Merge pull request #4634 from kjetilly/cuistl_vector_matrix

Path to multigpu: Cuistl vector and matrix classes
This commit is contained in:
Atgeirr Flø Rasmussen 2023-05-30 11:35:15 +02:00 committed by GitHub
commit e5672ee816
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 3072 additions and 1 deletions

View File

@ -549,6 +549,8 @@ if(CUDA_FOUND)
cuda_check_last_error cuda_check_last_error
cublas_handle cublas_handle
cusparse_handle cusparse_handle
cuvector
cusparsematrix
PROPERTIES LABELS gpu_cuda) PROPERTIES LABELS gpu_cuda)
endif() endif()

View File

@ -147,6 +147,10 @@ if(CUDA_FOUND)
# CUISTL SOURCE # CUISTL SOURCE
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/cuistl/detail/CuBlasHandle.cpp) list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/cuistl/detail/CuBlasHandle.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/cuistl/detail/CuSparseHandle.cpp) list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/cuistl/detail/CuSparseHandle.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/cuistl/CuVector.cpp)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/cuistl/detail/vector_operations.cu)
list (APPEND MAIN_SOURCE_FILES opm/simulators/linalg/cuistl/CuSparseMatrix.cpp)
# CUISTL HEADERS # CUISTL HEADERS
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/cuda_safe_call.hpp) list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/cuda_safe_call.hpp)
@ -155,6 +159,18 @@ if(CUDA_FOUND)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/cuda_check_last_error.hpp) list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/cuda_check_last_error.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/CuBlasHandle.hpp) list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/CuBlasHandle.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/CuSparseHandle.hpp) list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/CuSparseHandle.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/CuVector.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/CuSparseMatrix.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/CuMatrixDescription.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/CuSparseResource.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/CuSparseResource_impl.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/safe_conversion.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/cublas_wrapper.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/cusparse_wrapper.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/cusparse_constants.hpp)
list (APPEND PUBLIC_HEADER_FILES opm/simulators/linalg/cuistl/detail/vector_operations.hpp)
endif() endif()
if(OPENCL_FOUND) if(OPENCL_FOUND)
@ -239,7 +255,9 @@ if(CUDA_FOUND)
list(APPEND TEST_SOURCE_FILES tests/cuistl/test_cuda_check_last_error.cpp) list(APPEND TEST_SOURCE_FILES tests/cuistl/test_cuda_check_last_error.cpp)
list(APPEND TEST_SOURCE_FILES tests/cuistl/test_cublas_handle.cpp) list(APPEND TEST_SOURCE_FILES tests/cuistl/test_cublas_handle.cpp)
list(APPEND TEST_SOURCE_FILES tests/cuistl/test_cusparse_handle.cpp) list(APPEND TEST_SOURCE_FILES tests/cuistl/test_cusparse_handle.cpp)
list(APPEND TEST_SOURCE_FILES tests/cuistl/test_cuvector.cpp)
list(APPEND TEST_SOURCE_FILES tests/cuistl/test_cusparsematrix.cpp)
list(APPEND TEST_SOURCE_FILES tests/cuistl/test_safe_conversion.cpp)
endif() endif()
if(OPENCL_FOUND) if(OPENCL_FOUND)

View File

@ -0,0 +1,330 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cuda.h>
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/bvector.hh>
#include <fmt/core.h>
#include <opm/simulators/linalg/cuistl/CuSparseMatrix.hpp>
#include <opm/simulators/linalg/cuistl/detail/cusparse_constants.hpp>
#include <opm/simulators/linalg/cuistl/detail/cusparse_safe_call.hpp>
#include <opm/simulators/linalg/cuistl/detail/cusparse_wrapper.hpp>
#include <opm/simulators/linalg/matrixblock.hh>
namespace Opm::cuistl
{
namespace
{
template <class T, class M>
std::vector<T> extractNonzeroValues(const M& matrix)
{
const size_t blockSize = matrix[0][0].N();
const size_t numberOfNonzeroBlocks = matrix.nonzeroes();
const size_t numberOfNonzeroElements = blockSize * blockSize * numberOfNonzeroBlocks;
std::vector<T> nonZeroElementsData;
// TODO: [perf] Can we avoid building nonZeroElementsData?
nonZeroElementsData.reserve(numberOfNonzeroElements);
for (auto& row : matrix) {
for (auto columnIterator = row.begin(); columnIterator != row.end(); ++columnIterator) {
for (size_t c = 0; c < blockSize; ++c) {
for (size_t d = 0; d < blockSize; ++d) {
nonZeroElementsData.push_back((*columnIterator)[c][d]);
}
}
}
}
return nonZeroElementsData;
}
} // namespace
template <class T>
CuSparseMatrix<T>::CuSparseMatrix(const T* nonZeroElements,
const int* rowIndices,
const int* columnIndices,
size_t numberOfNonzeroBlocks,
size_t blockSize,
size_t numberOfRows)
: m_nonZeroElements(nonZeroElements, numberOfNonzeroBlocks * blockSize * blockSize)
, m_columnIndices(columnIndices, numberOfNonzeroBlocks)
, m_rowIndices(rowIndices, numberOfRows + 1)
, m_numberOfNonzeroBlocks(detail::to_int(numberOfNonzeroBlocks))
, m_numberOfRows(detail::to_int(numberOfRows))
, m_blockSize(detail::to_int(blockSize))
, m_matrixDescription(detail::createMatrixDescription())
, m_cusparseHandle(detail::CuSparseHandle::getInstance())
{
if (detail::to_size_t(rowIndices[numberOfRows]) != numberOfNonzeroBlocks) {
OPM_THROW(std::invalid_argument, "Wrong sparsity format. Needs to be CSR compliant. ");
}
}
template <class T>
CuSparseMatrix<T>::~CuSparseMatrix()
{
// empty
}
template <typename T>
template <typename MatrixType>
CuSparseMatrix<T>
CuSparseMatrix<T>::fromMatrix(const MatrixType& matrix, bool copyNonZeroElementsDirectly)
{
// TODO: Do we need this intermediate storage? Or this shuffling of data?
std::vector<int> columnIndices;
std::vector<int> rowIndices;
rowIndices.push_back(0);
const size_t blockSize = matrix[0][0].N();
const size_t numberOfRows = matrix.N();
const size_t numberOfNonzeroBlocks = matrix.nonzeroes();
columnIndices.reserve(numberOfNonzeroBlocks);
rowIndices.reserve(numberOfRows + 1);
for (auto& row : matrix) {
for (auto columnIterator = row.begin(); columnIterator != row.end(); ++columnIterator) {
columnIndices.push_back(columnIterator.index());
}
rowIndices.push_back(detail::to_int(columnIndices.size()));
}
// Sanity check
// h_rows and h_cols could be changed to 'unsigned int', but cusparse expects 'int'
OPM_ERROR_IF(rowIndices[matrix.N()] != detail::to_int(matrix.nonzeroes()),
"Error size of rows do not sum to number of nonzeroes in CuSparseMatrix.");
OPM_ERROR_IF(rowIndices.size() != numberOfRows + 1, "Row indices do not match for CuSparseMatrix.");
OPM_ERROR_IF(columnIndices.size() != numberOfNonzeroBlocks, "Column indices do not match for CuSparseMatrix.");
if (copyNonZeroElementsDirectly) {
const T* nonZeroElements = static_cast<const T*>(&((matrix[0][0][0][0])));
return CuSparseMatrix<T>(
nonZeroElements, rowIndices.data(), columnIndices.data(), numberOfNonzeroBlocks, blockSize, numberOfRows);
} else {
auto nonZeroElementData = extractNonzeroValues<T>(matrix);
return CuSparseMatrix<T>(nonZeroElementData.data(),
rowIndices.data(),
columnIndices.data(),
numberOfNonzeroBlocks,
blockSize,
numberOfRows);
}
}
template <class T>
template <class MatrixType>
void
CuSparseMatrix<T>::updateNonzeroValues(const MatrixType& matrix, bool copyNonZeroElementsDirectly)
{
OPM_ERROR_IF(nonzeroes() != matrix.nonzeroes(), "Matrix does not have the same number of non-zero elements.");
OPM_ERROR_IF(matrix[0][0].N() != blockSize(), "Matrix does not have the same blocksize.");
OPM_ERROR_IF(matrix.N() != N(), "Matrix does not have the same number of rows.");
if (!copyNonZeroElementsDirectly) {
auto nonZeroElementsData = extractNonzeroValues<T>(matrix);
m_nonZeroElements.copyFromHost(nonZeroElementsData.data(), nonzeroes() * blockSize() * blockSize());
} else {
const T* newNonZeroElements = static_cast<const T*>(&((matrix[0][0][0][0])));
m_nonZeroElements.copyFromHost(newNonZeroElements, nonzeroes() * blockSize() * blockSize());
}
}
template <typename T>
void
CuSparseMatrix<T>::setUpperTriangular()
{
OPM_CUSPARSE_SAFE_CALL(cusparseSetMatFillMode(m_matrixDescription->get(), CUSPARSE_FILL_MODE_UPPER));
}
template <typename T>
void
CuSparseMatrix<T>::setLowerTriangular()
{
OPM_CUSPARSE_SAFE_CALL(cusparseSetMatFillMode(m_matrixDescription->get(), CUSPARSE_FILL_MODE_LOWER));
}
template <typename T>
void
CuSparseMatrix<T>::setUnitDiagonal()
{
OPM_CUSPARSE_SAFE_CALL(cusparseSetMatDiagType(m_matrixDescription->get(), CUSPARSE_DIAG_TYPE_UNIT));
}
template <typename T>
void
CuSparseMatrix<T>::setNonUnitDiagonal()
{
OPM_CUSPARSE_SAFE_CALL(cusparseSetMatDiagType(m_matrixDescription->get(), CUSPARSE_DIAG_TYPE_NON_UNIT));
}
template <typename T>
void
CuSparseMatrix<T>::mv(const CuVector<T>& x, CuVector<T>& y) const
{
assertSameSize(x);
assertSameSize(y);
if (blockSize() < 2u) {
OPM_THROW(
std::invalid_argument,
"CuSparseMatrix<T>::usmv and CuSparseMatrix<T>::mv are only implemented for block sizes greater than 1.");
}
const auto nonzeroValues = getNonZeroValues().data();
auto rowIndices = getRowIndices().data();
auto columnIndices = getColumnIndices().data();
T alpha = 1.0;
T beta = 0.0;
OPM_CUSPARSE_SAFE_CALL(detail::cusparseBsrmv(m_cusparseHandle.get(),
detail::CUSPARSE_MATRIX_ORDER,
CUSPARSE_OPERATION_NON_TRANSPOSE,
m_numberOfRows,
m_numberOfRows,
m_numberOfNonzeroBlocks,
&alpha,
m_matrixDescription->get(),
nonzeroValues,
rowIndices,
columnIndices,
blockSize(),
x.data(),
&beta,
y.data()));
}
template <typename T>
void
CuSparseMatrix<T>::umv(const CuVector<T>& x, CuVector<T>& y) const
{
assertSameSize(x);
assertSameSize(y);
if (blockSize() < 2u) {
OPM_THROW(
std::invalid_argument,
"CuSparseMatrix<T>::usmv and CuSparseMatrix<T>::mv are only implemented for block sizes greater than 1.");
}
const auto nonzeroValues = getNonZeroValues().data();
auto rowIndices = getRowIndices().data();
auto columnIndices = getColumnIndices().data();
T alpha = 1.0;
T beta = 1.0;
OPM_CUSPARSE_SAFE_CALL(detail::cusparseBsrmv(m_cusparseHandle.get(),
detail::CUSPARSE_MATRIX_ORDER,
CUSPARSE_OPERATION_NON_TRANSPOSE,
m_numberOfRows,
m_numberOfRows,
m_numberOfNonzeroBlocks,
&alpha,
m_matrixDescription->get(),
nonzeroValues,
rowIndices,
columnIndices,
m_blockSize,
x.data(),
&beta,
y.data()));
}
template <typename T>
void
CuSparseMatrix<T>::usmv(T alpha, const CuVector<T>& x, CuVector<T>& y) const
{
assertSameSize(x);
assertSameSize(y);
if (blockSize() < 2) {
OPM_THROW(
std::invalid_argument,
"CuSparseMatrix<T>::usmv and CuSparseMatrix<T>::mv are only implemented for block sizes greater than 1.");
}
const auto numberOfRows = N();
const auto numberOfNonzeroBlocks = nonzeroes();
const auto nonzeroValues = getNonZeroValues().data();
auto rowIndices = getRowIndices().data();
auto columnIndices = getColumnIndices().data();
T beta = 1.0;
OPM_CUSPARSE_SAFE_CALL(detail::cusparseBsrmv(m_cusparseHandle.get(),
detail::CUSPARSE_MATRIX_ORDER,
CUSPARSE_OPERATION_NON_TRANSPOSE,
numberOfRows,
numberOfRows,
numberOfNonzeroBlocks,
&alpha,
m_matrixDescription->get(),
nonzeroValues,
rowIndices,
columnIndices,
blockSize(),
x.data(),
&beta,
y.data()));
}
template <class T>
template <class VectorType>
void
CuSparseMatrix<T>::assertSameSize(const VectorType& x) const
{
if (x.dim() != blockSize() * N()) {
OPM_THROW(std::invalid_argument,
fmt::format("Size mismatch. Input vector has {} elements, while we have {} rows.",
x.dim(),
blockSize() * N()));
}
}
#define INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(realtype, blockdim) \
template CuSparseMatrix<realtype> CuSparseMatrix<realtype>::fromMatrix( \
const Dune::BCRSMatrix<Dune::FieldMatrix<realtype, blockdim, blockdim>>&, bool); \
template CuSparseMatrix<realtype> CuSparseMatrix<realtype>::fromMatrix( \
const Dune::BCRSMatrix<Opm::MatrixBlock<realtype, blockdim, blockdim>>&, bool); \
template void CuSparseMatrix<realtype>::updateNonzeroValues( \
const Dune::BCRSMatrix<Dune::FieldMatrix<realtype, blockdim, blockdim>>&, bool); \
template void CuSparseMatrix<realtype>::updateNonzeroValues( \
const Dune::BCRSMatrix<Opm::MatrixBlock<realtype, blockdim, blockdim>>&, bool)
template class CuSparseMatrix<float>;
template class CuSparseMatrix<double>;
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(double, 1);
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(double, 2);
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(double, 3);
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(double, 4);
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(double, 5);
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(double, 6);
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(float, 1);
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(float, 2);
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(float, 3);
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(float, 4);
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(float, 5);
INSTANTIATE_CUSPARSE_DUNE_MATRIX_CONSTRUCTION_FUNTIONS(float, 6);
} // namespace Opm::cuistl

