thresholdPressures(): constify all local variables which can be made constant

I have doubts if this will change anything in the binaries (and in my
personal opinion, these 'const's look quite ugly and are sometimes a
(small) annoyance when debugging), but I don't mind using the coding
style used by most of the rest of opm-core here.
This commit is contained in:
Andreas Lauser 2015-11-13 15:03:49 +01:00
parent 3ccc0b5aa0
commit f13e7fd300

View File

@ -66,11 +66,11 @@ namespace Opm
if (simulationConfig->hasThresholdPressure()) {
std::shared_ptr<const ThresholdPressure> thresholdPressure = simulationConfig->getThresholdPressure();
std::shared_ptr<GridProperty<int>> eqlnum = eclipseState->getIntGridProperty("EQLNUM");
auto eqlnumData = eqlnum->getData();
const auto& eqlnumData = eqlnum->getData();
int numPhases = initialState.numPhases();
int numCells = UgGridHelpers::numCells(grid);
int numPvtRegions = deck->getKeyword("TABDIMS")->getRecord(0)->getItem("NTPVT")->getInt(0);
const int numPhases = initialState.numPhases();
const int numCells = UgGridHelpers::numCells(grid);
const int numPvtRegions = deck->getKeyword("TABDIMS")->getRecord(0)->getItem("NTPVT")->getInt(0);
// retrieve the minimum (residual!?) and the maximum saturations for all cells
std::vector<double> minSat(numPhases*numCells);
@ -88,19 +88,19 @@ namespace Opm
surfaceDensity[regionIdx].resize(numPhases);
if (pu.phase_used[BlackoilPhases::Aqua]) {
int wpos = pu.phase_pos[BlackoilPhases::Aqua];
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
surfaceDensity[regionIdx][wpos] =
densityKw->getRecord(regionIdx)->getItem("WATER")->getSIDouble(0);
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
int opos = pu.phase_pos[BlackoilPhases::Liquid];
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
surfaceDensity[regionIdx][opos] =
densityKw->getRecord(regionIdx)->getItem("OIL")->getSIDouble(0);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
int gpos = pu.phase_pos[BlackoilPhases::Vapour];
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
surfaceDensity[regionIdx][gpos] =
densityKw->getRecord(regionIdx)->getItem("GAS")->getSIDouble(0);
}
@ -112,7 +112,7 @@ namespace Opm
std::vector<int> pvtRegion(numCells);
const auto& cartPvtRegion = eclipseState->getIntGridProperty("PVTNUM")->getData();
for (int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
int cartCellIdx = gc?gc[cellIdx]:cellIdx;
const int cartCellIdx = gc ? gc[cellIdx] : cellIdx;
pvtRegion[cellIdx] = std::max(0, cartPvtRegion[cartCellIdx] - 1);
}
@ -162,16 +162,16 @@ namespace Opm
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
assert(pu.phase_used[BlackoilPhases::Liquid]); // we currently hard-code the oil phase as the reference phase!
int opos = pu.phase_pos[BlackoilPhases::Liquid];
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
phasePressure[opos][cellIdx] = initialState.pressure()[cellIdx];
if (pu.phase_used[BlackoilPhases::Aqua]) {
int wpos = pu.phase_pos[BlackoilPhases::Aqua];
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
phasePressure[wpos][cellIdx] = initialState.pressure()[cellIdx] + (capPress[cellIdx*numPhases + opos] - capPress[cellIdx*numPhases + wpos]);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
int gpos = pu.phase_pos[BlackoilPhases::Vapour];
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
