diff --git a/opm/models/blackoil/blackoildispersionmodule.hh b/opm/models/blackoil/blackoildispersionmodule.hh
new file mode 100644
index 000000000..640102048
--- /dev/null
+++ b/opm/models/blackoil/blackoildispersionmodule.hh
@@ -0,0 +1,520 @@
+// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+// vi: set et ts=4 sw=4 sts=4:
+/*
+ This file is part of the Open Porous Media project (OPM).
+
+ OPM is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 2 of the License, or
+ (at your option) any later version.
+
+ OPM is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with OPM. If not, see .
+
+ Consult the COPYING file in the top-level source directory of this
+ module for the precise wording of the license and the list of
+ copyright holders.
+*/
+/*!
+ * \file
+ *
+ * \brief Classes required for mechanical dispersion.
+ */
+#ifndef EWOMS_DISPERSION_MODULE_HH
+#define EWOMS_DISPERSION_MODULE_HH
+
+#include
+
+#include
+
+#include
+
+#include
+
+namespace Opm {
+
+/*!
+ * \ingroup Dispersion
+ * \class Opm::BlackOilDispersionModule
+ * \brief Provides the auxiliary methods required for consideration of the
+ * dispersion equation.
+ */
+template
+class BlackOilDispersionModule;
+
+template
+class BlackOilDispersionExtensiveQuantities;
+
+/*!
+ * \copydoc Opm::BlackOilDispersionModule
+ */
+template
+class BlackOilDispersionModule
+{
+ using Scalar = GetPropType;
+ using RateVector = GetPropType;
+ using FluidSystem = GetPropType;
+ using Evaluation = GetPropType;
+
+ enum { numPhases = FluidSystem::numPhases };
+
+public:
+ using ExtensiveQuantities = BlackOilDispersionExtensiveQuantities;
+ /*!
+ * \brief Adds the dispersive flux to the flux vector over a flux
+ * integration point.
+ */
+ template
+ static void addDispersiveFlux(RateVector&,
+ const Context&,
+ unsigned,
+ unsigned)
+ {}
+
+ template
+ static void addDispersiveFlux(RateVector&,
+ const FluidState&,
+ const FluidState&,
+ const Evaluation&,
+ const Scalar&)
+ {}
+};
+
+/*!
+ * \copydoc Opm::BlackOilDispersionModule
+ */
+template
+class BlackOilDispersionModule
+{
+ using Scalar = GetPropType;
+ using Evaluation = GetPropType;
+ using PrimaryVariables = GetPropType;
+ using IntensiveQuantities = GetPropType;
+ using ElementContext = GetPropType;
+ using FluidSystem = GetPropType;
+ using Model = GetPropType;
+ using Simulator = GetPropType;
+ using EqVector = GetPropType;
+ using RateVector = GetPropType;
+ using Indices = GetPropType;
+
+ enum { numPhases = FluidSystem::numPhases };
+ enum { numComponents = FluidSystem::numComponents };
+ enum { conti0EqIdx = Indices::conti0EqIdx };
+ enum { enableDispersion = getPropValue() };
+
+ using Toolbox = MathToolbox;
+
+public:
+ using ExtensiveQuantities = BlackOilDispersionExtensiveQuantities;
+ /*!
+ * \brief Adds the mass flux due to dispersion to the flux vector over the
+ * flux integration point.
+ */
+ template
+ static void addDispersiveFlux(RateVector& flux, const Context& context,
+ unsigned spaceIdx, unsigned timeIdx)
+ {
+ // Only work if dispersion is enabled by DISPERC in the deck
+ if (!context.simulator().vanguard().eclState().getSimulationConfig().rock_config().dispersion()) {
+ return;
+ }
+ const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
+ const auto& fluidStateI = context.intensiveQuantities(extQuants.interiorIndex(), timeIdx).fluidState();
+ const auto& fluidStateJ = context.intensiveQuantities(extQuants.exteriorIndex(), timeIdx).fluidState();
+ const auto& dispersivity = extQuants.dispersivity();
+ const auto& normVelocityAvg = extQuants.normVelocityAvg();
+ addDispersiveFlux(flux, fluidStateI, fluidStateJ, dispersivity, normVelocityAvg);
+ }
+
+ /*!
