mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-28 18:21:00 -06:00
Examples and tutorials follow change to IncompTpfa interface.
This commit is contained in:
parent
1a4e7e3065
commit
f01622bd09
@ -39,11 +39,14 @@
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
|
||||
#include <opm/core/linalg/LinearSolverUmfpack.hpp>
|
||||
#include <opm/core/pressure/IncompTpfa.hpp>
|
||||
#include <opm/core/pressure/FlowBCManager.hpp>
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
#include <opm/core/simulator/TwophaseState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
|
||||
/// \page tutorial2
|
||||
/// \section commentedcode2 Program walkthrough.
|
||||
@ -68,16 +71,21 @@ int main()
|
||||
int num_cells = grid.c_grid()->number_of_cells;
|
||||
int num_faces = grid.c_grid()->number_of_faces;
|
||||
/// \endcode
|
||||
|
||||
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
/// We define a fluid viscosity equal to 1 cP.
|
||||
/// We define a fluid viscosity equal to 1 cP and density equal
|
||||
/// to 1000 kg/m^3.
|
||||
/// The <opm/core/utility/Units.hpp> header contains support
|
||||
/// for common units and prefixes, in the namespaces Opm::unit
|
||||
/// and Opm::prefix.
|
||||
/// \code
|
||||
using namespace Opm::unit;
|
||||
using namespace Opm::prefix;
|
||||
double mu = 1.0*centi*Poise;
|
||||
int num_phases = 1;
|
||||
std::vector<double> mu(num_phases, 1.0*centi*Poise);
|
||||
std::vector<double> rho(num_phases, 1000.0*kilogram/cubic(meter));
|
||||
/// \endcode
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
@ -87,17 +95,13 @@ int main()
|
||||
/// \endcode
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
/// We set up a diagonal permeability tensor and compute the mobility for each cell.
|
||||
/// The resulting permeability matrix is flattened in a vector.
|
||||
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
/// We set up a simple property object for a single-phase situation.
|
||||
/// \code
|
||||
std::vector<double> permeability(num_cells*dim*dim, 0.);
|
||||
std::vector<double> mob(num_cells);
|
||||
for (int cell = 0; cell < num_cells; ++cell) {
|
||||
permeability[9*cell + 0] = k;
|
||||
permeability[9*cell + 4] = k;
|
||||
permeability[9*cell + 8] = k;
|
||||
mob[cell] = 1/mu;
|
||||
}
|
||||
Opm::IncompPropertiesBasic props(1, Opm::SaturationPropsBasic::Constant, rho,
|
||||
mu, 1.0, k, dim, num_cells);
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial2
|
||||
@ -109,14 +113,6 @@ int main()
|
||||
/// \endcode
|
||||
/// \page tutorial2
|
||||
|
||||
/// We set up a pressure solver for the incompressible problem,
|
||||
/// using the two-point flux approximation discretization. The
|
||||
/// third argument which corresponds to gravity is set to a null
|
||||
/// pointer (no gravity). The final argument would be a pointer to
|
||||
/// a Wells data structure, again we use a null pointer to
|
||||
/// indicate that we have no wells.
|
||||
/// \code
|
||||
Opm::IncompTpfa psolver(*grid.c_grid(), &permeability[0], 0, linsolver, 0);
|
||||
/// \endcode
|
||||
/// \page tutorial2
|
||||
/// We define the source term.
|
||||
@ -132,39 +128,33 @@ int main()
|
||||
Opm::FlowBCManager bcs;
|
||||
/// \endcode
|
||||
|
||||
/// We set up a pressure solver for the incompressible problem,
|
||||
/// using the two-point flux approximation discretization. The
|
||||
/// null pointers correspond to arguments for gravity, wells and
|
||||
/// boundary conditions, which are all defaulted (to zero gravity,
|
||||
/// no wells, and no-flow boundaries).