View File

@ -0,0 +1,302 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_CUSPARSEMATRIX_HPP
#define OPM_CUSPARSEMATRIX_HPP
#include <cusparse.h>
#include <iostream>
#include <memory>
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
#include <opm/simulators/linalg/cuistl/detail/CuMatrixDescription.hpp>
#include <opm/simulators/linalg/cuistl/detail/CuSparseHandle.hpp>
#include <opm/simulators/linalg/cuistl/detail/safe_conversion.hpp>
#include <vector>
namespace Opm::cuistl
{
/**
* @brief The CuSparseMatrix class simple wrapper class for a CuSparse matrix.
*
* @note we currently only support simple raw primitives for T (double and float). Block size is handled through the
* block size parameter
*
* @tparam T the type to store. Can be either float, double or int.
*
* @note we only support square matrices.
*
* @note We only support Block Compressed Sparse Row Format (BSR) for now.
*/
template <typename T>
class CuSparseMatrix
{
public:
//! Create the sparse matrix specified by the raw data.
//!
//! \note Prefer to use the constructor taking a const reference to a matrix instead.
//!
//! \param[in] nonZeroElements the non-zero values of the matrix
//! \param[in] rowIndices the row indices of the non-zero elements
//! \param[in] columnIndices the column indices of the non-zero elements
//! \param[in] numberOfNonzeroElements number of nonzero elements
//! \param[in] blockSize size of each block matrix (typically 3)
//! \param[in] numberOfRows the number of rows
//!
//! \note We assume numberOfNonzeroBlocks, blockSize and numberOfRows all are representable as int due to
//! restrictions in the current version of cusparse. This might change in future versions.
CuSparseMatrix(const T* nonZeroElements,
const int* rowIndices,
const int* columnIndices,
size_t numberOfNonzeroBlocks,
size_t blockSize,
size_t numberOfRows);
/**
* We don't want to be able to copy this for now (too much hassle in copying the cusparse resources)
*/
CuSparseMatrix(const CuSparseMatrix&) = delete;
/**
* We don't want to be able to copy this for now (too much hassle in copying the cusparse resources)
*/
CuSparseMatrix& operator=(const CuSparseMatrix&) = delete;
virtual ~CuSparseMatrix();
/**
* @brief fromMatrix creates a new matrix with the same block size and values as the given matrix
* @param matrix the matrix to copy from
* @param copyNonZeroElementsDirectly if true will do a memcpy from matrix[0][0][0][0], otherwise will build up the
* non-zero elements by looping over the matrix. Note that setting this to true will yield a performance increase,
* but might not always yield correct results depending on how the matrix has been initialized. If unsure,
* leave it as false.
* @tparam MatrixType is assumed to be a Dune::BCRSMatrix compatible matrix.
*/
template <class MatrixType>
static CuSparseMatrix<T> fromMatrix(const MatrixType& matrix, bool copyNonZeroElementsDirectly = false);
/**
* @brief setUpperTriangular sets the CuSparse flag that this is an upper diagonal (with unit diagonal) matrix.
*/
void setUpperTriangular();
/**
* @brief setLowerTriangular sets the CuSparse flag that this is an lower diagonal (with non-unit diagonal) matrix.
*/
void setLowerTriangular();
/**
* @brief setUnitDiagonal sets the CuSparse flag that this has unit diagional.
*/
void setUnitDiagonal();
/**
* @brief setNonUnitDiagonal sets the CuSparse flag that this has non-unit diagional.
*/
void setNonUnitDiagonal();
/**
* @brief N returns the number of rows (which is equal to the number of columns)
*/
size_t N() const
{
// Technically this safe conversion is not needed since we enforce these to be
// non-negative in the constructor, but keeping them for added sanity for now.
//
// We don't believe this will yield any performance penality (it's used too far away from the inner loop),
// but should that be false, they can be removed.
return detail::to_size_t(m_numberOfRows);
}
/**
* @brief nonzeroes behaves as the Dune::BCRSMatrix::nonzeros() function and returns the number of non zero blocks
* @return number of non zero blocks.
*/
size_t nonzeroes() const
{
// Technically this safe conversion is not needed since we enforce these to be
// non-negative in the constructor, but keeping them for added sanity for now.
//
// We don't believe this will yield any performance penality (it's used too far away from the inner loop),
// but should that be false, they can be removed.
return detail::to_size_t(m_numberOfNonzeroBlocks);
}
/**
* @brief getNonZeroValues returns the GPU vector containing the non-zero values (ordered by block)
*
* @note Read the CuSPARSE documentation on Block Compressed Sparse Row Format (BSR) for the exact ordering.
*/
CuVector<T>& getNonZeroValues()
{
return m_nonZeroElements;
}
/**
* @brief getNonZeroValues returns the GPU vector containing the non-zero values (ordered by block)
*
* @note Read the CuSPARSE documentation on Block Compressed Sparse Row Format (BSR) for the exact ordering.
*/
const CuVector<T>& getNonZeroValues() const
{
return m_nonZeroElements;
}
/**
* @brief getRowIndices returns the row indices used to represent the BSR structure.
*
* @note Read the CuSPARSE documentation on Block Compressed Sparse Row Format (BSR) for the exact ordering.
*/
CuVector<int>& getRowIndices()
{
return m_rowIndices;
}
/**
* @brief getRowIndices returns the row indices used to represent the BSR structure.
*
* @note Read the CuSPARSE documentation on Block Compressed Sparse Row Format (BSR) for the exact ordering.
*/
const CuVector<int>& getRowIndices() const
{
return m_rowIndices;
}
/**
* @brief getColumnIndices returns the column indices used to represent the BSR structure.
*
* @return Read the CuSPARSE documentation on Block Compressed Sparse Row Format (BSR) for the exact ordering.
*/
CuVector<int>& getColumnIndices()
{
return m_columnIndices;
}
/**
* @brief getColumnIndices returns the column indices used to represent the BSR structure.
*
* @return Read the CuSPARSE documentation on Block Compressed Sparse Row Format (BSR) for the exact ordering.
*/
const CuVector<int>& getColumnIndices() const
{
return m_columnIndices;
}
/**
* @brief dim returns the dimension of the vector space on which this matrix acts
*
* This is equivalent to matrix.N() * matrix.blockSize()
* @return matrix.N() * matrix.blockSize()
*/
size_t dim() const
{
// Technically this safe conversion is not needed since we enforce these to be
// non-negative in the constructor, but keeping them for added sanity for now.
//
// We don't believe this will yield any performance penality (it's used too far away from the inner loop),
// but should that be false, they can be removed.
return detail::to_size_t(m_blockSize) * detail::to_size_t(m_numberOfRows);
}
/**
* @brief blockSize size of the blocks
*/
size_t blockSize() const
{
// Technically this safe conversion is not needed since we enforce these to be
// non-negative in the constructor, but keeping them for added sanity for now.
//
// We don't believe this will yield any performance penality (it's used too far away from the inner loop),
// but should that be false, they can be removed.
return detail::to_size_t(m_blockSize);
}
/**
* @brief getDescription the cusparse matrix description.
*
* This description is needed for most calls to the CuSparse library
*/
detail::CuSparseMatrixDescription& getDescription()
{
return *m_matrixDescription;
}
/**
* @brief mv performs matrix vector multiply y = Ax
* @param[in] x the vector to multiply the matrix with
* @param[out] y the output vector
*
* @note Due to limitations of CuSparse, this is only supported for block sizes greater than 1.
*/
virtual void mv(const CuVector<T>& x, CuVector<T>& y) const;
/**
* @brief umv computes y=Ax+y
* @param[in] x the vector to multiply with A
* @param[inout] y the vector to add and store the output in
*
* @note Due to limitations of CuSparse, this is only supported for block sizes greater than 1.
*/
virtual void umv(const CuVector<T>& x, CuVector<T>& y) const;
/**
* @brief umv computes y=alpha * Ax + y
* @param[in] x the vector to multiply with A
* @param[inout] y the vector to add and store the output in
*
* @note Due to limitations of CuSparse, this is only supported for block sizes greater than 1.
*/
virtual void usmv(T alpha, const CuVector<T>& x, CuVector<T>& y) const;
/**
* @brief updateNonzeroValues updates the non-zero values by using the non-zero values of the supplied matrix
* @param matrix the matrix to extract the non-zero values from
* @param copyNonZeroElementsDirectly if true will do a memcpy from matrix[0][0][0][0], otherwise will build up the
* non-zero elements by looping over the matrix. Note that setting this to true will yield a performance increase,
* but might not always yield correct results depending on how the matrix matrix has been initialized. If unsure,
* leave it as false.
* @note This assumes the given matrix has the same sparsity pattern.
* @tparam MatrixType is assumed to be a Dune::BCRSMatrix compatible matrix.
*/
template <class MatrixType>
void updateNonzeroValues(const MatrixType& matrix, bool copyNonZeroElementsDirectly = false);
private:
CuVector<T> m_nonZeroElements;
CuVector<int> m_columnIndices;
CuVector<int> m_rowIndices;
// Notice that we store these three as int to make sure we are cusparse compatible.
//
// This gives the added benefit of checking the size constraints at construction of the matrix
// rather than in some call to cusparse.
const int m_numberOfNonzeroBlocks;
const int m_numberOfRows;
const int m_blockSize;
detail::CuSparseMatrixDescriptionPtr m_matrixDescription;
detail::CuSparseHandle& m_cusparseHandle;
template <class VectorType>
void assertSameSize(const VectorType& vector) const;
};
} // namespace Opm::cuistl
#endif