+ * \brief Adds the mass flux due to dispersion to the flux vector over the
+ * integration point. Following the notation in blackoilmodel.hh,
+ * the dispersive flux for component \f$\kappa\f$ in phase \f$\alpha\f$
+ * is given by: \f$-b_\alpha E||\mathrm{v}_\alpha||\mathbf{grad}X_\alpha^\kappa\f$,
+ * where \f$b_\alpha\f$ is the shrinkage/expansion factor [-], E is the isotropic
+ * dispersivity coefficient [L], \f$\mathrm{v}_\alpha\f$ is the filter velocity
+ * [L/T], and \f$X_\alpha^\kappa\f$ the component mass fraction [-]. Each component mass
+ * fraction can be computed using \f$R_s,\;R_v,\;R_{sw},\;R_{vw}\f$. For example,
+ * \f$X_w^G=\frac{R_{sw}}{R_{sw}+\rho_w/\rho_g}\f$, where \f$\rho_w\f$ and \f$\rho_g\f$
+ * are the reference densities.
+ * Following the implementation of the diffusive flux (blackoildiffusionmodule.hh) and considering
+ * the case for the water phase and gas component as an example, for cells i and j, the discrete version
+ * of the dispersive flux at the face's integration point is given by
+ * \f$-b_{w,ij}v_{w,ij}(\frac{1}{R_{sw,ij}+\rho_w/\rho_g})D_{ij}(R_{sw,i}-R_{sw,j})\f$
+ * where \f$b_{w,ij}\f$, \f$v_{w,ij}\f$, and \f$R_{sw,ij}\f$ are computed using the arithmetic mean, and
+ * the ratio \f$\frac{1}{R_{sw,ij}+\rho_w/\rho_g}\f$ is denoted as conversion factor. The dispersivity
+ * \f$D_{ij}\f$ is computed in ecltransmissibility_impl.hh, using the dispersion coefficients \f$E_i\f$
+ * and \f$E_j\f$.
+ */
+ template
+ static void addDispersiveFlux(RateVector& flux,
+ const FluidState& fluidStateI,
+ const FluidState& fluidStateJ,
+ const Evaluation& dispersivity,
+ const Scalar& normVelocityAvg)
+ {
+ unsigned pvtRegionIndex = fluidStateI.pvtRegionIndex();
+ for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
+ if (!FluidSystem::phaseIsActive(phaseIdx)) {
+ continue;
+ }
+
+ // no dispersion in water for blackoil models unless water can contain dissolved gas
+ if (!FluidSystem::enableDissolvedGasInWater() && FluidSystem::waterPhaseIdx == phaseIdx) {
+ continue;
+ }
+
+ // no dispersion in gas for blackoil models unless gas can contain evaporated water or oil
+ if ((!FluidSystem::enableVaporizedWater() && !FluidSystem::enableVaporizedOil()) && FluidSystem::gasPhaseIdx == phaseIdx) {
+ continue;
+ }
+
+ // arithmetic mean of the phase's b factor
+ Evaluation bAvg = fluidStateI.invB(phaseIdx);
+ bAvg += Toolbox::value(fluidStateJ.invB(phaseIdx));
+ bAvg /= 2;
+
+ Evaluation convFactor = 1.0;
+ Evaluation diffR = 0.0;
+ if (FluidSystem::enableDissolvedGas() && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && phaseIdx == FluidSystem::oilPhaseIdx) {
+ Evaluation rsAvg = (fluidStateI.Rs() + Toolbox::value(fluidStateJ.Rs())) / 2;
+ convFactor = 1.0 / (toMassFractionGasOil(pvtRegionIndex) + rsAvg);
+ diffR = fluidStateI.Rs() - Toolbox::value(fluidStateJ.Rs());
+ }
+ if (FluidSystem::enableVaporizedOil() && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && phaseIdx == FluidSystem::gasPhaseIdx) {
+ Evaluation rvAvg = (fluidStateI.Rv() + Toolbox::value(fluidStateJ.Rv())) / 2;
+ convFactor = toMassFractionGasOil(pvtRegionIndex) / (1.0 + rvAvg*toMassFractionGasOil(pvtRegionIndex));
+ diffR = fluidStateI.Rv() - Toolbox::value(fluidStateJ.Rv());
+ }
+ if (FluidSystem::enableDissolvedGasInWater() && phaseIdx == FluidSystem::waterPhaseIdx) {
+ Evaluation rsAvg = (fluidStateI.Rsw() + Toolbox::value(fluidStateJ.Rsw())) / 2;
+ convFactor = 1.0 / (toMassFractionGasWater(pvtRegionIndex) + rsAvg);
+ diffR = fluidStateI.Rsw() - Toolbox::value(fluidStateJ.Rsw());
