mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-30 11:06:55 -06:00
Add Robert Kloefkorn's fast sparse product implementation.
This commit is contained in:
parent
6f55c862ce
commit
e8b3524ffa
185
opm/autodiff/fastSparseProduct.hpp
Normal file
185
opm/autodiff/fastSparseProduct.hpp
Normal file
@ -0,0 +1,185 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
// This file has been modified for use in the OPM project codebase.
|
||||
|
||||
#ifndef OPM_FASTSPARSEPRODUCT_HEADER_INCLUDED
|
||||
#define OPM_FASTSPARSEPRODUCT_HEADER_INCLUDED
|
||||
|
||||
#include <Eigen/Sparse>
|
||||
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include <functional>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
|
||||
#include <Eigen/Core>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
template < unsigned int depth >
|
||||
struct QuickSort
|
||||
{
|
||||
template <typename T>
|
||||
static inline void sort(T begin, T end)
|
||||
{
|
||||
if (begin != end)
|
||||
{
|
||||
T middle = std::partition (begin, end,
|
||||
std::bind2nd(std::less<typename std::iterator_traits<T>::value_type>(), *begin)
|
||||
);
|
||||
QuickSort< depth-1 >::sort(begin, middle);
|
||||
|
||||
// std::sort (max(begin + 1, middle), end);
|
||||
T new_middle = begin;
|
||||
QuickSort< depth-1 >::sort(++new_middle, end);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct QuickSort< 0 >
|
||||
{
|
||||
template <typename T>
|
||||
static inline void sort(T begin, T end)
|
||||
{
|
||||
// fall back to standard insertion sort
|
||||
std::sort( begin, end );
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
void fastSparseProduct(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
using namespace Eigen;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
|
||||
res = ColMajorMatrix(lhs.rows(), rhs.cols());
|
||||
// if one of the matrices does not contain non zero elements
|
||||
// the result will only contain an empty matrix
|
||||
if( lhs.nonZeros() == 0 || rhs.nonZeros() == 0 )
|
||||
return;
|
||||
|
||||
typedef typename Eigen::internal::remove_all<Lhs>::type::Scalar Scalar;
|
||||
typedef typename Eigen::internal::remove_all<Lhs>::type::Index Index;
|
||||
|
||||
// make sure to call innerSize/outerSize since we fake the storage order.
|
||||
Index rows = lhs.innerSize();
|
||||
Index cols = rhs.outerSize();
|
||||
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
||||
|
||||
std::vector<bool> mask(rows,false);
|
||||
Matrix<Scalar,Dynamic,1> values(rows);
|
||||
Matrix<Index,Dynamic,1> indices(rows);
|
||||
|
||||
// estimate the number of non zero entries
|
||||
// given a rhs column containing Y non zeros, we assume that the respective Y columns
|
||||
// of the lhs differs in average of one non zeros, thus the number of non zeros for
|
||||
// the product of a rhs column with the lhs is X+Y where X is the average number of non zero
|
||||
// per column of the lhs.
|
||||
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
|
||||
Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
|
||||
|
||||
res.setZero();
|
||||
res.reserve(Index(estimated_nnz_prod));
|
||||
|
||||
//const Scalar epsilon = std::numeric_limits< Scalar >::epsilon();
|
||||
const Scalar epsilon = 0.0;
|
||||
|
||||
// we compute each column of the result, one after the other
|
||||
for (Index j=0; j<cols; ++j)
|
||||
{
|
||||
Index nnz = 0;
|
||||
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
||||
{
|
||||
const Scalar y = rhsIt.value();
|
||||
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
|
||||
{
|
||||
const Index i = lhsIt.index();
|
||||
const Scalar val = lhsIt.value() * y;
|
||||
if( std::abs( val ) > epsilon )
|
||||
{
|
||||
if(!mask[i])
|
||||
{
|
||||
mask[i] = true;
|
||||
values[i] = val;
|
||||
indices[nnz] = i;
|
||||
++nnz;
|
||||
}
|
||||
else
|
||||
values[i] += val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( nnz > 1 )
|
||||
{
|
||||
// sort indices for sorted insertion to avoid later copying
|
||||
// QuickSort< 1 >::sort( indices.data(), indices.data()+nnz );
|
||||
std::sort( indices.data(), indices.data()+nnz );
|
||||
}
|
||||
|
||||
res.startVec(j);
|
||||
// ordered insertion
|
||||
// still using insertBackByOuterInnerUnordered since we know what we are doing
|
||||
for(Index k=0; k<nnz; ++k)
|
||||
{
|
||||
const Index i = indices[k];
|
||||
res.insertBackByOuterInnerUnordered(j,i) = values[i];
|
||||
mask[i] = false;
|
||||
}
|
||||
|
||||
#if 0
|
||||
// alternative ordered insertion code:
|
||||
|
||||
Index t200 = rows/(log2(200)*1.39);
|
||||
Index t = (rows*100)/139;
|
||||
|
||||
// FIXME reserve nnz non zeros
|
||||
// FIXME implement fast sort algorithms for very small nnz
|
||||
// if the result is sparse enough => use a quick sort
|
||||
// otherwise => loop through the entire vector
|
||||
// In order to avoid to perform an expensive log2 when the
|
||||
// result is clearly very sparse we use a linear bound up to 200.
|
||||
//if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
|
||||
//res.startVec(j);
|
||||
if(true)
|
||||
{
|
||||
if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
|
||||
for(Index k=0; k<nnz; ++k)
|
||||
{
|
||||
Index i = indices[k];
|
||||
res.insertBackByOuterInner(j,i) = values[i];
|
||||
mask[i] = false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// dense path
|
||||
for(Index i=0; i<rows; ++i)
|
||||
{
|
||||
if(mask[i])
|
||||
{
|
||||
mask[i] = false;
|
||||
res.insertBackByOuterInner(j,i) = values[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
res.finalize();
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // end namespace Opm
|
||||
|
||||
#endif // OPM_FASTSPARSEPRODUCT_HEADER_INCLUDED
|
Loading…
Reference in New Issue
Block a user