufetp_data_.p0.second;
if (! this->aqufetp_data_.initial_pressure.has_value()) {
this->aqufetp_data_.initial_pressure =
this->calculateReservoirEquilibrium();
const auto& tables = this->ebos_simulator_.vanguard()
.eclState().getTableManager();
this->aqufetp_data_.finishInitialisation(tables);
}
aquifer_pressure_ = this->pa0_;
this->rhow_ = this->aqufetp_data_.waterDensity();
this->pa0_ = this->aqufetp_data_.initial_pressure.value();
this->aquifer_pressure_ = this->pa0_;
}
virtual Scalar aquiferDepth() const override
{
return aqufetp_data_.d0;
return this->aqufetp_data_.datum_depth;
}
}; // Class AquiferFetkovich
} // namespace Opm

View File

@ -146,7 +146,6 @@ public:
// This is the pressure at td + dt
this->updateCellPressure(this->pressure_current_, idx, intQuants);
this->updateCellDensity(idx, intQuants);
this->calculateInflowRate(idx, context.simulator());
rates[BlackoilIndices::conti0EqIdx + FluidSystem::waterCompIdx]
@ -197,13 +196,6 @@ protected:
pressure_water.at(idx) = fs.pressure(waterPhaseIdx).value();
}
inline void updateCellDensity(const int idx, const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
rhow_.at(idx) = fs.density(waterPhaseIdx);
}
virtual void endTimeStep() = 0;
const int aquiferID_{};
@ -219,11 +211,11 @@ protected:
std::vector<Scalar> pressure_previous_;
std::vector<Eval> pressure_current_;
std::vector<Eval> Qai_;
std::vector<Eval> rhow_;
std::vector<Scalar> alphai_;
Scalar Tc_{}; // Time constant
Scalar pa0_{}; // initial aquifer pressure
Scalar rhow_{};
Eval W_flux_;
@ -359,11 +351,13 @@ protected:
const auto& fs = iq0.fluidState();
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
this->rhow_[idx] = fs.density(waterPhaseIdx);
pw_aquifer.push_back(
(water_pressure_reservoir
- this->rhow_[idx].value() * this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth()))
* this->alphai_[idx]);
const auto water_density = fs.density(waterPhaseIdx);
const auto gdz =
this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth());
pw_aquifer.push_back(this->alphai_[idx] *
(water_pressure_reservoir - water_density.value()*gdz));
}
// We take the average of the calculated equilibrium pressures.