+ }
+ if (FluidSystem::enableVaporizedWater() && phaseIdx == FluidSystem::gasPhaseIdx) {
+ Evaluation rvAvg = (fluidStateI.Rvw() + Toolbox::value(fluidStateJ.Rvw())) / 2;
+ convFactor = toMassFractionGasWater(pvtRegionIndex)/ (1.0 + rvAvg*toMassFractionGasWater(pvtRegionIndex));
+ diffR = fluidStateI.Rvw() - Toolbox::value(fluidStateJ.Rvw());
+ }
+
+ // mass flux of solvent component
+ unsigned solventCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
+ unsigned activeSolventCompIdx = Indices::canonicalToActiveComponentIndex(solventCompIdx);
+ flux[conti0EqIdx + activeSolventCompIdx] +=
+ - bAvg
+ * normVelocityAvg[phaseIdx]
+ * convFactor
+ * dispersivity
+ * diffR;
+
+ // mass flux of solute component
+ unsigned soluteCompIdx = FluidSystem::soluteComponentIndex(phaseIdx);
+ unsigned activeSoluteCompIdx = Indices::canonicalToActiveComponentIndex(soluteCompIdx);
+ flux[conti0EqIdx + activeSoluteCompIdx] +=
+ bAvg
+ * normVelocityAvg[phaseIdx]
+ * convFactor
+ * dispersivity
+ * diffR;
+ }
+ }
+
+private:
+ static Scalar toMassFractionGasOil (unsigned regionIdx) {
+ Scalar rhoO = FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, regionIdx);
+ Scalar rhoG = FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, regionIdx);
+ return rhoO / rhoG;
+ }
+ static Scalar toMassFractionGasWater (unsigned regionIdx) {
+ Scalar rhoW = FluidSystem::referenceDensity(FluidSystem::waterPhaseIdx, regionIdx);
+ Scalar rhoG = FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, regionIdx);
+ return rhoW / rhoG;
+ }
+};
+
+/*!
+ * \ingroup Dispersion
+ * \class Opm::BlackOilDispersionIntensiveQuantities
+ *
+ * \brief Provides the volumetric quantities required for the
+ * calculation of dispersive fluxes.
+ */
+template
+class BlackOilDispersionIntensiveQuantities;
+
+/*!
+ * \copydoc Opm::DispersionIntensiveQuantities
+ */
+template
+class BlackOilDispersionIntensiveQuantities
+{
+ using Scalar = GetPropType;
+ using ElementContext = GetPropType;
+ using FluidSystem = GetPropType;
+
+public:
+ /*!
+ * \brief Returns the max. norm of the filter velocity of the cell.
+ */
+ Scalar normVelocityCell(unsigned, unsigned) const
+ {
+ throw std::logic_error("Method normVelocityCell() "
+ "does not make sense if dispersion is disabled");
+ }
+
+protected:
+ /*!
+ * \brief Update the quantities required to calculate dispersive
+ * fluxes.
+ */
+ template
+ void update_(ElementContext&,
+ unsigned,
+ unsigned)
+ { }
+};
+
+/*!
+ * \copydoc Opm::DispersionIntensiveQuantities
+ */
+template
+class BlackOilDispersionIntensiveQuantities
+{
+ using Scalar = GetPropType;
+ using Evaluation = GetPropType;
+ using ElementContext = GetPropType;
+ using FluidSystem = GetPropType;
+ using IntensiveQuantities = GetPropType;
+ using Indices = GetPropType;
+ enum { numPhases = FluidSystem::numPhases };
+ enum { numComponents = FluidSystem::numComponents };
+ enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
+ enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
+ enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
+ enum { gasCompIdx = FluidSystem::gasCompIdx };
+ enum { oilCompIdx = FluidSystem::oilCompIdx };
+ enum { waterCompIdx = FluidSystem::waterCompIdx };
+ enum { conti0EqIdx = Indices::conti0EqIdx };
+ enum { enableDispersion = getPropValue() };
+
+public:
+ /*!
+ * \brief Returns the max. norm of the filter velocity of the cell.
+ */
+ Scalar normVelocityCell(unsigned phaseIdx) const
+ {
+
+ return normVelocityCell_[phaseIdx];
+ }
+
+protected:
+ /*!