|
||||
/// \code
|
||||
Opm::IncompTpfa psolver(*grid.c_grid(), props, linsolver, NULL, NULL, src, NULL);
|
||||
|
||||
/// \page tutorial2
|
||||
/// We declare the solution vectors, i.e., the pressure and face
|
||||
/// flux vectors we are going to compute. The well solution
|
||||
/// vectors are needed for interface compatibility with the
|
||||
/// We declare the state object, that will contain the pressure and face
|
||||
/// flux vectors we are going to compute. The well state
|
||||
/// object is needed for interface compatibility with the
|
||||
/// <CODE>solve()</CODE> method of class
|
||||
/// <CODE>Opm::IncompTPFA</CODE>.
|
||||
/// \code
|
||||
std::vector<double> pressure(num_cells);
|
||||
std::vector<double> faceflux(num_faces);
|
||||
std::vector<double> well_bhp;
|
||||
std::vector<double> well_flux;
|
||||
/// \endcode
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
/// We declare the gravity term which is required by the pressure solver (see
|
||||
/// Opm::IncompTpfa.solve()). In the absence of gravity, an empty vector is required.
|
||||
/// \code
|
||||
std::vector<double> omega;
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial2
|
||||
/// \details
|
||||
/// We declare the wdp term which is required by the pressure solver (see
|
||||
/// Opm::IncompTpfa.solve()). In the absence of wells, an empty vector is required.
|
||||
/// \code
|
||||
std::vector<double> wdp;
|
||||
Opm::TwophaseState state;
|
||||
state.pressure().resize(num_cells);
|
||||
state.faceflux().resize(num_faces);
|
||||
Opm::WellState well_state;
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial2
|
||||
/// We call the pressure solver.
|
||||
/// The first (timestep) argument does not matter for this
|
||||
/// incompressible case.
|
||||
/// \code
|
||||
psolver.solve(mob, omega, src, wdp, bcs.c_bcs(),
|
||||
pressure, faceflux, well_bhp, well_flux);
|
||||
psolver.solve(1.0*day, state, well_state);
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial2
|
||||
@ -175,9 +165,9 @@ int main()
|
||||
/// \code
|
||||
std::ofstream vtkfile("tutorial2.vtu");
|
||||
Opm::DataMap dm;
|
||||
dm["pressure"] = &pressure;
|
||||
dm["pressure"] = &state.pressure();
|
||||
std::vector<double> cell_velocity;
|
||||
Opm::estimateCellVelocity(*grid.c_grid(), faceflux, cell_velocity);
|
||||
Opm::estimateCellVelocity(*grid.c_grid(), state.faceflux(), cell_velocity);
|
||||
dm["velocity"] = &cell_velocity;
|
||||
Opm::writeVtkData(*grid.c_grid(), dm, vtkfile);
|
||||
}
|
||||
|
@ -38,6 +38,7 @@
|
||||
#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
|
||||
|
||||
#include <opm/core/simulator/TwophaseState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
@ -161,16 +162,6 @@ int main ()
|
||||
std::vector<double> omega;
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial3
|
||||
/// \details We may now set up the pressure solver. At this point,
|
||||
/// unchanging parameters such as transmissibility are computed
|
||||
/// and stored internally by the IncompTpfa class. The final (null pointer)
|
||||
/// constructor argument is for wells, which are now used in this tutorial.
|
||||
/// \code
|
||||
LinearSolverUmfpack linsolver;
|
||||
IncompTpfa psolver(grid, props.permeability(), grav, linsolver, 0);
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial3
|
||||
/// \details We set up the source term. Positive numbers indicate that the cell is a source,
|
||||
/// while negative numbers indicate a sink.
|
||||
@ -181,14 +172,28 @@ int main ()
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial3
|
||||
/// \details We set up data vectors for the wells. Here, there are
|
||||
/// no wells and we let them be empty dummies.
|
||||
/// \details We set up the boundary conditions. Letting bcs be empty is equivalent
|
||||
/// to no-flow boundary conditions.
|
||||
/// \code
|
||||
std::vector<double> empty_wdp;
|
||||
std::vector<double> empty_well_bhp;
|
||||
std::vector<double> empty_well_flux;
|
||||
FlowBCManager bcs;
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial3
|
||||
/// \details We may now set up the pressure solver. At this point,
|
||||
/// unchanging parameters such as transmissibility are computed
|
||||
/// and stored internally by the IncompTpfa class. The null pointer
|
||||
/// constructor argument is for wells, which are not used in this tutorial.