View File

@ -0,0 +1,293 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cublas_v2.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <fmt/core.h>
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
#include <opm/simulators/linalg/cuistl/detail/cublas_safe_call.hpp>
#include <opm/simulators/linalg/cuistl/detail/cublas_wrapper.hpp>
#include <opm/simulators/linalg/cuistl/detail/cuda_safe_call.hpp>
#include <opm/simulators/linalg/cuistl/detail/vector_operations.hpp>
namespace Opm::cuistl
{
template <class T>
CuVector<T>::CuVector(const std::vector<T>& data)
: CuVector(data.data(), detail::to_int(data.size()))
{
}
template <class T>
CuVector<T>::CuVector(const size_t numberOfElements)
: m_numberOfElements(detail::to_int(numberOfElements))
, m_cuBlasHandle(detail::CuBlasHandle::getInstance())
{
OPM_CUDA_SAFE_CALL(cudaMalloc(&m_dataOnDevice, sizeof(T) * detail::to_size_t(m_numberOfElements)));
}
template <class T>
CuVector<T>::CuVector(const T* dataOnHost, const size_t numberOfElements)
: CuVector(numberOfElements)
{
OPM_CUDA_SAFE_CALL(cudaMemcpy(
m_dataOnDevice, dataOnHost, detail::to_size_t(m_numberOfElements) * sizeof(T), cudaMemcpyHostToDevice));
}
template <class T>
CuVector<T>&
CuVector<T>::operator=(T scalar)
{
assertHasElements();
detail::setVectorValue(data(), detail::to_size_t(m_numberOfElements), scalar);
return *this;
}
template <class T>
CuVector<T>&
CuVector<T>::operator=(const CuVector<T>& other)
{
assertHasElements();
assertSameSize(other);
OPM_CUDA_SAFE_CALL(cudaMemcpy(m_dataOnDevice,
other.m_dataOnDevice,
detail::to_size_t(m_numberOfElements) * sizeof(T),
cudaMemcpyDeviceToDevice));
return *this;
}
template <class T>
CuVector<T>::CuVector(const CuVector<T>& other)
: CuVector(other.m_numberOfElements)
{
assertHasElements();
assertSameSize(other);
OPM_CUDA_SAFE_CALL(cudaMemcpy(m_dataOnDevice,
other.m_dataOnDevice,
detail::to_size_t(m_numberOfElements) * sizeof(T),
cudaMemcpyDeviceToDevice));
}
template <class T>
CuVector<T>::~CuVector()
{
OPM_CUDA_WARN_IF_ERROR(cudaFree(m_dataOnDevice));
}
template <typename T>
const T*
CuVector<T>::data() const
{
return m_dataOnDevice;
}
template <typename T>
typename CuVector<T>::size_type
CuVector<T>::dim() const
{
// Note that there is no way for m_numberOfElements to be non-positive,
// but for sanity we still use the safe conversion function here.
//
// We also doubt that this will lead to any performance penality, but should this prove
// to be false, this can be replaced by a simple cast to size_t
return detail::to_size_t(m_numberOfElements);
}
template <typename T>
std::vector<T>
CuVector<T>::asStdVector() const
{
std::vector<T> temporary(detail::to_size_t(m_numberOfElements));
copyToHost(temporary);
return temporary;
}
template <typename T>
void
CuVector<T>::setZeroAtIndexSet(const CuVector<int>& indexSet)
{
detail::setZeroAtIndexSet(m_dataOnDevice, indexSet.dim(), indexSet.data());
}
template <typename T>
void
CuVector<T>::assertSameSize(const CuVector<T>& x) const
{
assertSameSize(x.m_numberOfElements);
}
template <typename T>
void
CuVector<T>::assertSameSize(int size) const
{
if (size != m_numberOfElements) {
OPM_THROW(std::invalid_argument,
fmt::format("Given vector has {}, while we have {}.", size, m_numberOfElements));
}
}
template <typename T>
void
CuVector<T>::assertHasElements() const
{
if (m_numberOfElements <= 0) {
OPM_THROW(std::invalid_argument, "We have 0 elements");
}
}
template <typename T>
T*
CuVector<T>::data()
{
return m_dataOnDevice;
}
template <class T>
CuVector<T>&
CuVector<T>::operator*=(const T& scalar)
{
assertHasElements();
OPM_CUBLAS_SAFE_CALL(detail::cublasScal(m_cuBlasHandle.get(), m_numberOfElements, &scalar, data(), 1));
return *this;
}
template <class T>
CuVector<T>&
CuVector<T>::axpy(T alpha, const CuVector<T>& y)
{
assertHasElements();
assertSameSize(y);
OPM_CUBLAS_SAFE_CALL(detail::cublasAxpy(m_cuBlasHandle.get(), m_numberOfElements, &alpha, y.data(), 1, data(), 1));
return *this;
}
template <class T>
T
CuVector<T>::dot(const CuVector<T>& other) const
{
assertHasElements();
assertSameSize(other);
T result = T(0);
OPM_CUBLAS_SAFE_CALL(
detail::cublasDot(m_cuBlasHandle.get(), m_numberOfElements, data(), 1, other.data(), 1, &result));
return result;
}
template <class T>
T
CuVector<T>::two_norm() const
{
assertHasElements();
T result = T(0);
OPM_CUBLAS_SAFE_CALL(detail::cublasNrm2(m_cuBlasHandle.get(), m_numberOfElements, data(), 1, &result));
return result;
}
template <typename T>
T
CuVector<T>::dot(const CuVector<T>& other, const CuVector<int>& indexSet, CuVector<T>& buffer) const
{
return detail::innerProductAtIndices(m_dataOnDevice, other.data(), buffer.data(), indexSet.dim(), indexSet.data());
}
template <typename T>
T
CuVector<T>::two_norm(const CuVector<int>& indexSet, CuVector<T>& buffer) const
{
// TODO: [perf] Optimize this to a single call
return std::sqrt(this->dot(*this, indexSet, buffer));
}
template <typename T>
T
CuVector<T>::dot(const CuVector<T>& other, const CuVector<int>& indexSet) const
{
CuVector<T> buffer(indexSet.dim());
return detail::innerProductAtIndices(m_dataOnDevice, other.data(), buffer.data(), indexSet.dim(), indexSet.data());
}
template <typename T>
T
CuVector<T>::two_norm(const CuVector<int>& indexSet) const
{
CuVector<T> buffer(indexSet.dim());
// TODO: [perf] Optimize this to a single call
return std::sqrt(this->dot(*this, indexSet, buffer));
}
template <class T>
CuVector<T>&
CuVector<T>::operator+=(const CuVector<T>& other)
{
assertHasElements();
assertSameSize(other);
// TODO: [perf] Make a specialized version of this
return axpy(1.0, other);
}
template <class T>
CuVector<T>&
CuVector<T>::operator-=(const CuVector<T>& other)
{
assertHasElements();
assertSameSize(other);
// TODO: [perf] Make a specialized version of this
return axpy(-1.0, other);
}
template <class T>
void
CuVector<T>::copyFromHost(const T* dataPointer, size_t numberOfElements)
{
if (numberOfElements > dim()) {
OPM_THROW(std::runtime_error,
fmt::format("Requesting to copy too many elements. Vector has {} elements, while {} was requested.",
dim(),
numberOfElements));
}
OPM_CUDA_SAFE_CALL(cudaMemcpy(data(), dataPointer, numberOfElements * sizeof(T), cudaMemcpyHostToDevice));
}
template <class T>
void
CuVector<T>::copyToHost(T* dataPointer, size_t numberOfElements) const
{
assertSameSize(detail::to_int(numberOfElements));
OPM_CUDA_SAFE_CALL(cudaMemcpy(dataPointer, data(), numberOfElements * sizeof(T), cudaMemcpyDeviceToHost));
}
template <class T>
void
CuVector<T>::copyFromHost(const std::vector<T>& data)
{
copyFromHost(data.data(), data.size());
}
template <class T>
void
CuVector<T>::copyToHost(std::vector<T>& data) const
{
copyToHost(data.data(), data.size());
}
template class CuVector<double>;
template class CuVector<float>;
template class CuVector<int>;
} // namespace Opm::cuistl