+ * \brief Update the quantities required to calculate dispersive
+ * mass fluxes. This considers the linear disperison model
+ * described in the SPE CSP11 benchmark document (eq. 2.3)
+ * https://github.com/Simulation-Benchmarks/11thSPE-CSP/
+ * blob/main/description/spe_csp11_description.pdf
+ * The maximum norm is used to compute the cell
+ * filter velocity value of the corresponding phase.
+ */
+ template
+ void update_(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
+ {
+ // Only work if dispersion is enabled by DISPERC in the deck
+ if (!elemCtx.simulator().vanguard().eclState().getSimulationConfig().rock_config().dispersion()) {
+ return;
+ }
+ const auto& problem = elemCtx.simulator().problem();
+ if (problem.model().linearizer().getVelocityInfo().empty()) {
+ return;
+ }
+ const std::array phaseIdxs = { gasPhaseIdx, oilPhaseIdx, waterPhaseIdx };
+ const std::array compIdxs = { gasCompIdx, oilCompIdx, waterCompIdx };
+ const auto& velocityInf = problem.model().linearizer().getVelocityInfo();
+ unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
+ auto velocityInfos = velocityInf[globalDofIdx];
+ for (unsigned i = 0; i < phaseIdxs.size(); ++i) {
+ normVelocityCell_[i] = 0;
+ }
+ for (auto& velocityInfo : velocityInfos) {
+ for (unsigned i = 0; i < phaseIdxs.size(); ++i) {
+ if (FluidSystem::phaseIsActive(phaseIdxs[i])) {
+ normVelocityCell_[phaseIdxs[i]] = max( normVelocityCell_[phaseIdxs[i]],
+ std::abs( velocityInfo.velocity[conti0EqIdx
+ + Indices::canonicalToActiveComponentIndex(compIdxs[i])] ));
+ }
+ }
+ }
+ }
+
+private:
+ Scalar normVelocityCell_[numPhases];
+};
+
+/*!
+ * \ingroup Dispersion
+ * \class Opm::BlackOilDispersionExtensiveQuantities
+ *
+ * \brief Provides the quantities required to calculate dispersive mass fluxes.
+ */
+template
+class BlackOilDispersionExtensiveQuantities;
+
+/*!
+ * \copydoc Opm::DispersionExtensiveQuantities
+ */
+template
+class BlackOilDispersionExtensiveQuantities
+{
+ using Scalar = GetPropType;
+ using Evaluation = GetPropType;
+ using ElementContext = GetPropType;
+ using FluidSystem = GetPropType;
+ using IntensiveQuantities = GetPropType;
+
+ enum { numPhases = FluidSystem::numPhases };
+
+protected:
+ /*!
+ * \brief Update the quantities required to calculate
+ * the dispersive fluxes.
+ */
+ void update_(const ElementContext&,
+ unsigned,
+ unsigned)
+ {}
+
+ template
+ void updateBoundary_(const Context&,
+ unsigned,
+ unsigned,
+ const FluidState&)
+ {}
+
+public:
+ using ScalarArray = Scalar[numPhases];
+
+ static void update(ScalarArray&,
+ const IntensiveQuantities&,
+ const IntensiveQuantities&)
+ {}
+
+ /*!
+ * \brief The dispersivity the face.
+ *
+ */
+ const Scalar& dispersivity() const
+ {
+ throw std::logic_error("The method dispersivity() does not "
+ "make sense if dispersion is disabled.");
+ }
+
+ /*!
+ * \brief The effective filter velocity coefficient in a
+ * fluid phase at the face's integration point
+ *
+ * \copydoc Doxygen::phaseIdxParam
+ * \copydoc Doxygen::compIdxParam
+ */
+ const Scalar& normVelocityAvg(unsigned) const
+ {
+ throw std::logic_error("The method normVelocityAvg() "
+ "does not make sense if dispersion is disabled.");
+ }
+
+};
+
+/*!
