Bugfixed in computation of the gradient of the residual (from formulae).

This commit is contained in:
Xavier Raynaud 2012-02-27 15:49:04 +01:00
parent 6b267dd871
commit ee52e354b1
2 changed files with 82 additions and 85 deletions

View File

@ -303,66 +303,64 @@ namespace Opm
// Compute gradient using finite difference.
void computeGradient(const double* x, double* res, double* gradient, const int& method) const
// If if_res_s == true, compute the gradient of s-residual, otherwise, compute gradient of c-residual.
// If method == 1, use finite diference
// If method == 2, use analytic expresions
{
if (method == 1) {
double epsi = 1e-5;
double res_epsi[2];
double x_epsi[2];
computeResidual(x, res);
if (if_res_s) {
x_epsi[0] = x[0] + epsi;
x_epsi[1] = x[1];
computeResidual(x_epsi, res_epsi);
gradient[0] = (res_epsi[0] - res[0])/epsi;
x_epsi[0] = x[0];
x_epsi[1] = x[1] + epsi;
computeResidual(x_epsi, res_epsi);
gradient[1] = (res_epsi[0] - res[0])/epsi;
} else {
x_epsi[0] = x[0] + epsi;
x_epsi[1] = x[1];
computeResidual(x_epsi, res_epsi);
gradient[0] = (res_epsi[1] - res[1])/epsi;
x_epsi[0] = x[0];
x_epsi[1] = x[1] + epsi;
computeResidual(x_epsi, res_epsi);
gradient[1] = (res_epsi[1] - res[1])/epsi;
}
} else if (method == 2) {
double s = x[0];
double c = x[1];
double ff_ds_dc[2];
double ff = tm.fracFlowWithDer(s, c, cell, ff_ds_dc);
double mc_dc;
double mc = tm.computeMcWithDer(c, &mc_dc);
double dps = tm.polyprops_.dps;
double rhor = tm.polyprops_.rhor;
double ads0 = tm.polyprops_.adsorbtion(std::max(c0, cmax0));
double ads;
double ads_dc;
if (c < cmax0) {
ads = tm.polyprops_.adsorbtion(cmax0);
ads_dc = 0;
} else {
ads = tm.polyprops_.adsorbtionWithDer(c, &ads_dc);
}
res[0] = s - s0 + dtpv*(outflux*tm.fracFlow(s, c, cell) + influx);
res[1] = (s - dps)*c - (s0 - dps)*c0
+ rhor*((1.0 - porosity)/porosity)*(ads - ads0)
+ dtpv*(outflux*ff*mc + influx_polymer);
if (if_res_s == true) {
gradient[0] = 1 + dtpv*outflux*ff_ds_dc[0];
gradient[1] = dtpv*outflux*ff_ds_dc[1];
} else if (if_res_s == false) {
gradient[0] = c + dtpv*outflux*(ff_ds_dc[0])*mc;
gradient[1] = s - dps + rhor*((1.0 - porosity)/porosity)*(ads_dc - ads0)
+ dtpv*outflux*(ff_ds_dc[1]*mc + ff*mc_dc);
}
double epsi = 1e-8;
double res_epsi[2];
double x_epsi[2];
computeResidual(x, res);
if (if_res_s) {
x_epsi[0] = x[0] + epsi;
x_epsi[1] = x[1];
computeResidual(x_epsi, res_epsi);
gradient[0] = (res_epsi[0] - res[0])/epsi;
x_epsi[0] = x[0];
x_epsi[1] = x[1] + epsi;
computeResidual(x_epsi, res_epsi);
gradient[1] = (res_epsi[0] - res[0])/epsi;
} else {
x_epsi[0] = x[0] + epsi;
x_epsi[1] = x[1];
computeResidual(x_epsi, res_epsi);
gradient[0] = (res_epsi[1] - res[1])/epsi;
x_epsi[0] = x[0];
x_epsi[1] = x[1] + epsi;
computeResidual(x_epsi, res_epsi);
gradient[1] = (res_epsi[1] - res[1])/epsi;
}
} else if (method == 2) {
double s = x[0];
double c = x[1];
double ff_ds_dc[2];
double ff = tm.fracFlowWithDer(s, c, cell, ff_ds_dc);
double mc_dc;
double mc = tm.computeMcWithDer(c, &mc_dc);
double dps = tm.polyprops_.dps;
double rhor = tm.polyprops_.rhor;
double ads0 = tm.polyprops_.adsorbtion(std::max(c0, cmax0));
double ads;