View File

@ -0,0 +1,378 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_CUVECTOR_HEADER_HPP
#define OPM_CUVECTOR_HEADER_HPP
#include <dune/common/fvector.hh>
#include <dune/istl/bvector.hh>
#include <exception>
#include <fmt/core.h>
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/linalg/cuistl/detail/CuBlasHandle.hpp>
#include <opm/simulators/linalg/cuistl/detail/safe_conversion.hpp>
#include <vector>
namespace Opm::cuistl
{
/**
* @brief The CuVector class is a simple (arithmetic) vector class for the GPU.
*
* @note we currently only support simple raw primitives for T (double, float and int)
*
* @note We currently only support arithmetic operations on double and float.
*
* @note this vector has no notion of block size. The user is responsible for allocating
* the correct number of primitives (double or floats)
*
* Example usage:
*
* @code{.cpp}
* #include <opm/simulators/linalg/cuistl/CuVector.hpp>
*
* void someFunction() {
* auto someDataOnCPU = std::vector<double>({1.0, 2.0, 42.0, 59.9451743, 10.7132692});
*
* auto dataOnGPU = CuVector<double>(someDataOnCPU);
*
* // Multiply by 4.0:
* dataOnGPU *= 4.0;
*
* // Get data back on CPU in another vector:
* auto stdVectorOnCPU = dataOnGPU.asStdVector();
* }
*
* @tparam T the type to store. Can be either float, double or int.
*/
template <typename T>
class CuVector
{
public:
using field_type = T;
using size_type = size_t;
/**
* @brief CuVector allocates new GPU memory of the same size as other and copies the content of the other vector to
* this newly allocated memory.
*
* @note This does synchronous transfer.
*
* @param other the vector to copy from
*/
CuVector(const CuVector<T>& other);
/**
* @brief CuVector allocates new GPU memory of the same size as data and copies the content of the data vector to
* this newly allocated memory.
*
* @note This does CPU to GPU transfer.
* @note This does synchronous transfer.
*
* @note For now data.size() needs to be within the limits of int due to restrctions of CuBlas.
*
* @param data the vector to copy from
*/
explicit CuVector(const std::vector<T>& data);
/**
* @brief operator= copies the content of the data vector to the memory of this vector.
*
* @note This requires the two vectors to be of the same size.
* @note This does synchronous transfer.
*
* @param other the vector to copy from
*/
CuVector& operator=(const CuVector<T>& other);
/**
* @brief operator= sets the whole vector equal to the scalar value.
*
* @note This does asynchronous operations
*
* @param scalar the value all elements will be set to.
*/
CuVector& operator=(T scalar);
/**
* @brief CuVector allocates new GPU memory of size numberOfElements * sizeof(T)
*
* @note For now numberOfElements needs to be within the limits of int due to restrictions in cublas
*
* @param numberOfElements number of T elements to allocate
*/
explicit CuVector(const size_t numberOfElements);
/**
* @brief CuVector allocates new GPU memory of size numberOfElements * sizeof(T) and copies numberOfElements from
* data
*
* @note This assumes the data is on the CPU.
*
* @param numberOfElements number of T elements to allocate
* @param dataOnHost data on host/CPU
*
* @note For now numberOfElements needs to be within the limits of int due to restrictions in cublas
*/
CuVector(const T* dataOnHost, const size_t numberOfElements);
/**
* @brief ~CuVector calls cudaFree
*/
virtual ~CuVector();
/**
* @return the raw pointer to the GPU data
*/
T* data();
/**
* @return the raw pointer to the GPU data
*/
const T* data() const;
/**
* @brief copyFromHost copies data from a Dune::BlockVector
* @param bvector the vector to copy from
*
* @note This does synchronous transfer.
* @note This assumes that the size of this vector is equal to the dim of the input vector.
*/
template <int BlockDimension>
void copyFromHost(const Dune::BlockVector<Dune::FieldVector<T, BlockDimension>>& bvector)
{
// TODO: [perf] vector.dim() can be replaced by bvector.N() * BlockDimension
if (detail::to_size_t(m_numberOfElements) != bvector.dim()) {
OPM_THROW(std::runtime_error,
fmt::format("Given incompatible vector size. CuVector has size {}, \n"
"however, BlockVector has N() = {}, and dim = {}.",
m_numberOfElements,
bvector.N(),
bvector.dim()));
}
const auto dataPointer = static_cast<const T*>(&(bvector[0][0]));
copyFromHost(dataPointer, m_numberOfElements);
}
/**
* @brief copyToHost copies data to a Dune::BlockVector
* @param bvector the vector to copy to
*
* @note This does synchronous transfer.
* @note This assumes that the size of this vector is equal to the dim of the input vector.
*/
template <int BlockDimension>
void copyToHost(Dune::BlockVector<Dune::FieldVector<T, BlockDimension>>& bvector) const
{
// TODO: [perf] vector.dim() can be replaced by bvector.N() * BlockDimension
if (detail::to_size_t(m_numberOfElements) != bvector.dim()) {
OPM_THROW(std::runtime_error,
fmt::format("Given incompatible vector size. CuVector has size {},\n however, the BlockVector "
"has has N() = {}, and dim() = {}.",
m_numberOfElements,
bvector.N(),
bvector.dim()));
}
const auto dataPointer = static_cast<T*>(&(bvector[0][0]));
copyToHost(dataPointer, m_numberOfElements);
}
/**
* @brief copyFromHost copies numberOfElements from the CPU memory dataPointer
* @param dataPointer raw pointer to CPU memory
* @param numberOfElements number of elements to copy
* @note This does synchronous transfer.
* @note assumes that this vector has numberOfElements elements
*/
void copyFromHost(const T* dataPointer, size_t numberOfElements);
/**
* @brief copyFromHost copies numberOfElements to the CPU memory dataPointer
* @param dataPointer raw pointer to CPU memory
* @param numberOfElements number of elements to copy
* @note This does synchronous transfer.
* @note assumes that this vector has numberOfElements elements
*/
void copyToHost(T* dataPointer, size_t numberOfElements) const;
/**
* @brief copyToHost copies data from an std::vector
* @param data the vector to copy from
*
* @note This does synchronous transfer.
* @note This assumes that the size of this vector is equal to the size of the input vector.
*/
void copyFromHost(const std::vector<T>& data);
/**
* @brief copyToHost copies data to an std::vector
* @param data the vector to copy to
*
* @note This does synchronous transfer.
* @note This assumes that the size of this vector is equal to the size of the input vector.
*/
void copyToHost(std::vector<T>& data) const;
/**
* @brief operator *= multiplies every element by scalar
* @param scalar the scalar to with which to multiply every element
*
* @note This operation is asynchronous.
*
* @note int is not supported
*/
CuVector<T>& operator*=(const T& scalar);
/**
* @brief axpy sets this vector equal to this + alha * y
* @param alpha the scalar with which to multiply y
* @param y input vector of same size as this
*
* @note this will call CuBlas in the background
* @note int is not supported
*/
CuVector<T>& axpy(T alpha, const CuVector<T>& y);
/**
* @brief operator+= adds the other vector to this vector
*
* @note this will call CuBlas in the background
* @note int is not supported
*/
CuVector<T>& operator+=(const CuVector<T>& other);
/**
* @brief operator-= subtracts the other vector from this vector
*
* @note this will call CuBlas in the background
* @note int is not supported
*/
CuVector<T>& operator-=(const CuVector<T>& other);
/**
* @brief dot computes the dot product (standard inner product) against the other vector
* @param other vector of same size as this
* @note this will call CuBlas in the background
* @note int is not supported
*
* @return the result on the inner product
*/
T dot(const CuVector<T>& other) const;
/**
* @brief returns the l2 norm of the vector
* @note this will call CuBlas in the background
* @note int is not supported
*
* @return the l2 norm
*/
T two_norm() const;
/**
* Computes the dot product sum_i this[indexSet[i]] * other[indexSet[i]]
*
* @note int is not supported
*/
T dot(const CuVector<T>& other, const CuVector<int>& indexSet, CuVector<T>& buffer) const;
/**
* Computes the norm sqrt(sum_i this[indexSet[i]] * this[indexSet[i]])
*
* @note int is not supported
*/
T two_norm(const CuVector<int>& indexSet, CuVector<T>& buffer) const;
/**
* Computes the dot product sum_i this[indexSet[i]] * other[indexSet[i]]
*
* @note int is not supported
*/
T dot(const CuVector<T>& other, const CuVector<int>& indexSet) const;
/**
* Computes the norm sqrt(sum_i this[indexSet[i]] * this[indexSet[i]])
*
* @note int is not supported
*/
T two_norm(const CuVector<int>& indexSet) const;
/**
* @brief dim returns the dimension (number of T elements) in the vector
* @return number of elements
*/
size_type dim() const;
/**
* @brief creates an std::vector of the same size and copies the GPU data to this std::vector
* @return an std::vector containing the elements copied from the GPU.
*/
std::vector<T> asStdVector() const;
/**
* @brief creates an std::vector of the same size and copies the GPU data to this std::vector
* @return an std::vector containing the elements copied from the GPU.
*/
template <int blockSize>
Dune::BlockVector<Dune::FieldVector<T, blockSize>> asDuneBlockVector() const
{
OPM_ERROR_IF(dim() % blockSize != 0,
fmt::format("blockSize is not a multiple of dim(). Given blockSize = {}, and dim() = {}",
blockSize,
dim()));
Dune::BlockVector<Dune::FieldVector<T, blockSize>> returnValue(dim() / blockSize);
copyToHost(returnValue);
return returnValue;
}
/**
* @brief setZeroAtIndexSet for each element in indexSet, sets the index of this vector to be zero
* @param indexSet the set of indices to set to zero
*
* @note Assumes all indices are within range
*
* This is supposed to do the same as the following code on the CPU:
* @code{.cpp}
* for (int index : indexSet) {
* this->data[index] = T(0.0);
* }
* @endcode
*/
void setZeroAtIndexSet(const CuVector<int>& indexSet);
private:
T* m_dataOnDevice = nullptr;
// Note that we store this as int to make sure we are always cublas compatible.
// This gives the added benefit that a size_t to int conversion error occurs during construction.
const int m_numberOfElements;
detail::CuBlasHandle& m_cuBlasHandle;
void assertSameSize(const CuVector<T>& other) const;
void assertSameSize(int size) const;
void assertHasElements() const;
};
} // namespace Opm::cuistl
#endif

View File

@ -0,0 +1,86 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CU_MATRIX_DESCRIPTION_HPP
#define CU_MATRIX_DESCRIPTION_HPP
#include <opm/simulators/linalg/cuistl/detail/CuSparseResource.hpp>
#include <opm/simulators/linalg/cuistl/detail/cusparse_safe_call.hpp>
namespace Opm::cuistl::detail
{
/**
* CuSparseMatrixDescription holder. This is internal information needed for most calls to the CuSparse API.
*/
using CuSparseMatrixDescription = CuSparseResource<cusparseMatDescr_t>;
/**
* Pointer to CuSparseMatrixDescription holder. This is internal information needed for most calls to the CuSparse API.
*/
using CuSparseMatrixDescriptionPtr = std::shared_ptr<CuSparseResource<cusparseMatDescr_t>>;
/**
* @brief createMatrixDescription creates a default matrix description
* @return a matrix description to a general sparse matrix with zero based indexing.
*/
inline CuSparseMatrixDescriptionPtr
createMatrixDescription()
{
auto description = std::make_shared<CuSparseMatrixDescription>();
// Note: We always want to use zero base indexing.
OPM_CUSPARSE_SAFE_CALL(cusparseSetMatType(description->get(), CUSPARSE_MATRIX_TYPE_GENERAL));
OPM_CUSPARSE_SAFE_CALL(cusparseSetMatIndexBase(description->get(), CUSPARSE_INDEX_BASE_ZERO));
return description;
}
/**
* @brief createLowerDiagonalDescription creates a lower diagonal matrix description
* @return a lower diagonal matrix description overlapped with options from ::Opm::cuistl::detail::createMatrixDescription()
*
* @note This will assume it has a unit diagonal
*/
inline CuSparseMatrixDescriptionPtr
createLowerDiagonalDescription()
{
auto description = createMatrixDescription();
OPM_CUSPARSE_SAFE_CALL(cusparseSetMatFillMode(description->get(), CUSPARSE_FILL_MODE_LOWER));
OPM_CUSPARSE_SAFE_CALL(cusparseSetMatDiagType(description->get(), CUSPARSE_DIAG_TYPE_UNIT));
return description;
}
/**
* @brief createUpperDiagonalDescription creates an upper diagonal matrix description
* @return an upper diagonal matrix description overlapped with options from ::Opm::cuistl::detail::createMatrixDescription()
*
* @note This will assume it has a non-unit diagonal.
*/
inline CuSparseMatrixDescriptionPtr
createUpperDiagonalDescription()
{
auto description = createMatrixDescription();
OPM_CUSPARSE_SAFE_CALL(cusparseSetMatFillMode(description->get(), CUSPARSE_FILL_MODE_UPPER));
OPM_CUSPARSE_SAFE_CALL(cusparseSetMatDiagType(description->get(), CUSPARSE_DIAG_TYPE_NON_UNIT));
return description;
}
} // namespace Opm::cuistl::detail
#endif // CU_MATRIX_DESCRIPTION_HPP

