Make Reservoir Voidage Rate Calculator Independent

This commit adds a new overload of the calcReservoirVoidageRates()
member function.  The new overload does not depend on the user
calling defineState(), but instead takes state variables as direct
input arguments.

Reimplement the state-dependent overload in terms of the new
function.  The immediate use case is calculating additional dynamic
quantities per segment in a multisegmented well model, mostly for
reporting purposes.
This commit is contained in:
Bård Skaflestad
2022-10-12 23:01:42 +02:00
parent 4988f98060
commit f0e2a1efe0

View File

@@ -24,10 +24,12 @@
#include <opm/core/props/BlackoilPhases.hpp> #include <opm/core/props/BlackoilPhases.hpp>
#include <opm/grid/utility/RegionMapping.hpp> #include <opm/grid/utility/RegionMapping.hpp>
#include <opm/simulators/wells/RegionAttributeHelpers.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp> #include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/RegionAttributeHelpers.hpp>
#include <dune/grid/common/gridenums.hh> #include <dune/grid/common/gridenums.hh>
#include <dune/grid/common/rangegenerators.hh> #include <dune/grid/common/rangegenerators.hh>
#include <algorithm> #include <algorithm>
#include <cmath> #include <cmath>
#include <memory> #include <memory>
@@ -36,6 +38,7 @@
#include <unordered_map> #include <unordered_map>
#include <utility> #include <utility>
#include <vector> #include <vector>
/** /**
* \file * \file
* Facility for converting component rates at surface conditions to * Facility for converting component rates at surface conditions to
@@ -56,13 +59,13 @@ namespace Opm {
* The conversion uses fluid properties evaluated at average * The conversion uses fluid properties evaluated at average
* hydrocarbon pressure in regions or field. * hydrocarbon pressure in regions or field.
* *
* \tparam FluidSystem Fluid system class. Expected to be a BlackOilFluidSystem * \tparam FluidSystem Fluid system class. Expected to be a
* BlackOilFluidSystem
* *
* \tparam Region Type of a forward region mapping. Expected * \tparam Region Type of a forward region mapping. Expected to
* to provide indexed access through \code operator[]() * provide indexed access through \code operator[]() \endcode as
* \endcode as well as inner types \c value_type, \c * well as inner types \c value_type, \c size_type, and \c
* size_type, and \c const_iterator. Typically \code * const_iterator. Typically \code std::vector<int> \endcode.
* std::vector<int> \endcode.
*/ */
template <class FluidSystem, class Region> template <class FluidSystem, class Region>
class SurfaceToReservoirVoidage { class SurfaceToReservoirVoidage {
@@ -70,18 +73,15 @@ namespace Opm {
/** /**
* Constructor. * Constructor.
* *
* \param[in] region Forward region mapping. Often * \param[in] region Forward region mapping. Often corresponds
* corresponds to the "FIPNUM" mapping of an ECLIPSE input * to the "FIPNUM" mapping of an ECLIPSE input deck.
* deck.
*/ */
SurfaceToReservoirVoidage(const PhaseUsage& phaseUsage, SurfaceToReservoirVoidage(const PhaseUsage& phaseUsage,
const Region& region) const Region& region)
: phaseUsage_(phaseUsage) : phaseUsage_(phaseUsage)
, rmap_ (region) , rmap_ (region)
, attr_ (rmap_, Attributes()) , attr_ (rmap_, Attributes())
{ {}
}
/** /**
* Compute pore volume averaged hydrocarbon state pressure, rs and rv. * Compute pore volume averaged hydrocarbon state pressure, rs and rv.