+ * \copydoc Opm::BlackOilDispersionExtensiveQuantities
+ */
+template
+class BlackOilDispersionExtensiveQuantities
+{
+ using Scalar = GetPropType;
+ using Evaluation = GetPropType;
+ using ElementContext = GetPropType;
+ using GridView = GetPropType;
+ using FluidSystem = GetPropType;
+ using Toolbox = MathToolbox;
+ using IntensiveQuantities = GetPropType;
+
+ enum { dimWorld = GridView::dimensionworld };
+ enum { numPhases = getPropValue() };
+ enum { numComponents = getPropValue() };
+
+ using DimVector = Dune::FieldVector;
+ using DimEvalVector = Dune::FieldVector;
+public:
+ using ScalarArray = Scalar[numPhases];
+ static void update(ScalarArray& normVelocityAvg,
+ const IntensiveQuantities& intQuantsInside,
+ const IntensiveQuantities& intQuantsOutside)
+ {
+ for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
+ if (!FluidSystem::phaseIsActive(phaseIdx)) {
+ continue;
+ }
+ // no dispersion in water for blackoil models unless water can contain dissolved gas
+ if (!FluidSystem::enableDissolvedGasInWater() && FluidSystem::waterPhaseIdx == phaseIdx) {
+ continue;
+ }
+ // no dispersion in gas for blackoil models unless gas can contain evaporated water or oil
+ if ((!FluidSystem::enableVaporizedWater() && !FluidSystem::enableVaporizedOil()) && FluidSystem::gasPhaseIdx == phaseIdx) {
+ continue;
+ }
+ // use the arithmetic average for the effective
+ // velocity coefficients at the face's integration point.
+ normVelocityAvg[phaseIdx] = 0.5 *
+ ( intQuantsInside.normVelocityCell(phaseIdx) +
+ intQuantsOutside.normVelocityCell(phaseIdx) );
+ Valgrind::CheckDefined(normVelocityAvg[phaseIdx]);
+ }
+ }
+protected:
+ template
+ void updateBoundary_(const Context&,
+ unsigned,
+ unsigned,
+ const FluidState&)
+ {
+ throw std::runtime_error("Not implemented: Dispersion across boundary not implemented for blackoil");
+ }
+
+public:
+ /*!
+ * \brief The dispersivity of the face.
+ *
+ * \copydoc Doxygen::phaseIdxParam
+ * \copydoc Doxygen::compIdxParam
+ */
+ const Scalar& dispersivity() const
+ { return dispersivity_; }
+
+ /*!
+ * \brief The effective velocity coefficient in a
+ * fluid phase at the face's integration point
+ *
+ * \copydoc Doxygen::phaseIdxParam
+ * \copydoc Doxygen::compIdxParam
+ */
+ const Scalar& normVelocityAvg(unsigned phaseIdx) const
+ { return normVelocityAvg_[phaseIdx]; }
+
+ const auto& normVelocityAvg() const{
+ return normVelocityAvg_;
+ }
+
+private:
+ Scalar dispersivity_;
+ ScalarArray normVelocityAvg_;
+};
+
+} // namespace Opm
+
+#endif
diff --git a/opm/models/blackoil/blackoilintensivequantities.hh b/opm/models/blackoil/blackoilintensivequantities.hh
index db00dc53f..8a4e19878 100644
--- a/opm/models/blackoil/blackoilintensivequantities.hh
+++ b/opm/models/blackoil/blackoilintensivequantities.hh
@@ -36,6 +36,7 @@
#include "blackoilbrinemodules.hh"
#include "blackoilenergymodules.hh"
#include "blackoildiffusionmodule.hh"
+#include "blackoildispersionmodule.hh"
#include "blackoilmicpmodules.hh"
#include
@@ -70,6 +71,7 @@ class BlackOilIntensiveQuantities
: public GetPropType
, public GetPropType::FluxIntensiveQuantities
, public BlackOilDiffusionIntensiveQuantities() >
+ , public BlackOilDispersionIntensiveQuantities() >
, public BlackOilSolventIntensiveQuantities
, public BlackOilExtboIntensiveQuantities
, public BlackOilPolymerIntensiveQuantities
@@ -103,6 +105,7 @@ class BlackOilIntensiveQuantities
enum { enableTemperature = getPropValue() };
enum { enableEnergy = getPropValue() };
enum { enableDiffusion = getPropValue() };
+ enum { enableDispersion = getPropValue() };
enum { enableMICP = getPropValue() };
enum { numPhases = getPropValue() };