View File

@ -0,0 +1,99 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CUSPARSERESOURCE_HPP
#define CUSPARSERESOURCE_HPP
#include <cusparse.h>
#include <functional>
#include <memory>
#include <type_traits>
namespace Opm::cuistl::detail
{
/**
* @brief The CuSparseResource class wraps a CuSparse resource in a proper RAII pattern
*
* Current we support the following types for T:
* - bsrilu02Info_t
* - bsrsv2Info_t
* - cusparseMatDescr_t
*
* More types are in principle supported by supplying a manual Creator and Destructor.
*
* In addition to acting as an easier-to-use smart_ptr specialized for these types, it
* also adds error checking in the construction and deletion of these resources,
* which a plain std::smart_ptr would not support out of the box. It also solves the
* caveat of the pointer types of cuSparse resources not being exposed properly.
*
* Example usage:
* @code{.cpp}
* #include <opm/simulator/linalg/cuistl/detail/CuSparseResource.hpp>
*
* void someFunction() {
* auto resource = CuSparseResource<cuSparseMatDescr_t>();
* }
* @endcode
*/
template <class T>
class CuSparseResource
{
public:
using CreatorType = typename std::function<cusparseStatus_t(T*)>;
using DeleterType = typename std::function<cusparseStatus_t(T)>;
/**
* @brief CuSparseResource creates a new instance by calling creator, and will delete using deleter
* @param creator a functor used to create an instance
* @param deleter a functor used to delete the instance
*
* @note Using this constructor it is possible to add support for new types not already accounted for.
*/
CuSparseResource(CreatorType creator, DeleterType deleter);
/**
* @brief CuSparseResource will automatically select the proper creator and deleter based on the type (and throw an exception if not available)
*/
CuSparseResource();
/**
* Calls the deleter functor
*/
~CuSparseResource();
// This should not be copyable.
CuSparseResource(const CuSparseResource&) = delete;
CuSparseResource& operator=(const CuSparseResource&) = delete;
/**
* @brief get returns the raw pointer to the resource.
*/
T get()
{
return m_resource;
}
private:
T m_resource;
DeleterType m_deleter;
};
} // namespace Opm::cuistl::impl
#include <opm/simulators/linalg/cuistl/detail/CuSparseResource_impl.hpp>
#endif // CUSPARSERESOURCE_HPP

View File

@ -0,0 +1,103 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exception>
#include <opm/common/ErrorMacros.hpp>
#include <opm/simulators/linalg/cuistl/detail/cusparse_safe_call.hpp>
namespace Opm::cuistl::detail
{
namespace
{
template <class T>
struct CuSparseDeleteAndCreate {
};
template <>
struct CuSparseDeleteAndCreate<bsrilu02Info_t> {
using DeleterType = typename CuSparseResource<bsrilu02Info_t>::DeleterType;
using CreatorType = typename CuSparseResource<bsrilu02Info_t>::CreatorType;
static DeleterType getDeleter()
{
return cusparseDestroyBsrilu02Info;
}
static CreatorType getCreator()
{
return cusparseCreateBsrilu02Info;
}
};
template <>
struct CuSparseDeleteAndCreate<bsrsv2Info_t> {
using DeleterType = typename CuSparseResource<bsrsv2Info_t>::DeleterType;
using CreatorType = typename CuSparseResource<bsrsv2Info_t>::CreatorType;
static DeleterType getDeleter()
{
return cusparseDestroyBsrsv2Info;
}
static CreatorType getCreator()
{
return cusparseCreateBsrsv2Info;
}
};
template <>
struct CuSparseDeleteAndCreate<cusparseMatDescr_t> {
using DeleterType = typename CuSparseResource<cusparseMatDescr_t>::DeleterType;
using CreatorType = typename CuSparseResource<cusparseMatDescr_t>::CreatorType;
static DeleterType getDeleter()
{
return cusparseDestroyMatDescr;
}
static CreatorType getCreator()
{
return cusparseCreateMatDescr;
}
};
} // namespace
template <class T>
CuSparseResource<T>::CuSparseResource(CreatorType creator, DeleterType deleter)
: m_deleter(deleter)
{
// TODO: This should probably not use this macro since it will disguise the
// proper name of the function being called.
OPM_CUSPARSE_SAFE_CALL(creator(&m_resource));
}
template <class T>
CuSparseResource<T>::CuSparseResource()
: CuSparseResource<T>(CuSparseDeleteAndCreate<T>::getCreator(), CuSparseDeleteAndCreate<T>::getDeleter())
{
}
template <class T>
CuSparseResource<T>::~CuSparseResource()
{
// TODO: This should probably not use this macro since it will disguise the
// proper name of the function being called.
OPM_CUSPARSE_WARN_IF_ERROR(m_deleter(m_resource));
}
} // namespace Opm::cuistl::detail

View File

@ -0,0 +1,168 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Contains wrappers to make the CuBLAS library behave as a modern C++ library with function overlading.
*
* In simple terms, this allows one to call say cublasScal on both double and single precisision,
* instead of calling cublasDscal and cublasSscal respectively.
*/
#ifndef OPM_CUBLASWRAPPER_HEADER_INCLUDED
#define OPM_CUBLASWRAPPER_HEADER_INCLUDED
#include <cublas_v2.h>
#include <opm/common/ErrorMacros.hpp>
namespace Opm::cuistl::detail
{
inline cublasStatus_t
cublasScal(cublasHandle_t handle,
int n,
const double* alpha, /* host or device pointer */
double* x,
int incx)
{
return cublasDscal(handle,
n,
alpha, /* host or device pointer */
x,
incx);
}
inline cublasStatus_t
cublasScal(cublasHandle_t handle,
int n,
const float* alpha, /* host or device pointer */
float* x,
int incx)
{
return cublasSscal(handle,
n,
alpha, /* host or device pointer */
x,
incx);
}
inline cublasStatus_t
cublasScal([[maybe_unused]] cublasHandle_t handle,
[[maybe_unused]] int n,
[[maybe_unused]] const int* alpha, /* host or device pointer */
[[maybe_unused]] int* x,
[[maybe_unused]] int incx)
{
OPM_THROW(std::runtime_error, "cublasScal multiplication for integer vectors is not implemented yet.");
}
inline cublasStatus_t
cublasAxpy(cublasHandle_t handle,
int n,
const double* alpha, /* host or device pointer */
const double* x,
int incx,
double* y,
int incy)
{
return cublasDaxpy(handle,
n,
alpha, /* host or device pointer */
x,
incx,
y,
incy);
}
inline cublasStatus_t
cublasAxpy(cublasHandle_t handle,
int n,
const float* alpha, /* host or device pointer */
const float* x,
int incx,
float* y,
int incy)
{
return cublasSaxpy(handle,
n,
alpha, /* host or device pointer */
x,
incx,
y,
incy);
}
inline cublasStatus_t
cublasAxpy([[maybe_unused]] cublasHandle_t handle,
[[maybe_unused]] int n,
[[maybe_unused]] const int* alpha, /* host or device pointer */
[[maybe_unused]] const int* x,
[[maybe_unused]] int incx,
[[maybe_unused]] int* y,
[[maybe_unused]] int incy)
{
OPM_THROW(std::runtime_error, "axpy multiplication for integer vectors is not implemented yet.");
}
inline cublasStatus_t
cublasDot(cublasHandle_t handle, int n, const double* x, int incx, const double* y, int incy, double* result)
{
return cublasDdot(handle, n, x, incx, y, incy, result);
}
inline cublasStatus_t
cublasDot(cublasHandle_t handle, int n, const float* x, int incx, const float* y, int incy, float* result)
{
return cublasSdot(handle, n, x, incx, y, incy, result);
}
inline cublasStatus_t
cublasDot([[maybe_unused]] cublasHandle_t handle,
[[maybe_unused]] int n,
[[maybe_unused]] const int* x,
[[maybe_unused]] int incx,
[[maybe_unused]] const int* y,
[[maybe_unused]] int incy,
[[maybe_unused]] int* result)
{
OPM_THROW(std::runtime_error, "inner product for integer vectors is not implemented yet.");
}
inline cublasStatus_t
cublasNrm2(cublasHandle_t handle, int n, const double* x, int incx, double* result)
{
return cublasDnrm2(handle, n, x, incx, result);
}
inline cublasStatus_t
cublasNrm2(cublasHandle_t handle, int n, const float* x, int incx, float* result)
{
return cublasSnrm2(handle, n, x, incx, result);
}
inline cublasStatus_t
cublasNrm2([[maybe_unused]] cublasHandle_t handle,
[[maybe_unused]] int n,
[[maybe_unused]] const int* x,
[[maybe_unused]] int incx,
[[maybe_unused]] int* result)
{
OPM_THROW(std::runtime_error, "norm2 for integer vectors is not implemented yet.");
}
} // namespace Opm::cuistl::detail
#endif

View File

@ -0,0 +1,27 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CUSPARSE_CONSTANTS_HPP
#define CUSPARSE_CONSTANTS_HPP
#include <cusparse.h>
namespace Opm::cuistl::detail
{
const constexpr auto CUSPARSE_MATRIX_ORDER = CUSPARSE_DIRECTION_ROW;
}
#endif