@@ -94,9 +94,8 @@ namespace Opm {
template <typename ElementContext, class EbosSimulator> template <typename ElementContext, class EbosSimulator>
void defineState(const EbosSimulator& simulator) void defineState(const EbosSimulator& simulator)
{ {
// create map from cell to region and set all attributes to
// create map from cell to region // zero
// and set all attributes to zero
for (const auto& reg : rmap_.activeRegions()) { for (const auto& reg : rmap_.activeRegions()) {
auto& ra = attr_.attributes(reg); auto& ra = attr_.attributes(reg);
ra.pressure = 0.0; ra.pressure = 0.0;
@@ -355,103 +354,134 @@ namespace Opm {
} }
} }
/**
* Convert surface volume flow rates to reservoir voidage flow
* rates.
*
* State dependent version. Client must call \code
* defineState() \endcode prior to invoking this member
* function.
*
* \tparam Rates Type representing contiguous collection of
* surface flow rates. Must support direct indexing through
* \code operator[]() \endcode.
*
* \param[in] r Zero based fluid-in-place region index.
*
* \param[in] pvtRegionIdx Zero based PVT region index.
*
* \param[in] surface_rates surface volume flow rates for all
* active phases.
*
* \param[out] voidage_rates reservoir volume flow rates for all
* active phases.
*/
template <class Rates>
void calcReservoirVoidageRates(const RegionId r,
const int pvtRegionIdx,
const Rates& surface_rates,
Rates& voidage_rates) const
{
const auto& ra = this->attr_.attributes(r);
this->calcReservoirVoidageRates(pvtRegionIdx,
ra.pressure, ra.rs, ra.rv,
ra.temperature,
ra.saltConcentration,
surface_rates,
voidage_rates);
}
/** /**
* Converting surface volume rates to reservoir voidage rates * Convert surface volume flow rates to reservoir voidage flow
* rates.
* *
* \tparam Rates Type representing contiguous collection * State independent version.
* of surface-to-reservoir conversion coefficients. Must
* support direct indexing through \code operator[]()
* \endcode.
* *
* \tparam Rates Type representing contiguous collection of
* surface flow rates. Must support direct indexing through
* \code operator[]() \endcode.
* *
* \param[in] r Fluid-in-place region of the well * \param[in] pvtRegionIdx PVT region.
* \param[in] pvtRegionIdx PVT region of the well
* \param[in] surface_rates surface voluem rates for
* all active phases
* *
* \param[out] voidage_rates reservoir volume rates for * \param[in] p Fluid pressure.
* all active phases *
* \param[in] rs Dissolved gas/oil ratio.
*
* \param[in] rv Vaporised oil/gas ratio.
*
* \param[in] T Temperature. Unused in non-thermal simulation
* runs.
*
* \param[in] saltConcentration Salt concentration. Unused in
* simulation runs without salt precipitation.
*
* \param[in] surface_rates Surface volume flow rates for all
* active phases.
*
* \param[out] voidage_rates Reservoir volume flow rates for all
* active phases.
*/ */
template <class Rates > template <class Rates>
void void calcReservoirVoidageRates(const int pvtRegionIdx,
calcReservoirVoidageRates(const RegionId r, const int pvtRegionIdx, const Rates& surface_rates, const double p,
Rates& voidage_rates) const const double rs,
const double rv,
const double T,
const double saltConcentration,
const Rates& surface_rates,
Rates& voidage_rates) const
{ {
assert(voidage_rates.size() == surface_rates.size());
std::fill(voidage_rates.begin(), voidage_rates.end(), 0.0); std::fill(voidage_rates.begin(), voidage_rates.end(), 0.0);
const auto& pu = phaseUsage_; const auto& pu = this->phaseUsage_;
const auto& ra = attr_.attributes(r); const auto iw = RegionAttributeHelpers::PhasePos::water(pu);
const double p = ra.pressure; const auto io = RegionAttributeHelpers::PhasePos::oil (pu);
const double T = ra.temperature; const auto ig = RegionAttributeHelpers::PhasePos::gas (pu);