enum { numComponents = getPropValue() };
@@ -124,6 +127,7 @@ class BlackOilIntensiveQuantities
using DimMatrix = Dune::FieldMatrix;
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
using DiffusionIntensiveQuantities = BlackOilDiffusionIntensiveQuantities;
+ using DispersionIntensiveQuantities = BlackOilDispersionIntensiveQuantities;
using DirectionalMobilityPtr = Opm::Utility::CopyablePtr>;
@@ -473,6 +477,9 @@ public:
// update the diffusion specific quantities of the intensive quantities
DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
+ // update the dispersion specific quantities of the intensive quantities
+ DispersionIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
+
#ifndef NDEBUG
// some safety checks in debug mode
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
diff --git a/opm/models/blackoil/blackoillocalresidualtpfa.hh b/opm/models/blackoil/blackoillocalresidualtpfa.hh
index abf267e83..e3a058af7 100644
--- a/opm/models/blackoil/blackoillocalresidualtpfa.hh
+++ b/opm/models/blackoil/blackoillocalresidualtpfa.hh
@@ -36,6 +36,7 @@
#include "blackoilfoammodules.hh"
#include "blackoilbrinemodules.hh"
#include "blackoildiffusionmodule.hh"
+#include "blackoildispersionmodule.hh"
#include "blackoilmicpmodules.hh"
#include
#include
@@ -92,6 +93,7 @@ class BlackOilLocalResidualTPFA : public GetPropType();
static constexpr bool enableBrine = getPropValue();
static constexpr bool enableDiffusion = getPropValue();
+ static constexpr bool enableDispersion = getPropValue();
static constexpr bool enableMICP = getPropValue();
using SolventModule = BlackOilSolventModule;
@@ -101,6 +103,7 @@ class BlackOilLocalResidualTPFA : public GetPropType;
using BrineModule = BlackOilBrineModule;
using DiffusionModule = BlackOilDiffusionModule;
+ using DispersionModule = BlackOilDispersionModule;
using MICPModule = BlackOilMICPModule;
using Toolbox = MathToolbox;
@@ -118,7 +121,8 @@ public:
double Vex;
double inAlpha;
double outAlpha;
- double diffusivity;
+ double diffusivity;
+ double dispersivity;
};
/*!
* \copydoc FvBaseLocalResidual::computeStorage
@@ -295,9 +299,10 @@ public:
// for thermal harmonic mean of half trans
const Scalar inAlpha = problem.thermalHalfTransmissibility(globalIndexIn, globalIndexEx);
const Scalar outAlpha = problem.thermalHalfTransmissibility(globalIndexEx, globalIndexIn);
- const Scalar diffusivity = problem.diffusivity(globalIndexEx, globalIndexIn);
+ const Scalar diffusivity = problem.diffusivity(globalIndexEx, globalIndexIn);
+ const Scalar dispersivity = problem.dispersivity(globalIndexEx, globalIndexIn);
- const ResidualNBInfo res_nbinfo {trans, faceArea, thpres, distZ * g, facedir, Vin, Vex, inAlpha, outAlpha, diffusivity};
+ const ResidualNBInfo res_nbinfo {trans, faceArea, thpres, distZ * g, facedir, Vin, Vex, inAlpha, outAlpha, diffusivity, dispersivity};
calculateFluxes_(flux,
darcy,
@@ -441,7 +446,7 @@ public:
static_assert(!enableBrine, "Relevant computeFlux() method must be implemented for this module before enabling.");
// BrineModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
- // deal with diffusion (if present)
+ // deal with diffusion (if present). opm-models expects per area flux (added in the tmpdiffusivity).
if constexpr(enableDiffusion){
typename DiffusionModule::ExtensiveQuantities::EvaluationArray effectiveDiffusionCoefficient;
DiffusionModule::ExtensiveQuantities::update(effectiveDiffusionCoefficient, intQuantsIn, intQuantsEx);
@@ -453,6 +458,19 @@ public:
tmpdiffusivity,
effectiveDiffusionCoefficient);
+ }
+ // deal with dispersion (if present). opm-models expects per area flux (added in the tmpdispersivity).
