Merge from upstream.

This commit is contained in:
Bård Skaflestad 2012-03-14 00:00:15 +01:00
commit e93ae04452
3 changed files with 173 additions and 3 deletions

View File

@ -45,8 +45,33 @@ namespace Opm
} }
/// @brief Computes total saturated volumes over all grid cells.
/// @param[in] pv the pore volume by cell.
/// @param[in] s saturation values (for all P phases)
/// @param[out] sat_vol must point to a valid array with P elements,
/// where P = s.size()/pv.size().
/// For each phase p, we compute
/// sat_vol_p = sum_i s_p_i pv_i
void computeSaturatedVol(const std::vector<double>& pv,
const std::vector<double>& s,
double* sat_vol)
{
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
std::fill(sat_vol, sat_vol + np, 0.0);
for (int c = 0; c < num_cells; ++c) {
for (int p = 0; p < np; ++p) {
sat_vol[p] += pv[c]*s[np*c + p];
}
}
}
/// @brief Computes average saturations over all grid cells. /// @brief Computes average saturations over all grid cells.
/// @param[out] pv the pore volume by cell. /// @param[in] pv the pore volume by cell.
/// @param[in] s saturation values (for all P phases) /// @param[in] s saturation values (for all P phases)
/// @param[out] aver_sat must point to a valid array with P elements, /// @param[out] aver_sat must point to a valid array with P elements,
/// where P = s.size()/pv.size(). /// where P = s.size()/pv.size().
@ -78,6 +103,54 @@ namespace Opm
} }
/// @brief Computes injected and produced volumes of all phases.
/// Note 1: assumes that only the first phase is injected.
/// Note 2: assumes that transport has been done with an
/// implicit method, i.e. that the current state
/// gives the mobilities used for the preceding timestep.
/// @param[in] props fluid and rock properties.
/// @param[in] s saturation values (for all P phases)
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
/// @param[in] dt timestep used
/// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
void computeInjectedProduced(const IncompPropertiesInterface& props,
const std::vector<double>& s,
const std::vector<double>& src,
const double dt,
double* injected,
double* produced)
{
const int num_cells = src.size();
const int np = s.size()/src.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and src vectors do not match.");
}
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
const double* visc = props.viscosity();
std::vector<double> mob(np);
for (int c = 0; c < num_cells; ++c) {
if (src[c] > 0.0) {
injected[0] += src[c]*dt;
} else if (src[c] < 0.0) {
const double flux = -src[c]*dt;
const double* sat = &s[np*c];
props.relperm(1, sat, &c, &mob[0], 0);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] /= visc[p];
totmob += mob[p];
}
for (int p = 0; p < np; ++p) {
produced[p] += (mob[p]/totmob)*flux;
}
}
}
}
/// @brief Computes total mobility for a set of saturation values. /// @brief Computes total mobility for a set of saturation values.
/// @param[in] props rock and fluid properties /// @param[in] props rock and fluid properties
@ -164,6 +237,48 @@ namespace Opm
} }
} }
/// Compute two-phase transport source terms from face fluxes,
/// and pressure equation source terms. This puts boundary flows
/// into the source terms for the transport equation.
/// \param[in] grid The grid used.
/// \param[in] src Pressure eq. source terms. The sign convention is:
/// (+) positive total inflow (positive velocity divergence)
/// (-) negative total outflow
/// \param[in] faceflux Signed face fluxes, typically the result from a flow solver.
/// \param[in] inflow_frac Fraction of inflow that consists of first phase.
/// Example: if only water is injected, inflow_frac == 1.0.
/// Note: it is not possible (with this method) to use different fractions
/// for different inflow sources, be they source terms of boundary flows.
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
/// (+) positive inflow of first phase (water)
/// (-) negative total outflow of both phases
void computeTransportSource(const UnstructuredGrid& grid,
const std::vector<double>& src,
const std::vector<double>& faceflux,
const double inflow_frac,
std::vector<double>& transport_src)
{
int nc = grid.number_of_cells;
transport_src.resize(nc);
for (int c = 0; c < nc; ++c) {
transport_src[c] = 0.0;
transport_src[c] += src[c] > 0.0 ? inflow_frac*src[c] : src[c];
for (int hf = grid.cell_facepos[c]; hf < grid.cell_facepos[c + 1]; ++hf) {
int f = grid.cell_faces[hf];
const int* f2c = &grid.face_cells[2*f];
double bdy_influx = 0.0;
if (f2c[0] == c && f2c[1] == -1) {
bdy_influx = -faceflux[f];
} else if (f2c[0] == -1 && f2c[1] == c) {
bdy_influx = faceflux[f];
}
if (bdy_influx != 0.0) {
transport_src[c] += bdy_influx > 0.0 ? inflow_frac*bdy_influx : bdy_influx;
}
}
}
}
/// @brief Estimates a scalar cell velocity from face fluxes. /// @brief Estimates a scalar cell velocity from face fluxes.
/// @param[in] grid a grid /// @param[in] grid a grid
/// @param[in] face_flux signed per-face fluxes /// @param[in] face_flux signed per-face fluxes