|
||||
/// \code
|
||||
LinearSolverUmfpack linsolver;
|
||||
IncompTpfa psolver(grid, props, linsolver, grav, NULL, src, bcs.c_bcs());
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial3
|
||||
/// \details We set up a state object for the wells. Here, there are
|
||||
/// no wells and we let it remain empty.
|
||||
/// \code
|
||||
WellState well_state;
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial3
|
||||
/// \details We compute the pore volume
|
||||
@ -223,14 +228,6 @@ int main ()
|
||||
}
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial3
|
||||
/// \details We set up the boundary conditions. Letting bcs be empty is equivalent
|
||||
/// to no-flow boundary conditions.
|
||||
/// \code
|
||||
FlowBCManager bcs;
|
||||
/// \endcode
|
||||
|
||||
|
||||
/// \page tutorial3
|
||||
/// \details
|
||||
/// We set up a two-phase state object, and
|
||||
@ -240,13 +237,6 @@ int main ()
|
||||
state.init(grid, 2);
|
||||
state.setFirstSat(allcells, props, TwophaseState::MinSat);
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial3
|
||||
/// \details We introduce a vector which contains the total mobility
|
||||
/// on all cells.
|
||||
/// \code
|
||||
std::vector<double> totmob;
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial3
|
||||
/// \details This string stream will be used to construct a new
|
||||
@ -263,18 +253,11 @@ int main ()
|
||||
/// \endcode
|
||||
/// \page tutorial3
|
||||
|
||||
/// \details Compute the total mobility. It is needed by the
|
||||
/// pressure solver and must be recomputed every time step
|
||||
/// since it depends on the saturation.
|
||||
/// \code
|
||||
computeTotalMobility(props, allcells, state.saturation(), totmob);
|
||||
/// \endcode
|
||||
/// \page tutorial3
|
||||
/// \details Solve the pressure equation
|
||||
/// \code
|
||||
psolver.solve(totmob, omega, src, empty_wdp, bcs.c_bcs(),
|
||||
state.pressure(), state.faceflux(), empty_well_bhp,
|
||||
empty_well_flux);
|
||||
psolver.solve(dt, state, well_state);
|
||||
/// \endcode
|
||||
/// \page tutorial3
|
||||
/// \details Solve the transport equation.
|
||||
|
@ -38,6 +38,7 @@
|
||||
#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
|
||||
|
||||
#include <opm/core/simulator/TwophaseState.hpp>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
|
||||
#include <opm/core/utility/miscUtilities.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
@ -120,20 +121,6 @@ int main ()
|
||||
std::vector<double> omega;
|
||||
/// \endcode
|
||||
|
||||
|
||||
|
||||
/// \page tutorial4
|
||||
/// \details We set up necessary information for the wells
|
||||
/// \code
|
||||
std::vector<double> wdp;
|
||||
std::vector<double> well_bhp;
|
||||
std::vector<double> well_flux;
|
||||
std::vector<double> well_resflowrates_phase;
|
||||
std::vector<double> well_surflowrates_phase;
|
||||
std::vector<double> fractional_flows;
|
||||
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial4
|
||||
/// \details We set up the source term. Positive numbers indicate that the cell is a source,
|
||||
/// while negative numbers indicate a sink.
|
||||
@ -192,13 +179,6 @@ int main ()
|
||||
state.setFirstSat(allcells, props, TwophaseState::MinSat);
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial4
|
||||
/// \details We introduce a vector which contains the total mobility
|
||||
/// on all cells.
|
||||
/// \code
|
||||
std::vector<double> totmob;
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial4
|
||||
/// \details This string will contain the name of a VTK output vector.
|
||||
/// \code
|
||||
@ -299,11 +279,21 @@ int main ()
|
||||
///\endcode
|
||||
|
||||
/// \page tutorial4
|
||||
/// \details We set up the pressure solver. We need to pass the wells pointer as the
|
||||
/// last argument.