+ if constexpr(enableDispersion){
+ typename DispersionModule::ExtensiveQuantities::ScalarArray normVelocityAvg;
+ DispersionModule::ExtensiveQuantities::update(normVelocityAvg, intQuantsIn, intQuantsEx);
+ const Scalar dispersivity = nbInfo.dispersivity;
+ const Scalar tmpdispersivity = dispersivity / faceArea;
+ DispersionModule::addDispersiveFlux(flux,
+ intQuantsIn.fluidState(),
+ intQuantsEx.fluidState(),
+ tmpdispersivity,
+ normVelocityAvg);
+
}
// deal with micp (if present)
static_assert(!enableMICP, "Relevant computeFlux() method must be implemented for this module before enabling.");
diff --git a/opm/models/blackoil/blackoilmodel.hh b/opm/models/blackoil/blackoilmodel.hh
index 7d55712c7..d7f7a9ddc 100644
--- a/opm/models/blackoil/blackoilmodel.hh
+++ b/opm/models/blackoil/blackoilmodel.hh
@@ -53,6 +53,7 @@
#include
#include
#include "blackoildiffusionmodule.hh"
+#include "blackoildispersionmodule.hh"
#include
#include
@@ -177,6 +178,10 @@ struct EnableEnergy { static constexpr bool value
template
struct EnableDiffusion { static constexpr bool value = false; };
+//! disable disperison by default
+template
+struct EnableDispersion { static constexpr bool value = false; };
+
//! by default, scale the energy equation by the inverse of the energy required to heat
//! up one kg of water by 30 Kelvin. If we conserve surface volumes, this must be divided
//! by the weight of one cubic meter of water. This is required to make the "dumb" linear
@@ -227,7 +232,7 @@ namespace Opm {
* \f]
*
* Since the gas and water phases are assumed to be immiscible, this
- * is sufficint to calculate their density. For the formation volume
+ * is sufficient to calculate their density. For the formation volume
* factor of the the oil phase \f$B_o\f$ determines the density of
* *saturated* oil, i.e. the density of the oil phase if some gas
* phase is present.
@@ -288,6 +293,7 @@ private:
enum { numComponents = FluidSystem::numComponents };
enum { numEq = getPropValue() };
enum { enableDiffusion = getPropValue() };
+ enum { enableDispersion = getPropValue() };
static constexpr bool compositionSwitchEnabled = Indices::compositionSwitchIdx >= 0;
static constexpr bool waterEnabled = Indices::waterEnabled;
@@ -297,6 +303,7 @@ private:
using PolymerModule = BlackOilPolymerModule;
using EnergyModule = BlackOilEnergyModule;
using DiffusionModule = BlackOilDiffusionModule;
+ using DispersionModule = BlackOilDispersionModule;
using MICPModule = BlackOilMICPModule;
public:
diff --git a/opm/models/common/multiphasebaseproperties.hh b/opm/models/common/multiphasebaseproperties.hh
index 91fa60c31..abefea91d 100644
--- a/opm/models/common/multiphasebaseproperties.hh
+++ b/opm/models/common/multiphasebaseproperties.hh
@@ -80,6 +80,9 @@ struct EnableGravity { using type = UndefinedProperty; };
//! Enable diffusive fluxes?
template
struct EnableDiffusion { using type = UndefinedProperty; };
+//! Enable dispersive fluxes?
+template
+struct EnableDispersion { using type = UndefinedProperty; };
} // namespace Opm::Properties
diff --git a/opm/models/discretization/common/tpfalinearizer.hh b/opm/models/discretization/common/tpfalinearizer.hh
index 54912bddf..5965442e8 100644
--- a/opm/models/discretization/common/tpfalinearizer.hh
+++ b/opm/models/discretization/common/tpfalinearizer.hh
@@ -329,6 +329,16 @@ public:
return floresInfo_;
}
+ /*!
+ * \brief Return constant reference to the velocityInfo.
+ *
+ * (This object is only non-empty if the DISPERC keyword is true.)
+ */
+ const auto& getVelocityInfo() const{
+
+ return velocityInfo_;
+ }
+
void updateDiscretizationParameters()
{
updateStoredTransmissibilities();
@@ -451,6 +461,7 @@ private:
Scalar outAlpha {0.};
FaceDirection dirId = FaceDirection::Unknown;
Scalar diffusivity {0.};
+ Scalar dispersivity {0.};
if constexpr(enableEnergy){
inAlpha = problem_().thermalHalfTransmissibility(myIdx, neighborIdx);
outAlpha = problem_().thermalHalfTransmissibility(neighborIdx, myIdx);
@@ -458,10 +469,13 @@ private:
if constexpr(enableDiffusion){
diffusivity = problem_().diffusivity(myIdx, neighborIdx);
}
+ if (simulator_().vanguard().eclState().getSimulationConfig().rock_config().dispersion()) {
+ dispersivity = problem_().dispersivity(myIdx, neighborIdx);
+ }
if (materialLawManager->hasDirectionalRelperms()) {
dirId = scvf.faceDirFromDirId();
}
- loc_nbinfo[dofIdx - 1] = NeighborInfo{neighborIdx, {trans, area, thpres, dZg, dirId, Vin, Vex, inAlpha, outAlpha, diffusivity}, nullptr};
+ loc_nbinfo[dofIdx - 1] = NeighborInfo{neighborIdx, {trans, area, thpres, dZg, dirId, Vin, Vex, inAlpha, outAlpha, diffusivity, dispersivity}, nullptr};
}
}
@@ -522,15 +536,17 @@ private:
jacobian_->clear();
}
- // Initialize the flows and flores sparse tables
+ // Initialize the flows, flores, and velocity sparse tables
void createFlows_()
{
OPM_TIMEBLOCK(createFlows);
// If FLOWS/FLORES is set in any RPTRST in the schedule, then we initializate the sparse tables
// For now, do the same also if any block flows are requested (TODO: only save requested cells...)