phasePressure[gpos][cellIdx] = initialState.pressure()[cellIdx] + (capPress[cellIdx*numPhases + gpos] - capPress[cellIdx*numPhases + opos]);
}
}
@ -179,7 +179,7 @@ namespace Opm
// calculate the inverse formation volume factors for the active phases and each cell
if (pu.phase_used[BlackoilPhases::Aqua]) {
std::vector<double> dummy(numCells*BlackoilPhases::MaxNumPhases);
int wpos = pu.phase_pos[BlackoilPhases::Aqua];
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
const PvtInterface& pvtw = props.pvt(wpos);
pvtw.b(numCells,
pvtRegion.data(),
@ -197,7 +197,7 @@ namespace Opm
if (pu.phase_used[BlackoilPhases::Liquid]) {
std::vector<double> dummy(numCells*BlackoilPhases::MaxNumPhases);
int opos = pu.phase_pos[BlackoilPhases::Liquid];
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
const PvtInterface& pvto = props.pvt(opos);
pvto.b(numCells,
pvtRegion.data(),
@ -221,7 +221,7 @@ namespace Opm
if (pu.phase_used[BlackoilPhases::Vapour]) {
std::vector<double> dummy(numCells*BlackoilPhases::MaxNumPhases);
int gpos = pu.phase_pos[BlackoilPhases::Vapour];
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
const PvtInterface& pvtg = props.pvt(gpos);
pvtg.b(numCells,
pvtRegion.data(),
@ -236,7 +236,7 @@ namespace Opm
rho[gpos][cellIdx] = surfaceDensity[pvtRegion[cellIdx]][gpos]*b[cellIdx];
if (pu.phase_used[BlackoilPhases::Liquid]) {
int opos = pu.phase_pos[BlackoilPhases::Liquid];
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
rho[gpos][cellIdx] +=
surfaceDensity[pvtRegion[cellIdx]][opos]*initialState.rv()[cellIdx]*b[cellIdx];
}
@ -248,7 +248,7 @@ namespace Opm
std::map<std::pair<int, int>, double> maxDp;
const int num_faces = UgGridHelpers::numFaces(grid);
thpres_vals.resize(num_faces, 0.0);
auto fc = UgGridHelpers::faceCells(grid);
const auto& fc = UgGridHelpers::faceCells(grid);
for (int face = 0; face < num_faces; ++face) {
const int c1 = fc(face, 0);
const int c2 = fc(face, 1);
@ -274,24 +274,21 @@ namespace Opm
}
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
double z1 = UgGridHelpers::cellCenterDepth(grid, c1);
double z2 = UgGridHelpers::cellCenterDepth(grid, c2);
double zAvg = (z1 + z2)/2; // average depth
const double z1 = UgGridHelpers::cellCenterDepth(grid, c1);
const double z2 = UgGridHelpers::cellCenterDepth(grid, c2);
const double zAvg = (z1 + z2)/2; // average depth
double rhoAvg = (rho[phaseIdx][c1] + rho[phaseIdx][c2])/2;
const double rhoAvg = (rho[phaseIdx][c1] + rho[phaseIdx][c2])/2;
double s1 = initialState.saturation()[numPhases*c1 + phaseIdx];
double s2 = initialState.saturation()[numPhases*c2 + phaseIdx];
const double s1 = initialState.saturation()[numPhases*c1 + phaseIdx];
const double s2 = initialState.saturation()[numPhases*c2 + phaseIdx];
double sResid1 = minSat[numPhases*c1 + phaseIdx];
double sResid2 = minSat[numPhases*c2 + phaseIdx];
const double sResid1 = minSat[numPhases*c1 + phaseIdx];
const double sResid2 = minSat[numPhases*c2 + phaseIdx];
// compute gravity corrected pressure potentials at the average depth
double p1 = phasePressure[phaseIdx][c1];
double p2 = phasePressure[phaseIdx][c2];
p1 += rhoAvg*gravity*(zAvg - z1);
p2 += rhoAvg*gravity*(zAvg - z2);
const double p1 = phasePressure[phaseIdx][c1] + rhoAvg*gravity*(zAvg - z1);
const double p2 = phasePressure[phaseIdx][c2] + rhoAvg*gravity*(zAvg - z2);
if ((p1 > p2 && s1 > sResid1) || (p2 > p1 && s2 > sResid2))
maxDp[barrierId] = std::max(maxDp[barrierId], std::abs(p1 - p2));