|
||||
/// \details We set up necessary information for the wells
|
||||
/// \code
|
||||
WellState well_state;
|
||||
well_state.init(wells, state);
|
||||
std::vector<double> well_resflowrates_phase;
|
||||
std::vector<double> well_surflowrates_phase;
|
||||
std::vector<double> fractional_flows;
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial4
|
||||
/// \details We set up the pressure solver.
|
||||
/// \code
|
||||
LinearSolverUmfpack linsolver;
|
||||
IncompTpfa psolver(grid, props.permeability(), grav, linsolver, wells);
|
||||
IncompTpfa psolver(grid, props, linsolver,
|
||||
grav, wells, src, bcs.c_bcs());
|
||||
/// \endcode
|
||||
|
||||
|
||||
@ -312,18 +302,6 @@ int main ()
|
||||
/// \code
|
||||
for (int i = 0; i < num_time_steps; ++i) {
|
||||
/// \endcode
|
||||
/// \page tutorial4
|
||||
/// \details Compute the total mobility. It is needed by the pressure solver
|
||||
/// \code
|
||||
computeTotalMobility(props, allcells, state.saturation(), totmob);
|
||||
/// \endcode
|
||||
|
||||
/// \endcode
|
||||
/// \page tutorial4
|
||||
/// \details In order to use the well controls, we need to generate the WDP for each well.
|
||||
/// \code
|
||||
Opm::computeWDP(*wells, grid, state.saturation(), props.density(), gravity, true, wdp);
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial4
|
||||
/// \details We're solving the pressure until the well conditions are met
|
||||
@ -338,31 +316,29 @@ int main ()
|
||||
/// \page tutorial4
|
||||
/// \details Solve the pressure equation
|
||||
/// \code
|
||||
psolver.solve(totmob, omega, src, wdp, bcs.c_bcs(),
|
||||
state.pressure(), state.faceflux(), well_bhp,
|
||||
well_flux);
|
||||
psolver.solve(dt, state, well_state);
|
||||
|
||||
/// \endcode
|
||||
/// \page tutorial4
|
||||
/// \details We compute the new well rates. Notice that we approximate (wrongly) surfflowsrates := resflowsrate
|
||||
Opm::computeFractionalFlow(props, allcells, state.saturation(), fractional_flows);
|
||||
Opm::computePhaseFlowRatesPerWell(*wells, well_flux, fractional_flows, well_resflowrates_phase);
|
||||
Opm::computePhaseFlowRatesPerWell(*wells, well_flux, fractional_flows, well_surflowrates_phase);
|
||||
Opm::computePhaseFlowRatesPerWell(*wells, well_state.perfRates(), fractional_flows, well_resflowrates_phase);
|
||||
Opm::computePhaseFlowRatesPerWell(*wells, well_state.perfRates(), fractional_flows, well_surflowrates_phase);
|
||||
/// \endcode
|
||||
|
||||
/// \page tutorial4
|
||||
/// \details We check if the well conditions are met.
|
||||
well_conditions_met = well_collection.conditionsMet(well_bhp, well_resflowrates_phase, well_surflowrates_phase);
|
||||
well_conditions_met = well_collection.conditionsMet(well_state.bhp(), well_resflowrates_phase, well_surflowrates_phase);
|
||||
++well_iter;
|
||||
if (!well_conditions_met && well_iter == max_well_iterations) {
|
||||
THROW("Conditions not met within " << max_well_iterations<< " iterations.");
|
||||
}
|
||||
}
|
||||
/// \endcode
|
||||
|
||||
|
||||
/// \page tutorial4
|
||||
/// \details Transport solver
|
||||
/// \TODO We must call computeTransportSource() here, since we have wells.
|
||||
/// \code
|
||||
transport_solver.solve(&state.faceflux()[0], &porevol[0], &src[0], dt, state.saturation());
|
||||
/// \endcode
|
||||
|
Loading…
Reference in New Issue
Block a user