mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-20 11:48:25 -06:00
thresholdPressures(): constify all local variables which can be made constant
I have doubts if this will change anything in the binaries (and in my personal opinion, these 'const's look quite ugly and are sometimes a (small) annoyance when debugging), but I don't mind using the coding style used by most of the rest of opm-core here.
This commit is contained in:
parent
3ccc0b5aa0
commit
f13e7fd300
@ -66,11 +66,11 @@ namespace Opm
|
||||
if (simulationConfig->hasThresholdPressure()) {
|
||||
std::shared_ptr<const ThresholdPressure> thresholdPressure = simulationConfig->getThresholdPressure();
|
||||
std::shared_ptr<GridProperty<int>> eqlnum = eclipseState->getIntGridProperty("EQLNUM");
|
||||
auto eqlnumData = eqlnum->getData();
|
||||
const auto& eqlnumData = eqlnum->getData();
|
||||
|
||||
int numPhases = initialState.numPhases();
|
||||
int numCells = UgGridHelpers::numCells(grid);
|
||||
int numPvtRegions = deck->getKeyword("TABDIMS")->getRecord(0)->getItem("NTPVT")->getInt(0);
|
||||
const int numPhases = initialState.numPhases();
|
||||
const int numCells = UgGridHelpers::numCells(grid);
|
||||
const int numPvtRegions = deck->getKeyword("TABDIMS")->getRecord(0)->getItem("NTPVT")->getInt(0);
|
||||
|
||||
// retrieve the minimum (residual!?) and the maximum saturations for all cells
|
||||
std::vector<double> minSat(numPhases*numCells);
|
||||
@ -88,19 +88,19 @@ namespace Opm
|
||||
surfaceDensity[regionIdx].resize(numPhases);
|
||||
|
||||
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
||||
int wpos = pu.phase_pos[BlackoilPhases::Aqua];
|
||||
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
|
||||
surfaceDensity[regionIdx][wpos] =
|
||||
densityKw->getRecord(regionIdx)->getItem("WATER")->getSIDouble(0);
|
||||
}
|
||||
|
||||
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
||||
int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
||||
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
||||
surfaceDensity[regionIdx][opos] =
|
||||
densityKw->getRecord(regionIdx)->getItem("OIL")->getSIDouble(0);
|
||||
}
|
||||
|
||||
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
||||
int gpos = pu.phase_pos[BlackoilPhases::Vapour];
|
||||
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
|
||||
surfaceDensity[regionIdx][gpos] =
|
||||
densityKw->getRecord(regionIdx)->getItem("GAS")->getSIDouble(0);
|
||||
}
|
||||
@ -112,7 +112,7 @@ namespace Opm
|
||||
std::vector<int> pvtRegion(numCells);
|
||||
const auto& cartPvtRegion = eclipseState->getIntGridProperty("PVTNUM")->getData();
|
||||
for (int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
||||
int cartCellIdx = gc?gc[cellIdx]:cellIdx;
|
||||
const int cartCellIdx = gc ? gc[cellIdx] : cellIdx;
|
||||
pvtRegion[cellIdx] = std::max(0, cartPvtRegion[cartCellIdx] - 1);
|
||||
}
|
||||
|
||||
@ -162,16 +162,16 @@ namespace Opm
|
||||
|
||||
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
|
||||
assert(pu.phase_used[BlackoilPhases::Liquid]); // we currently hard-code the oil phase as the reference phase!