View File

@ -0,0 +1,454 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Contains wrappers to make the CuSPARSE library behave as a modern C++ library with function overlading.
*
* In simple terms, this allows one to call say cusparseBsrilu02_analysis on both double and single precisision,
* instead of calling cusparseDbsrilu02_analysis and cusparseDbsrilu02_analysis respectively.
*/
#include <cusparse.h>
#include <type_traits>
#ifndef OPM_CUSPARSE_WRAPPER_HPP
#define OPM_CUSPARSE_WRAPPER_HPP
namespace Opm::cuistl::detail
{
inline cusparseStatus_t
cusparseBsrilu02_analysis(cusparseHandle_t handle,
cusparseDirection_t dirA,
int mb,
int nnzb,
const cusparseMatDescr_t descrA,
double* bsrSortedVal,
const int* bsrSortedRowPtr,
const int* bsrSortedColInd,
int blockDim,
bsrilu02Info_t info,
cusparseSolvePolicy_t policy,
void* pBuffer)
{
return cusparseDbsrilu02_analysis(handle,
dirA,
mb,
nnzb,
descrA,
bsrSortedVal,
bsrSortedRowPtr,
bsrSortedColInd,
blockDim,
info,
policy,
pBuffer);
}
inline cusparseStatus_t
cusparseBsrsv2_analysis(cusparseHandle_t handle,
cusparseDirection_t dirA,
cusparseOperation_t transA,
int mb,
int nnzb,
const cusparseMatDescr_t descrA,
const double* bsrSortedValA,
const int* bsrSortedRowPtrA,
const int* bsrSortedColIndA,
int blockDim,
bsrsv2Info_t info,
cusparseSolvePolicy_t policy,
void* pBuffer)
{
return cusparseDbsrsv2_analysis(handle,
dirA,
transA,
mb,
nnzb,
descrA,
bsrSortedValA,
bsrSortedRowPtrA,
bsrSortedColIndA,
blockDim,
info,
policy,
pBuffer);
}
inline cusparseStatus_t
cusparseBsrsv2_analysis(cusparseHandle_t handle,
cusparseDirection_t dirA,
cusparseOperation_t transA,
int mb,
int nnzb,
const cusparseMatDescr_t descrA,
const float* bsrSortedValA,
const int* bsrSortedRowPtrA,
const int* bsrSortedColIndA,
int blockDim,
bsrsv2Info_t info,
cusparseSolvePolicy_t policy,
void* pBuffer)
{
return cusparseSbsrsv2_analysis(handle,
dirA,
transA,
mb,
nnzb,
descrA,
bsrSortedValA,
bsrSortedRowPtrA,
bsrSortedColIndA,
blockDim,
info,
policy,
pBuffer);
}
inline cusparseStatus_t
cusparseBsrilu02_analysis(cusparseHandle_t handle,
cusparseDirection_t dirA,
int mb,
int nnzb,
const cusparseMatDescr_t descrA,
float* bsrSortedVal,
const int* bsrSortedRowPtr,
const int* bsrSortedColInd,
int blockDim,
bsrilu02Info_t info,
cusparseSolvePolicy_t policy,
void* pBuffer)
{
return cusparseSbsrilu02_analysis(handle,
dirA,
mb,
nnzb,
descrA,
bsrSortedVal,
bsrSortedRowPtr,
bsrSortedColInd,
blockDim,
info,
policy,
pBuffer);
}
inline cusparseStatus_t
cusparseBsrsv2_solve(cusparseHandle_t handle,
cusparseDirection_t dirA,
cusparseOperation_t transA,
int mb,
int nnzb,
const double* alpha,
const cusparseMatDescr_t descrA,
const double* bsrSortedValA,
const int* bsrSortedRowPtrA,
const int* bsrSortedColIndA,
int blockDim,
bsrsv2Info_t info,
const double* f,
double* x,
cusparseSolvePolicy_t policy,
void* pBuffer)
{
return cusparseDbsrsv2_solve(handle,
dirA,
transA,
mb,
nnzb,
alpha,
descrA,
bsrSortedValA,
bsrSortedRowPtrA,
bsrSortedColIndA,
blockDim,
info,
f,
x,
policy,
pBuffer);
}
inline cusparseStatus_t
cusparseBsrsv2_solve(cusparseHandle_t handle,
cusparseDirection_t dirA,
cusparseOperation_t transA,
int mb,
int nnzb,
const float* alpha,
const cusparseMatDescr_t descrA,
const float* bsrSortedValA,
const int* bsrSortedRowPtrA,
const int* bsrSortedColIndA,
int blockDim,
bsrsv2Info_t info,
const float* f,
float* x,
cusparseSolvePolicy_t policy,
void* pBuffer)
{
return cusparseSbsrsv2_solve(handle,
dirA,
transA,
mb,
nnzb,
alpha,
descrA,
bsrSortedValA,
bsrSortedRowPtrA,
bsrSortedColIndA,
blockDim,
info,
f,
x,
policy,
pBuffer);
}
inline cusparseStatus_t
cusparseBsrilu02_bufferSize(cusparseHandle_t handle,
cusparseDirection_t dirA,
int mb,
int nnzb,
const cusparseMatDescr_t descrA,
double* bsrSortedVal,
const int* bsrSortedRowPtr,
const int* bsrSortedColInd,
int blockDim,
bsrilu02Info_t info,
int* pBufferSizeInBytes)
{
return cusparseDbsrilu02_bufferSize(handle,
dirA,
mb,
nnzb,
descrA,
bsrSortedVal,
bsrSortedRowPtr,
bsrSortedColInd,
blockDim,
info,
pBufferSizeInBytes);
}
inline cusparseStatus_t
cusparseBsrilu02_bufferSize(cusparseHandle_t handle,
cusparseDirection_t dirA,
int mb,
int nnzb,
const cusparseMatDescr_t descrA,
float* bsrSortedVal,
const int* bsrSortedRowPtr,
const int* bsrSortedColInd,
int blockDim,
bsrilu02Info_t info,
int* pBufferSizeInBytes)
{
return cusparseSbsrilu02_bufferSize(handle,
dirA,
mb,
nnzb,
descrA,
bsrSortedVal,
bsrSortedRowPtr,
bsrSortedColInd,
blockDim,
info,
pBufferSizeInBytes);
}
inline cusparseStatus_t
cusparseBsrsv2_bufferSize(cusparseHandle_t handle,
cusparseDirection_t dirA,
cusparseOperation_t transA,
int mb,
int nnzb,
const cusparseMatDescr_t descrA,
double* bsrSortedValA,
const int* bsrSortedRowPtrA,
const int* bsrSortedColIndA,
int blockDim,
bsrsv2Info_t info,
int* pBufferSizeInBytes)
{
return cusparseDbsrsv2_bufferSize(handle,
dirA,
transA,
mb,
nnzb,
descrA,
bsrSortedValA,
bsrSortedRowPtrA,
bsrSortedColIndA,
blockDim,
info,
pBufferSizeInBytes);
}
inline cusparseStatus_t
cusparseBsrsv2_bufferSize(cusparseHandle_t handle,
cusparseDirection_t dirA,
cusparseOperation_t transA,
int mb,
int nnzb,
const cusparseMatDescr_t descrA,
float* bsrSortedValA,
const int* bsrSortedRowPtrA,
const int* bsrSortedColIndA,
int blockDim,
bsrsv2Info_t info,
int* pBufferSizeInBytes)
{
return cusparseSbsrsv2_bufferSize(handle,
dirA,
transA,
mb,
nnzb,
descrA,
bsrSortedValA,
bsrSortedRowPtrA,
bsrSortedColIndA,
blockDim,
info,
pBufferSizeInBytes);
}
inline cusparseStatus_t
cusparseBsrilu02(cusparseHandle_t handle,
cusparseDirection_t dirA,
int mb,
int nnzb,
const cusparseMatDescr_t descrA,
double* bsrSortedVal,
const int* bsrSortedRowPtr,
const int* bsrSortedColInd,
int blockDim,
bsrilu02Info_t info,
cusparseSolvePolicy_t policy,
void* pBuffer)
{
return cusparseDbsrilu02(handle,
dirA,
mb,
nnzb,
descrA,
bsrSortedVal,
bsrSortedRowPtr,
bsrSortedColInd,
blockDim,
info,
policy,
pBuffer);
}
inline cusparseStatus_t
cusparseBsrilu02(cusparseHandle_t handle,
cusparseDirection_t dirA,
int mb,
int nnzb,
const cusparseMatDescr_t descrA,
float* bsrSortedVal,
const int* bsrSortedRowPtr,
const int* bsrSortedColInd,
int blockDim,
bsrilu02Info_t info,
cusparseSolvePolicy_t policy,
void* pBuffer)
{
return cusparseSbsrilu02(handle,
dirA,
mb,
nnzb,
descrA,
bsrSortedVal,
bsrSortedRowPtr,
bsrSortedColInd,
blockDim,
info,
policy,
pBuffer);
}
inline cusparseStatus_t
cusparseBsrmv(cusparseHandle_t handle,
cusparseDirection_t dirA,
cusparseOperation_t transA,
int mb,
int nb,
int nnzb,
const double* alpha,
const cusparseMatDescr_t descrA,
const double* bsrSortedValA,
const int* bsrSortedRowPtrA,
const int* bsrSortedColIndA,
int blockDim,
const double* x,
const double* beta,
double* y)
{
return cusparseDbsrmv(handle,
dirA,
transA,
mb,
nb,
nnzb,
alpha,
descrA,
bsrSortedValA,
bsrSortedRowPtrA,
bsrSortedColIndA,
blockDim,
x,
beta,
y);
}
inline cusparseStatus_t
cusparseBsrmv(cusparseHandle_t handle,
cusparseDirection_t dirA,
cusparseOperation_t transA,
int mb,
int nb,
int nnzb,
const float* alpha,
const cusparseMatDescr_t descrA,
const float* bsrSortedValA,
const int* bsrSortedRowPtrA,
const int* bsrSortedColIndA,
int blockDim,
const float* x,
const float* beta,
float* y)
{
return cusparseSbsrmv(handle,
dirA,
transA,
mb,
nb,
nnzb,
alpha,
descrA,
bsrSortedValA,
bsrSortedRowPtrA,
bsrSortedColIndA,
blockDim,
x,
beta,
y);
}
} // namespace Opm::cuistl::detail
#endif

View File

@ -0,0 +1,107 @@
/*
Copyright 2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_CUISTL_SAFE_CONVERSION_HPP
#define OPM_CUISTL_SAFE_CONVERSION_HPP
#include <cstddef>
#include <fmt/format.h>
#include <limits>
#include <opm/common/ErrorMacros.hpp>
#include <type_traits>
/**
* Provides various utilities for doing signed to unsigned conversion, unsigned to signed, 32 bits to 64 bits and 64
* bits to 32 bits.
*
* The main use case within cuistl is that the cusparse library requires signed int for all its size parameters,
* while Dune::BlockVector (and relatives) use unsigned size_t.
*/
namespace Opm::cuistl::detail
{
/**
* @brief to_int converts a (on most relevant platforms) 64 bits unsigned size_t to a signed 32 bits signed int
* @param s the unsigned integer
* @throw std::invalid_argument exception if s is out of range for an int
* @return converted s to int if s is within the range of int
*
* @todo This can be done for more generic types, but then it is probably wise to wait for C++20's cmp-functions
*/
inline int
to_int(std::size_t s)
{
static_assert(
std::is_signed_v<int>,
"Weird architecture or my understanding of the standard is flawed. Better have a look at this function.");
static_assert(
!std::is_signed_v<std::size_t>,
"Weird architecture or my understanding of the standard is flawed. Better have a look at this function.");
static_assert(
sizeof(int) <= sizeof(std::size_t),
"Weird architecture or my understanding of the standard is flawed. Better have a look at this function.");
if (s > std::size_t(std::numeric_limits<int>::max())) {
OPM_THROW(std::invalid_argument,
fmt::format("Trying to convert {} to int, but it is out of range. Maximum possible int: {}. ",
s,
std::numeric_limits<int>::max()));
}
// We know it will be in range here:
return int(s);
}
/**
* @brief to_size_t converts a (on most relevant platforms) a 32 bit signed int to a 64 bits unsigned int
* @param i the signed integer
* @return converted i to size_t if it is a non-negative integer.
*
* @throw std::invalid_argument if i is negative.
* @todo This can be done for more generic types, but then it is probably wise to wait for C++20's cmp-functions
*/
inline std::size_t
to_size_t(int i)
{
static_assert(
std::is_signed_v<int>,
"Weird architecture or my understanding of the standard is flawed. Better have a look at this function.");
static_assert(
!std::is_signed_v<std::size_t>,
"Weird architecture or my understanding of the standard is flawed. Better have a look at this function.");
static_assert(
sizeof(int) <= sizeof(std::size_t),
"Weird architecture or my understanding of the standard is flawed. Better have a look at this function.");
if (i < int(0)) {
OPM_THROW(std::invalid_argument, fmt::format("Trying to convert the negative number {} to size_t.", i));
}
return std::size_t(i);
}
} // namespace Opm::cuistl::detail
#endif