double ads_dc;
if (c < cmax0) {
ads = tm.polyprops_.adsorbtion(cmax0);
ads_dc = 0;
} else {
ads = tm.polyprops_.adsorbtionWithDer(c, &ads_dc);
}
res[0] = s - s0 + dtpv*(outflux*ff + influx);
res[1] = (s - dps)*c - (s0 - dps)*c0
+ rhor*((1.0 - porosity)/porosity)*(ads - ads0)
+ dtpv*(outflux*ff*mc + influx_polymer);
if (if_res_s) {
gradient[0] = 1 + dtpv*outflux*ff_ds_dc[0];
gradient[1] = dtpv*outflux*ff_ds_dc[1];
} else {
gradient[0] = c + dtpv*outflux*(ff_ds_dc[0])*mc;
gradient[1] = s - dps + rhor*((1.0 - porosity)/porosity)*ads_dc
+ dtpv*outflux*(ff_ds_dc[1]*mc + ff*mc_dc);
}
}
}
// setup 1d function, which is called by operator()
@ -460,7 +458,7 @@ namespace Opm
return (s - dps)*c - (s0 - dps)*c0
+ rhor*((1.0 - porosity)/porosity)*(ads - ads0)
+ dtpv*(outflux*ff*mc + influx_polymer);
}
}
}
};
@ -498,16 +496,17 @@ namespace Opm
{
const int max_iters_falsi = 20;
const double tol = 1e-7;
// the tolerance for 1d solver is set as a function of the residual
// The tolerance falsi_tol is improved by (reduc_factor_falsi_tol * "previous residual") at each step
double falsi_tol;
double reduc_factor_falsi_tol = 1e-5;
const double gradient_method = 2; // method to compute derivative ( 1: finite difference, 2: formulae)
int iters_used_falsi = 0;
const int max_iters_split = 20;
int iters_used_split = 0;
Residual residual(*this, cell);
// ResidualSDir residual_s_dir(*this, cell);
// ResidualCDir residual_c_dir(*this, cell);
// const int sdir = 0;
// const int cdir = 1;
// ResidualDir residual_dir(*this, cell);
double x[2] = {saturation_[cell], concentration_[cell]};
double res[2];
residual.computeResidual(x, res);
@ -527,6 +526,7 @@ namespace Opm
double gradient[2];
if (std::abs(res[0]) < std::abs(res[1])) {
falsi_tol = std::max(reduc_factor_falsi_tol*std::abs(res[0]), tol);
if (std::abs(res[0]) > tol) {
if (res[0] < 0) {
direction[0] = x_max[0] - x[0];
@ -538,6 +538,7 @@ namespace Opm
res_s_done = false; // means that we will start by finding zero of s-residual.
}
} else {
falsi_tol = std::max(reduc_factor_falsi_tol*std::abs(res[1]), tol);
if (std::abs(res[1]) > tol) {
if (res[1] < 0) {
direction[0] = x_max[0] - x[0];
@ -550,7 +551,7 @@ namespace Opm
res_s_done = true; // means that we will start by finding zero of c-residual.
}
while ((norm(res) > tol) && (iters_used_split < max_iters_split)) {
while ((norm(res) > tol) && (iters_used_split < max_iters_split)) {
if (res_s_done) { // solve for c-residual
if (res[1] < 0) {
// We update the bounding box (Here we assume that the curve res_s(s,c)=0 is
@ -580,12 +581,13 @@ namespace Opm
t_max = t_out;
}
}
t = modifiedRegulaFalsi(residual, 0., t_max, max_iters_falsi, tol, iters_used_falsi);
if (std::abs(residual(t)) > tol) {
t = modifiedRegulaFalsi(residual, 0., t_max, max_iters_falsi, falsi_tol, iters_used_falsi);
if (std::abs(residual(t)) > falsi_tol) {
std::cout << "modifiedRegulaFalsi did not produce result under tolerance." << std::endl;
}
residual.compute_new_x(x, t);
residual.computeGradient(x, res, gradient, 1);
residual.computeGradient(x, res, gradient, gradient_method);
falsi_tol = std::max(reduc_factor_falsi_tol*std::abs(res[1]), tol);