|
||||
int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
||||
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
||||
phasePressure[opos][cellIdx] = initialState.pressure()[cellIdx];
|
||||
|
||||
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
||||
int wpos = pu.phase_pos[BlackoilPhases::Aqua];
|
||||
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
|
||||
phasePressure[wpos][cellIdx] = initialState.pressure()[cellIdx] + (capPress[cellIdx*numPhases + opos] - capPress[cellIdx*numPhases + wpos]);
|
||||
}
|
||||
|
||||
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
||||
int gpos = pu.phase_pos[BlackoilPhases::Vapour];
|
||||
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
|
||||
phasePressure[gpos][cellIdx] = initialState.pressure()[cellIdx] + (capPress[cellIdx*numPhases + gpos] - capPress[cellIdx*numPhases + opos]);
|
||||
}
|
||||
}
|
||||
@ -179,7 +179,7 @@ namespace Opm
|
||||
// calculate the inverse formation volume factors for the active phases and each cell
|
||||
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
||||
std::vector<double> dummy(numCells*BlackoilPhases::MaxNumPhases);
|
||||
int wpos = pu.phase_pos[BlackoilPhases::Aqua];
|
||||
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
|
||||
const PvtInterface& pvtw = props.pvt(wpos);
|
||||
pvtw.b(numCells,
|
||||
pvtRegion.data(),
|
||||
@ -197,7 +197,7 @@ namespace Opm
|
||||
|
||||
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
||||
std::vector<double> dummy(numCells*BlackoilPhases::MaxNumPhases);
|
||||
int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
||||
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
||||
const PvtInterface& pvto = props.pvt(opos);
|
||||
pvto.b(numCells,
|
||||
pvtRegion.data(),
|
||||
@ -221,7 +221,7 @@ namespace Opm
|
||||
|
||||
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
||||
std::vector<double> dummy(numCells*BlackoilPhases::MaxNumPhases);
|
||||
int gpos = pu.phase_pos[BlackoilPhases::Vapour];
|
||||
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
|
||||
const PvtInterface& pvtg = props.pvt(gpos);
|
||||
pvtg.b(numCells,
|
||||
pvtRegion.data(),
|
||||
@ -236,7 +236,7 @@ namespace Opm
|
||||
rho[gpos][cellIdx] = surfaceDensity[pvtRegion[cellIdx]][gpos]*b[cellIdx];
|
||||
|
||||
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
||||
int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
||||
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
|
||||
rho[gpos][cellIdx] +=
|
||||
surfaceDensity[pvtRegion[cellIdx]][opos]*initialState.rv()[cellIdx]*b[cellIdx];
|
||||
}
|
||||
@ -248,7 +248,7 @@ namespace Opm
|
||||
std::map<std::pair<int, int>, double> maxDp;
|
||||
const int num_faces = UgGridHelpers::numFaces(grid);
|
||||
thpres_vals.resize(num_faces, 0.0);
|
||||
auto fc = UgGridHelpers::faceCells(grid);
|
||||
const auto& fc = UgGridHelpers::faceCells(grid);
|
||||
for (int face = 0; face < num_faces; ++face) {
|
||||
const int c1 = fc(face, 0);
|
||||
const int c2 = fc(face, 1);
|
||||
@ -274,24 +274,21 @@ namespace Opm
|
||||
}
|
||||
|
||||
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||||
double z1 = UgGridHelpers::cellCenterDepth(grid, c1);
|
||||
double z2 = UgGridHelpers::cellCenterDepth(grid, c2);
|
||||
double zAvg = (z1 + z2)/2; // average depth
|
||||
const double z1 = UgGridHelpers::cellCenterDepth(grid, c1);
|
||||
const double z2 = UgGridHelpers::cellCenterDepth(grid, c2);
|
||||
const double zAvg = (z1 + z2)/2; // average depth
|
||||
|
||||
double rhoAvg = (rho[phaseIdx][c1] + rho[phaseIdx][c2])/2;
|
||||
const double rhoAvg = (rho[phaseIdx][c1] + rho[phaseIdx][c2])/2;
|
||||
|
||||
double s1 = initialState.saturation()[numPhases*c1 + phaseIdx];
|
||||
double s2 = initialState.saturation()[numPhases*c2 + phaseIdx];
|
||||
const double s1 = initialState.saturation()[numPhases*c1 + phaseIdx];
|
||||
const double s2 = initialState.saturation()[numPhases*c2 + phaseIdx];
|
||||
|
||||
double sResid1 = minSat[numPhases*c1 + phaseIdx];
|
||||
double sResid2 = minSat[numPhases*c2 + phaseIdx];
|
||||
const double sResid1 = minSat[numPhases*c1 + phaseIdx];
|
||||
const double sResid2 = minSat[numPhases*c2 + phaseIdx];
|
||||
|
||||
// compute gravity corrected pressure potentials at the average depth
|
||||
double p1 = phasePressure[phaseIdx][c1];
|
||||
double p2 = phasePressure[phaseIdx][c2];
|
||||
|
||||
p1 += rhoAvg*gravity*(zAvg - z1);
|
||||
p2 += rhoAvg*gravity*(zAvg - z2);
|
||||
const double p1 = phasePressure[phaseIdx][c1] + rhoAvg*gravity*(zAvg - z1);
|
||||
const double p2 = phasePressure[phaseIdx][c2] + rhoAvg*gravity*(zAvg - z2);
|
||||
|
||||
if ((p1 > p2 && s1 > sResid1) || (p2 > p1 && s2 > sResid2))
|
||||
maxDp[barrierId] = std::max(maxDp[barrierId], std::abs(p1 - p2));
|
||||
|
Loading…
Reference in New Issue
Block a user