const double saltConcentration = ra.saltConcentration;
const int iw = RegionAttributeHelpers::PhasePos::water(pu); const auto [Rs, Rv] = this->
const int io = RegionAttributeHelpers::PhasePos::oil (pu); dissolvedVaporisedRatio(io, ig, rs, rv, surface_rates);
const int ig = RegionAttributeHelpers::PhasePos::gas (pu);
if (RegionAttributeHelpers::PhaseUsed::water(pu)) { if (RegionAttributeHelpers::PhaseUsed::water(pu)) {
// q[w]_r = q[w]_s / bw // q[w]_r = q[w]_s / bw
const auto bw = FluidSystem::waterPvt()
const double bw = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, saltConcentration); .inverseFormationVolumeFactor(pvtRegionIdx, T, p,
saltConcentration);
voidage_rates[iw] = surface_rates[iw] / bw; voidage_rates[iw] = surface_rates[iw] / bw;
} }
// Use average Rs and Rv:
auto a = ra.rs;
auto b = a;
if (io >= 0 && ig >= 0) {
b = surface_rates[ig]/(surface_rates[io]+1.0e-15);
}
double Rs = std::min(a, b);
a = ra.rv;
b = a;
if (io >= 0 && ig >= 0) {
b = surface_rates[io]/(surface_rates[ig]+1.0e-15);
}
double Rv = std::min(a, b);
// Determinant of 'R' matrix // Determinant of 'R' matrix
const double detR = 1.0 - (Rs * Rv); const auto detR = 1.0 - (Rs * Rv);
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) { if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s) // q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
const double bo = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
const double den = bo * detR;
voidage_rates[io] = surface_rates[io]; voidage_rates[io] = surface_rates[io];
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) { if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
voidage_rates[io] -= Rv * surface_rates[ig]; voidage_rates[io] -= Rv * surface_rates[ig];
} }
voidage_rates[io] /= den; const auto bo = FluidSystem::oilPvt()
.inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
voidage_rates[io] /= bo * detR;
} }
if (RegionAttributeHelpers::PhaseUsed::gas(pu)) { if (RegionAttributeHelpers::PhaseUsed::gas(pu)) {
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s) // q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
const double bg = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv, 0.0 /*=Rvw*/);
const double den = bg * detR;
voidage_rates[ig] = surface_rates[ig]; voidage_rates[ig] = surface_rates[ig];
if (RegionAttributeHelpers::PhaseUsed::oil(pu)) { if (RegionAttributeHelpers::PhaseUsed::oil(pu)) {
voidage_rates[ig] -= Rs * surface_rates[io]; voidage_rates[ig] -= Rs * surface_rates[io];
} }
voidage_rates[ig] /= den; const auto bg = FluidSystem::gasPvt()
.inverseFormationVolumeFactor(pvtRegionIdx, T, p,
Rv, 0.0 /*=Rvw*/);
voidage_rates[ig] /= bg * detR;
} }
} }
/** /**
* Compute coefficients for surface-to-reservoir voidage * Compute coefficients for surface-to-reservoir voidage
* conversion for solvent. * conversion for solvent.
@@ -510,7 +540,31 @@ namespace Opm {
RegionAttributeHelpers::RegionAttributes<RegionId, Attributes> attr_; RegionAttributeHelpers::RegionAttributes<RegionId, Attributes> attr_;
template <typename Rates>
std::pair<double, double>
dissolvedVaporisedRatio(const int io,
const int ig,
const double rs,
const double rv,
const Rates& surface_rates) const
{
if ((io < 0) || (ig < 0)) {
return { rs, rv };
}
auto eps = std::copysign(1.0e-15, surface_rates[io]);
const auto Rs = surface_rates[ig] / (surface_rates[io] + eps);
eps = std::copysign(1.0e-15, surface_rates[ig]);
const auto Rv = surface_rates[io] / (surface_rates[ig] + eps);
return {
std::clamp(static_cast<double>(Rs), 0.0, rs),
std::clamp(static_cast<double>(Rv), 0.0, rv)
};
}
}; };
} // namespace RateConverter } // namespace RateConverter
} // namespace Opm } // namespace Opm