View File

@ -0,0 +1,112 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/simulators/linalg/cuistl/detail/vector_operations.hpp>
// TODO: [perf] Get rid of thrust.
#include <thrust/device_ptr.h>
#include <thrust/reduce.h>
namespace Opm::cuistl::detail
{
namespace
{
template <class T>
__global__ void setZeroAtIndexSetKernel(T* devicePointer, size_t numberOfElements, const int* indices)
{
const auto globalIndex = blockDim.x * blockIdx.x + threadIdx.x;
if (globalIndex < numberOfElements) {
devicePointer[indices[globalIndex]] = T(0);
}
}
template <class T>
__global__ void setVectorValueKernel(T* devicePointer, size_t numberOfElements, T value)
{
const auto globalIndex = blockDim.x * blockIdx.x + threadIdx.x;
if (globalIndex < numberOfElements) {
devicePointer[globalIndex] = value;
}
}
template <class T>
__global__ void
elementWiseMultiplyKernel(const T* a, const T* b, T* buffer, size_t numberOfElements, const int* indices)
{
const auto globalIndex = blockDim.x * blockIdx.x + threadIdx.x;
// TODO: [perf] Is it faster to just use a mask? Probably does not matter either way
// This is hopefully not where we will spend most of our time.
if (globalIndex < numberOfElements) {
buffer[globalIndex] = a[indices[globalIndex]] * b[indices[globalIndex]];
}
}
constexpr inline size_t getThreads([[maybe_unused]] size_t numberOfElements)
{
return 1024;
}
inline size_t getBlocks(size_t numberOfElements)
{
const auto threads = getThreads(numberOfElements);
return (numberOfElements + threads - 1) / threads;
}
} // namespace
template <class T>
void
setVectorValue(T* deviceData, size_t numberOfElements, const T& value)
{
setVectorValueKernel<<<getBlocks(numberOfElements), getThreads(numberOfElements)>>>(
deviceData, numberOfElements, value);
}
template void setVectorValue(double*, size_t, const double&);
template void setVectorValue(float*, size_t, const float&);
template void setVectorValue(int*, size_t, const int&);
template <class T>
void
setZeroAtIndexSet(T* deviceData, size_t numberOfElements, const int* indices)
{
setZeroAtIndexSetKernel<<<getBlocks(numberOfElements), getThreads(numberOfElements)>>>(
deviceData, numberOfElements, indices);
}
template void setZeroAtIndexSet(double*, size_t, const int*);
template void setZeroAtIndexSet(float*, size_t, const int*);
template void setZeroAtIndexSet(int*, size_t, const int*);
template <class T>
T
innerProductAtIndices(const T* deviceA, const T* deviceB, T* buffer, size_t numberOfElements, const int* indices)
{
elementWiseMultiplyKernel<<<getBlocks(numberOfElements), getThreads(numberOfElements)>>>(
deviceA, deviceB, buffer, numberOfElements, indices);
// TODO: [perf] Get rid of thrust and use a more direct reduction here.
auto bufferAsDevicePointer = thrust::device_pointer_cast(buffer);
return thrust::reduce(bufferAsDevicePointer, bufferAsDevicePointer + numberOfElements);
}
template double innerProductAtIndices(const double*, const double*, double* buffer, size_t, const int*);
template float innerProductAtIndices(const float*, const float*, float* buffer, size_t, const int*);
template int innerProductAtIndices(const int*, const int*, int* buffer, size_t, const int*);
} // namespace Opm::cuistl::impl

View File

@ -0,0 +1,58 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_CUISTL_VECTOR_OPERATIONS_HPP
#define OPM_CUISTL_VECTOR_OPERATIONS_HPP
#include <cstddef>
namespace Opm::cuistl::detail
{
/**
* @brief setVectorValue sets every element of deviceData to value
* @param deviceData pointer to GPU memory
* @param numberOfElements number of elements to set to value
* @param value the value to use
*/
template <class T>
void setVectorValue(T* deviceData, size_t numberOfElements, const T& value);
/**
* @brief setZeroAtIndexSet sets deviceData to zero in the indices of contained in indices
* @param deviceData the data to operate on (device memory)
* @param numberOfElements number of indices
* @param indices the indices to use (device memory)
*/
template <class T>
void setZeroAtIndexSet(T* deviceData, size_t numberOfElements, const int* indices);
/**
* @brief innerProductAtIndices computes the inner product between deviceA[indices] and deviceB[indices]
* @param deviceA data A (device memory)
* @param deviceB data B (device memory)
* @param buffer a buffer with number of elements equal to numberOfElements (device memory)
* @param numberOfElements number of indices
* @param indices the indices to compute the inner product over (device memory)
* @return the result of the inner product
*
* @note This is equivalent to projecting the vectors to the indices contained in indices, then doing the inner product
* of those projected vectors.
*/
template <class T>
T innerProductAtIndices(const T* deviceA, const T* deviceB, T* buffer, size_t numberOfElements, const int* indices);
} // namespace Opm::cuistl::detail
#endif

View File

@ -0,0 +1,181 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#define BOOST_TEST_MODULE TestCuSparseMatrix
#include <boost/test/unit_test.hpp>
#include <dune/istl/bcrsmatrix.hh>
#include <memory>
#include <opm/simulators/linalg/cuistl/CuSparseMatrix.hpp>
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
#include <opm/simulators/linalg/cuistl/detail/cuda_safe_call.hpp>
#include <random>
BOOST_AUTO_TEST_CASE(TestConstruction1D)
{
// Here we will test a simple 1D finite difference scheme for
// the Laplace equation:
//
// -\Delta u = f on [0,1]
//
// Using a central difference approximation of \Delta u, this can
// be approximated by
//
// -(u_{i+1}-2u_i+u_{i-1})/Dx^2 = f(x_i)
//
// giving rise to the matrix
//
// -2 1 0 0 ... 0 0
// 1 -2 1 0 0 ... 0
// ....
// 0 0 0 ...1 -2 1
// 0 0 0 ... 1 -2
const int N = 5;
const int nonZeroes = N * 3 - 2;
using M = Dune::FieldMatrix<double, 1, 1>;
using SpMatrix = Dune::BCRSMatrix<M>;
SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise);
for (auto row = B.createbegin(); row != B.createend(); ++row) {
// Add nonzeros for left neighbour, diagonal and right neighbour
if (row.index() > 0) {
row.insert(row.index() - 1);
}
row.insert(row.index());
if (row.index() < B.N() - 1) {
row.insert(row.index() + 1);
}
}
// This might not be the most elegant way of filling in a Dune sparse matrix, but it works.
for (int i = 0; i < N; ++i) {
B[i][i] = -2;
if (i < N - 1) {
B[i][i + 1] = 1;
}
if (i > 0) {
B[i][i - 1] = 1;
}
}
auto cuSparseMatrix = Opm::cuistl::CuSparseMatrix<double>::fromMatrix(B);
const auto& nonZeroValuesCuda = cuSparseMatrix.getNonZeroValues();
std::vector<double> buffer(cuSparseMatrix.nonzeroes(), 0.0);
nonZeroValuesCuda.copyToHost(buffer.data(), buffer.size());
const double* nonZeroElements = static_cast<const double*>(&((B[0][0][0][0])));
BOOST_CHECK_EQUAL_COLLECTIONS(buffer.begin(), buffer.end(), nonZeroElements, nonZeroElements + B.nonzeroes());
BOOST_CHECK_EQUAL(N * 3 - 2, cuSparseMatrix.nonzeroes());
std::vector<int> rowIndicesFromCUDA(N + 1);
cuSparseMatrix.getRowIndices().copyToHost(rowIndicesFromCUDA.data(), rowIndicesFromCUDA.size());
BOOST_CHECK_EQUAL(rowIndicesFromCUDA[0], 0);
BOOST_CHECK_EQUAL(rowIndicesFromCUDA[1], 2);
for (int i = 2; i < N; ++i) {
BOOST_CHECK_EQUAL(rowIndicesFromCUDA[i], rowIndicesFromCUDA[i - 1] + 3);
}
std::vector<int> columnIndicesFromCUDA(B.nonzeroes(), 0);
cuSparseMatrix.getColumnIndices().copyToHost(columnIndicesFromCUDA.data(), columnIndicesFromCUDA.size());
BOOST_CHECK_EQUAL(columnIndicesFromCUDA[0], 0);
BOOST_CHECK_EQUAL(columnIndicesFromCUDA[1], 1);
// TODO: Check rest
}
BOOST_AUTO_TEST_CASE(RandomSparsityMatrix)
{
std::srand(0);
double nonzeroPercent = 0.2;
std::mt19937 generator;
std::uniform_real_distribution<double> distribution(0.0, 1.0);
constexpr size_t dim = 3;
const int N = 300;
using M = Dune::FieldMatrix<double, dim, dim>;
using SpMatrix = Dune::BCRSMatrix<M>;
using Vector = Dune::BlockVector<Dune::FieldVector<double, dim>>;
std::vector<std::vector<size_t>> nonzerocols(N);
int nonZeroes = 0;
for (auto row = 0; row < N; ++row) {
for (size_t col = 0; col < N; ++col) {
if (distribution(generator) < nonzeroPercent) {
nonzerocols.at(row).push_back(col);
nonZeroes++;
}
}
}
SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise);
for (auto row = B.createbegin(); row != B.createend(); ++row) {
for (size_t j = 0; j < nonzerocols[row.index()].size(); ++j) {
row.insert(nonzerocols[row.index()][j]);
}
}
// This might not be the most elegant way of filling in a Dune sparse matrix, but it works.
for (int i = 0; i < N; ++i) {
for (size_t j = 0; j < nonzerocols[i].size(); ++j) {
for (size_t c1 = 0; c1 < dim; ++c1) {
for (size_t c2 = 0; c2 < dim; ++c2) {
B[i][nonzerocols[i][j]][c1][c2] = distribution(generator);
}
}
}
}
auto cuSparseMatrix = Opm::cuistl::CuSparseMatrix<double>::fromMatrix(B);
// check each column
for (size_t component = 0; component < N; ++component) {
std::vector<double> inputDataX(N * dim, 0.0);
inputDataX[component] = 1.0;
std::vector<double> inputDataY(N * dim, .25);
auto inputVectorX = Opm::cuistl::CuVector<double>(inputDataX.data(), inputDataX.size());
auto inputVectorY = Opm::cuistl::CuVector<double>(inputDataY.data(), inputDataY.size());
Vector xHost(N), yHost(N);
yHost = inputDataY[0];
inputVectorX.copyToHost(xHost);
const double alpha = 1.42;
cuSparseMatrix.usmv(alpha, inputVectorX, inputVectorY);
inputVectorY.copyToHost(inputDataY);
B.usmv(alpha, xHost, yHost);
for (size_t i = 0; i < N; ++i) {
for (size_t c = 0; c < dim; ++c) {
BOOST_CHECK_CLOSE(inputDataY[i * dim + c], yHost[i][c], 1e-7);
}
}
inputVectorX.copyToHost(xHost);
cuSparseMatrix.mv(inputVectorX, inputVectorY);
inputVectorY.copyToHost(inputDataY);
B.mv(xHost, yHost);
for (size_t i = 0; i < N; ++i) {
for (size_t c = 0; c < dim; ++c) {
BOOST_CHECK_CLOSE(inputDataY[i * dim + c], yHost[i][c], 1e-7);
}
}
}
}