View File

@ -38,6 +38,18 @@ namespace Opm
std::vector<double>& porevol); std::vector<double>& porevol);
/// @brief Computes total saturated volumes over all grid cells.
/// @param[out] pv the pore volume by cell.
/// @param[in] s saturation values (for all P phases)
/// @param[out] sat_vol must point to a valid array with P elements,
/// where P = s.size()/pv.size().
/// For each phase p, we compute
/// sat_vol_p = sum_i s_p_i pv_i
void computeSaturatedVol(const std::vector<double>& pv,
const std::vector<double>& s,
double* sat_vol);
/// @brief Computes average saturations over all grid cells. /// @brief Computes average saturations over all grid cells.
/// @param[out] pv the pore volume by cell. /// @param[out] pv the pore volume by cell.
/// @param[in] s saturation values (for all P phases) /// @param[in] s saturation values (for all P phases)
@ -50,6 +62,25 @@ namespace Opm
double* aver_sat); double* aver_sat);
/// @brief Computes injected and produced volumes of all phases.
/// Note 1: assumes that only the first phase is injected.
/// Note 2: assumes that transport has been done with an
/// implicit method, i.e. that the current state
/// gives the mobilities used for the preceding timestep.
/// @param[in] props fluid and rock properties.
/// @param[in] s saturation values (for all P phases)
/// @param[in] src if < 0: total outflow, if > 0: first phase inflow.
/// @param[in] dt timestep used
/// @param[out] injected must point to a valid array with P elements,
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
void computeInjectedProduced(const IncompPropertiesInterface& props,
const std::vector<double>& s,
const std::vector<double>& src,
const double dt,
double* injected,
double* produced);
/// @brief Computes total mobility for a set of saturation values. /// @brief Computes total mobility for a set of saturation values.
/// @param[in] props rock and fluid properties /// @param[in] props rock and fluid properties
/// @param[in] cells cells with which the saturation values are associated /// @param[in] cells cells with which the saturation values are associated
@ -73,11 +104,35 @@ namespace Opm
std::vector<double>& totmob, std::vector<double>& totmob,
std::vector<double>& omega); std::vector<double>& omega);
void computePhaseMobilities(const Opm::IncompPropertiesInterface& props, void computePhaseMobilities(const Opm::IncompPropertiesInterface& props,
const std::vector<int>& cells, const std::vector<int>& cells,
const std::vector<double>& s , const std::vector<double>& s ,
std::vector<double>& pmobc); std::vector<double>& pmobc);
/// Compute two-phase transport source terms from face fluxes,
/// and pressure equation source terms. This puts boundary flows
/// into the source terms for the transport equation.
/// \param[in] grid The grid used.
/// \param[in] src Pressure eq. source terms. The sign convention is:
/// (+) positive total inflow (positive velocity divergence)
/// (-) negative total outflow
/// \param[in] faceflux Signed face fluxes, typically the result from a flow solver.
/// \param[in] inflow_frac Fraction of inflow that consists of first phase.
/// Example: if only water is injected, inflow_frac == 1.0.
/// Note: it is not possible (with this method) to use different fractions
/// for different inflow sources, be they source terms of boundary flows.
/// \param[out] transport_src The transport source terms. They are to be interpreted depending on sign:
/// (+) positive inflow of first phase (water)
/// (-) negative total outflow of both phases
void computeTransportSource(const UnstructuredGrid& grid,
const std::vector<double>& src,
const std::vector<double>& faceflux,
const double inflow_frac,
std::vector<double>& transport_src);
/// @brief Estimates a scalar cell velocity from face fluxes. /// @brief Estimates a scalar cell velocity from face fluxes.
/// @param[in] grid a grid /// @param[in] grid a grid
/// @param[in] face_flux signed per-face fluxes /// @param[in] face_flux signed per-face fluxes
@ -91,7 +146,7 @@ namespace Opm
void toWaterSat(const std::vector<double>& sboth, void toWaterSat(const std::vector<double>& sboth,
std::vector<double>& sw); std::vector<double>& sw);
/// Make a a vector of interleaved water and oil saturations from /// Make a vector of interleaved water and oil saturations from
/// a vector of water saturations. /// a vector of water saturations.
void toBothSat(const std::vector<double>& sw, void toBothSat(const std::vector<double>& sw,
std::vector<double>& sboth); std::vector<double>& sboth);

View File

@ -42,7 +42,7 @@ namespace Opm
std::ostream& os); std::ostream& os);
/// Vtk output for general grids. /// Vtk output for general grids.
void writeVtkData(const UnstructuredGrid* grid, void writeVtkData(const UnstructuredGrid& grid,
const DataMap& data, const DataMap& data,
std::ostream& os); std::ostream& os);
} // namespace Opm } // namespace Opm