+ // If DISPERC is in the deck, we initialize the sparse table here as well.
const bool anyFlows = simulator_().problem().eclWriter()->eclOutputModule().anyFlows();
- const bool anyFlores = simulator_().problem().eclWriter()->eclOutputModule().anyFlores();
- if ((!anyFlows || !flowsInfo_.empty()) && (!anyFlores || !floresInfo_.empty())) {
+ const bool anyFlores = simulator_().problem().eclWriter()->eclOutputModule().anyFlores();
+ const bool enableDispersion = simulator_().vanguard().eclState().getSimulationConfig().rock_config().dispersion();
+ if (((!anyFlows || !flowsInfo_.empty()) && (!anyFlores || !floresInfo_.empty())) && !enableDispersion) {
return;
}
const auto& model = model_();
@@ -539,6 +555,7 @@ private:
unsigned numCells = model.numTotalDof();
std::unordered_multimap> nncIndices;
std::vector loc_flinfo;
+ std::vector loc_vlinfo;
unsigned int nncId = 0;
VectorBlock flow(0.0);
@@ -555,12 +572,16 @@ private:
if (anyFlores) {
floresInfo_.reserve(numCells, 6 * numCells);
}
+ if (enableDispersion) {
+ velocityInfo_.reserve(numCells, 6 * numCells);
+ }
for (const auto& elem : elements(gridView_())) {
stencil.update(elem);
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
loc_flinfo.resize(stencil.numDof() - 1);
+ loc_vlinfo.resize(stencil.numDof() - 1);
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
if (dofIdx > 0) {
@@ -579,6 +600,7 @@ private:
}
}
loc_flinfo[dofIdx - 1] = FlowInfo{faceId, flow, nncId};
+ loc_vlinfo[dofIdx - 1] = VelocityInfo{flow};
}
}
if (anyFlows) {
@@ -587,6 +609,9 @@ private:
if (anyFlores) {
floresInfo_.appendRow(loc_flinfo.begin(), loc_flinfo.end());
}
+ if (enableDispersion) {
+ velocityInfo_.appendRow(loc_vlinfo.begin(), loc_vlinfo.end());
+ }
}
}
}
@@ -626,7 +651,7 @@ private:
// We do not call resetSystem_() here, since that will set
// the full system to zero, not just our part.
// Instead, that must be called before starting the linearization.
-
+ const bool& enableDispersion = simulator_().vanguard().eclState().getSimulationConfig().rock_config().dispersion();
const bool& enableFlows = simulator_().problem().eclWriter()->eclOutputModule().hasFlows() ||
simulator_().problem().eclWriter()->eclOutputModule().hasBlockFlows();
const bool& enableFlores = simulator_().problem().eclWriter()->eclOutputModule().hasFlores();
@@ -661,6 +686,11 @@ private:
const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0);
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo);
adres *= nbInfo.res_nbinfo.faceArea;
+ if (enableDispersion) {
+ for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {
+ velocityInfo_[globI][loc].velocity[phaseIdx] = darcyFlux[phaseIdx].value() / nbInfo.res_nbinfo.faceArea;
+ }
+ }
if (enableFlows) {
for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {
flowsInfo_[globI][loc].flow[phaseIdx] = adres[phaseIdx].value();
@@ -823,6 +853,12 @@ private:
SparseTable flowsInfo_;
SparseTable floresInfo_;
+ struct VelocityInfo
+ {
+ VectorBlock velocity;
+ };
+ SparseTable velocityInfo_;
+
using ScalarFluidState = typename IntensiveQuantities::ScalarFluidState;
struct BoundaryConditionData
{