direction[0] = gradient[1];
direction[1] = -gradient[0];
res_s_done = false;
@ -605,12 +607,13 @@ namespace Opm
t_max = t_out;
}
}
t = modifiedRegulaFalsi(residual, 0., t_max, max_iters_falsi, tol, iters_used_falsi);
if (std::abs(residual(t)) > tol) {
t = modifiedRegulaFalsi(residual, 0., t_max, max_iters_falsi, falsi_tol, iters_used_falsi);
if (std::abs(residual(t)) > falsi_tol) {
std::cout << "modifiedRegulaFalsi did not produce result under tolerance." << std::endl;
}
residual.compute_new_x(x, t);
residual.computeGradient(x, res, gradient, 1);
residual.computeGradient(x, res, gradient, gradient_method);
falsi_tol = std::max(reduc_factor_falsi_tol*std::abs(res[0]), tol);
res_s_done = true;
direction[0] = -gradient[1];
direction[1] = gradient[0];
@ -722,17 +725,14 @@ namespace Opm
mu_m_dc *= mu_w;
double mu_p = polyprops_.viscMult(polyprops_.c_max_limit)*mu_w;
double omega = polyprops_.omega;
double mu_m_omega = std::pow(mu_m, omega);
double mu_m_omega_minus1 = std::pow(mu_m, omega - 1.0);
double mu_w_omega = std::pow(mu_w, 1.0 - omega);
double mu_w_e = mu_m_omega*mu_w_omega;
double mu_w_e_dc = omega*mu_m_dc*mu_m_omega_minus1*mu_w_omega;
double mu_p_omega = std::pow(mu_p, 1.0 - omega);
double mu_p_eff = mu_m_omega*mu_p_omega;
double mu_p_eff_dc = omega*mu_m_dc*mu_m_omega_minus1*mu_p_omega;
double mu_w_e = std::pow(mu_m, omega)*std::pow(mu_w, 1 - omega);
double mu_w_e_dc = omega*mu_m_dc*std::pow(mu_m, omega - 1)*std::pow(mu_w, 1 - omega);
double mu_p_eff = std::pow(mu_m, omega)*std::pow(mu_p, 1 - omega);
double mu_p_eff_dc = omega*mu_m_dc*std::pow(mu_m, omega - 1)*std::pow(mu_p, 1 - omega);
double mu_w_eff = 1./((1 - cbar)/mu_w_e + cbar/mu_p_eff);
double inv_mu_w_eff_dc = -mu_w_e_dc/(mu_w_e*mu_w_e)*(1. - cbar) - mu_p_eff_dc/(mu_p_eff*mu_p_eff)*cbar + (1./mu_p_eff - 1./mu_w_e);
double mu_w_eff_dc = -mu_w_eff*mu_w_eff*inv_mu_w_eff_dc;
double mu_w_eff_dc = -1./c_max_limit*mu_w_eff*mu_w_eff*(1./mu_p_eff - 1./mu_w_e)
+ (1-cbar)*(mu_w_eff*mu_w_eff/(mu_w_e*mu_w_e))*mu_w_e_dc
+ cbar*(mu_w_eff*mu_w_eff/(mu_p_eff*mu_p_eff))*mu_p_eff_dc;
double visc_eff[2] = { mu_w_eff, visc_[1] };
double sat[2] = { s, 1.0 - s };
double mob[2];
@ -743,10 +743,10 @@ namespace Opm
props_.relperm(1, sat, &cell, perm, perm_ds);
mob[0] = perm[0]/visc_eff[0];
mob[1] = perm[1]/visc_eff[1];
mob_ds[0] = perm_ds[0]/mu_w_eff;
mob_ds[1] = perm_ds[1]/mu_w_eff;
mob_ds[0] = perm_ds[0]/visc_eff[0];
mob_ds[1] = perm_ds[1]/visc_eff[1];
mob_dc[0] = - perm[0]*mu_w_eff_dc/(mu_w_eff*mu_w_eff);
mob_dc[1] = - perm[1]*mu_p_eff_dc/(mu_p_eff*mu_p_eff);
mob_dc[1] = 0.;
der[0] = (mob_ds[0]*mob[1] - mob_ds[1]*mob[0])/((mob[0] + mob[1])*(mob[0] + mob[1]));
der[1] = (mob_dc[0]*mob[1] - mob_dc[1]*mob[0])/((mob[0] + mob[1])*(mob[0] + mob[1]));
return mob[0]/(mob[0] + mob[1]);

View File

@ -128,10 +128,7 @@ namespace Opm
struct ResidualC;
struct ResidualS;
// Residual functions which are used in splitting method
struct ResidualCDir;
struct ResidualSDir;
struct ResidualDir;
// Residual function which is used in splitting method
struct Residual;
double fracFlow(double s, double c, int cell) const;