View File

@ -0,0 +1,295 @@
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#define BOOST_TEST_MODULE TestCuVector
#include <boost/test/unit_test.hpp>
#include <cuda_runtime.h>
#include <dune/common/fvector.hh>
#include <dune/istl/bvector.hh>
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
#include <random>
BOOST_AUTO_TEST_CASE(TestDocumentedUsage)
{
auto someDataOnCPU = std::vector<double>({1.0, 2.0, 42.0, 59.9451743, 10.7132692});
auto dataOnGPU = ::Opm::cuistl::CuVector<double>(someDataOnCPU);
// Multiply by 4.0:
dataOnGPU *= 4.0;
// Get data back on CPU in another vector:
auto stdVectorOnCPU = dataOnGPU.asStdVector();
std::vector<double> correctVector(someDataOnCPU.size());
std::transform(someDataOnCPU.begin(), someDataOnCPU.end(), correctVector.begin(), [](double x) { return 4 * x; });
BOOST_CHECK_EQUAL_COLLECTIONS(
stdVectorOnCPU.begin(), stdVectorOnCPU.end(), correctVector.begin(), correctVector.end());
}
BOOST_AUTO_TEST_CASE(TestConstructionSize)
{
const int numberOfElements = 1234;
auto vectorOnGPU = Opm::cuistl::CuVector<double>(numberOfElements);
BOOST_CHECK_EQUAL(numberOfElements, vectorOnGPU.dim());
}
BOOST_AUTO_TEST_CASE(TestCopyFromHostConstructor)
{
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
BOOST_CHECK_EQUAL(data.size(), vectorOnGPU.dim());
std::vector<double> buffer(data.size(), 0.0);
vectorOnGPU.copyToHost(buffer.data(), buffer.size());
BOOST_CHECK_EQUAL_COLLECTIONS(buffer.begin(), buffer.end(), data.begin(), data.end());
}
BOOST_AUTO_TEST_CASE(TestCopyFromHostFunction)
{
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.size());
BOOST_CHECK_EQUAL(data.size(), vectorOnGPU.dim());
vectorOnGPU.copyFromHost(data.data(), data.size());
std::vector<double> buffer(data.size(), 0.0);
vectorOnGPU.copyToHost(buffer.data(), buffer.size());
BOOST_CHECK_EQUAL_COLLECTIONS(buffer.begin(), buffer.end(), data.begin(), data.end());
}
BOOST_AUTO_TEST_CASE(TestCopyFromBvector)
{
auto blockVector = Dune::BlockVector<Dune::FieldVector<double, 2>> {{{42, 43}, {44, 45}, {46, 47}}};
auto vectorOnGPU = Opm::cuistl::CuVector<double>(blockVector.dim());
vectorOnGPU.copyFromHost(blockVector);
std::vector<double> buffer(vectorOnGPU.dim());
vectorOnGPU.copyToHost(buffer.data(), buffer.size());
BOOST_CHECK_EQUAL_COLLECTIONS(
buffer.begin(), buffer.end(), &blockVector[0][0], &blockVector[0][0] + blockVector.dim());
}
BOOST_AUTO_TEST_CASE(TestCopyToBvector)
{
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7, 8, 9}};
auto blockVector = Dune::BlockVector<Dune::FieldVector<double, 3>>(3);
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
vectorOnGPU.copyToHost(blockVector);
BOOST_CHECK_EQUAL_COLLECTIONS(data.begin(), data.end(), &blockVector[0][0], &blockVector[0][0] + blockVector.dim());
}
BOOST_AUTO_TEST_CASE(TestDataPointer)
{
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7, 8, 9}};
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
std::vector<double> buffer(data.size(), 0.0);
cudaMemcpy(buffer.data(), vectorOnGPU.data(), sizeof(double) * data.size(), cudaMemcpyDeviceToHost);
BOOST_CHECK_EQUAL_COLLECTIONS(data.begin(), data.end(), buffer.begin(), buffer.end());
}
BOOST_AUTO_TEST_CASE(TestCopyScalarMultiply)
{
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
BOOST_CHECK_EQUAL(data.size(), vectorOnGPU.dim());
const double scalar = 42.25;
vectorOnGPU *= scalar;
std::vector<double> buffer(data.size(), 0.0);
vectorOnGPU.copyToHost(buffer.data(), buffer.size());
for (size_t i = 0; i < buffer.size(); ++i) {
BOOST_CHECK_EQUAL(buffer[i], scalar * data[i]);
}
}
BOOST_AUTO_TEST_CASE(TestTwoNorm)
{
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
auto twoNorm = vectorOnGPU.two_norm();
double correctAnswer = 0.0;
for (double d : data) {
correctAnswer += d * d;
}
correctAnswer = std::sqrt(correctAnswer);
BOOST_CHECK_EQUAL(correctAnswer, twoNorm);
}
BOOST_AUTO_TEST_CASE(TestDot)
{
std::vector<double> dataA {{1, 2, 3, 4, 5, 6, 7}};
std::vector<double> dataB {{8, 9, 10, 11, 12, 13, 14}};
auto vectorOnGPUA = Opm::cuistl::CuVector<double>(dataA.data(), dataA.size());
auto vectorOnGPUB = Opm::cuistl::CuVector<double>(dataB.data(), dataB.size());
auto dot = vectorOnGPUA.dot(vectorOnGPUB);
double correctAnswer = 0.0;
for (size_t i = 0; i < dataA.size(); ++i) {
correctAnswer += dataA[i] * dataB[i];
}
correctAnswer = correctAnswer;
BOOST_CHECK_EQUAL(correctAnswer, dot);
}
BOOST_AUTO_TEST_CASE(Assigment)
{
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
vectorOnGPU = 10.0;
vectorOnGPU.copyToHost(data.data(), data.size());
for (double x : data) {
BOOST_CHECK_EQUAL(10.0, x);
}
}
BOOST_AUTO_TEST_CASE(CopyAssignment)
{
std::vector<double> data {{1, 2, 3, 4, 5, 6, 7}};
auto vectorOnGPU = Opm::cuistl::CuVector<double>(data.data(), data.size());
vectorOnGPU.copyToHost(data.data(), data.size());
auto vectorOnGPUB = Opm::cuistl::CuVector<double>(data.size());
vectorOnGPUB = 4.0;
vectorOnGPUB = vectorOnGPU;
std::vector<double> output(data.size());
vectorOnGPUB.copyToHost(output.data(), output.size());
BOOST_CHECK_EQUAL_COLLECTIONS(output.begin(), output.end(), data.begin(), data.end());
}
BOOST_AUTO_TEST_CASE(RandomVectors)
{
using GVector = Opm::cuistl::CuVector<double>;
std::srand(0);
std::mt19937 generator;
std::uniform_real_distribution<double> distribution(-100.0, 100.0);
std::uniform_real_distribution<double> distribution01(.0, 1.0);
const size_t N = 1000;
const size_t retries = 100;
for (size_t retry = 0; retry < retries; ++retry) {
std::vector<double> a(N);
std::vector<double> b(N);
for (size_t i = 0; i < N; ++i) {
a[i] = distribution(generator);
b[i] = distribution(generator);
}
auto aGPU = GVector(a);
auto bGPU = GVector(b);
aGPU += bGPU;
auto aOutputPlus = aGPU.asStdVector();
for (size_t i = 0; i < N; ++i) {
BOOST_CHECK_EQUAL(aOutputPlus[i], a[i] + b[i]);
}
aGPU = GVector(a);
aGPU -= bGPU;
auto aOutputMinus = aGPU.asStdVector();
for (size_t i = 0; i < N; ++i) {
BOOST_CHECK_EQUAL(aOutputMinus[i], a[i] - b[i]);
}
aGPU = GVector(a);
auto scalar = distribution(generator);
aGPU *= scalar;
auto aOutputScalar = aGPU.asStdVector();
for (size_t i = 0; i < N; ++i) {
BOOST_CHECK_EQUAL(aOutputScalar[i], scalar * a[i]);
}
aGPU = GVector(a);
aGPU.axpy(scalar, bGPU);
auto aOutputSaxypy = aGPU.asStdVector();
for (size_t i = 0; i < N; ++i) {
BOOST_CHECK_CLOSE(aOutputSaxypy[i], a[i] + scalar * b[i], 1e-10);
}
aGPU = GVector(a);
auto dotted = aGPU.dot(bGPU);
double correct = 0.0;
for (size_t i = 0; i < N; ++i) {
correct += a[i] * b[i];
}
BOOST_CHECK_CLOSE(dotted, correct, 1e-10);
aGPU = GVector(a);
auto twoNorm = aGPU.two_norm();
double correctTwoNorm = 0.0;
for (size_t i = 0; i < N; ++i) {
correctTwoNorm += a[i] * a[i];
}
correctTwoNorm = std::sqrt(correctTwoNorm);
BOOST_CHECK_CLOSE(twoNorm, correctTwoNorm, 1e-12);
aGPU = GVector(a);
std::vector<int> indexSet;
const double rejectCriteria = 0.2;
for (size_t i = 0; i < N; ++i) {
const auto reject = distribution01(generator);
if (reject < rejectCriteria) {
indexSet.push_back(i);
}
}
auto indexSetGPU = Opm::cuistl::CuVector<int>(indexSet);
aGPU.setZeroAtIndexSet(indexSetGPU);
auto projectedA = aGPU.asStdVector();
for (size_t i = 0; i < N; ++i) {
// Yeah, O(N^2) so sue me
bool found = std::find(indexSet.begin(), indexSet.end(), i) != indexSet.end();
if (found) {
BOOST_CHECK_EQUAL(projectedA[i], 0);
} else {
BOOST_CHECK_EQUAL(projectedA[i], a[i]);
}
}
aGPU = GVector(a);
auto twoNormAtIndices = aGPU.two_norm(indexSetGPU);
double correctTwoNormAtIndices = 0.0;
for (size_t i = 0; i < indexSet.size(); ++i) {
correctTwoNormAtIndices += a[indexSet[i]] * a[indexSet[i]];
}
correctTwoNormAtIndices = std::sqrt(correctTwoNormAtIndices);
BOOST_CHECK_CLOSE(correctTwoNormAtIndices, twoNormAtIndices, 1e-13);
}
}

View File

@ -0,0 +1,58 @@
/*
Copyright 2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#define BOOST_TEST_MODULE TestSafeConversion
#include <boost/test/unit_test.hpp>
#include <opm/simulators/linalg/cuistl/detail/safe_conversion.hpp>
BOOST_AUTO_TEST_CASE(TestToIntThrowsOutofRange)
{
BOOST_CHECK_THROW(Opm::cuistl::detail::to_int(size_t(std::numeric_limits<int>::max()) + size_t(1));
, std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(TestToIntConvertInRange)
{
// This might seem slow, but it is really fast:
for (size_t i = 0; i <= size_t(1024 * 1024); ++i) {
BOOST_CHECK_EQUAL(int(i), Opm::cuistl::detail::to_int(i));
}
BOOST_CHECK_EQUAL(std::numeric_limits<int>::max(),
Opm::cuistl::detail::to_int(size_t(std::numeric_limits<int>::max())));
}
BOOST_AUTO_TEST_CASE(TestToSizeTThrowsOutofRange)
{
BOOST_CHECK_THROW(Opm::cuistl::detail::to_size_t(-1);, std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(TestToSizeTConvertInRange)
{
// This might seem slow, but it is really fast:
for (int i = 0; i <= 1024 * 1024; ++i) {
BOOST_CHECK_EQUAL(size_t(i), Opm::cuistl::detail::to_size_t(i));
}
BOOST_CHECK_EQUAL(size_t(std::numeric_limits<int>::max()),
Opm::cuistl::detail::to_size_t(std::numeric_limits<int>::max()));
}