mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #78 from atgeirr/seg-well-model
Segmented well model
This commit is contained in:
commit
f159aeaa7c
@ -35,6 +35,7 @@ list (APPEND MAIN_SOURCE_FILES
|
||||
opm/autodiff/SimulatorIncompTwophaseAd.cpp
|
||||
opm/autodiff/TransportSolverTwophaseAd.cpp
|
||||
opm/autodiff/BlackoilPropsAdFromDeck.cpp
|
||||
opm/autodiff/WellDensitySegmented.cpp
|
||||
)
|
||||
|
||||
# originally generated with the command:
|
||||
@ -45,6 +46,7 @@ list (APPEND TEST_SOURCE_FILES
|
||||
tests/test_span.cpp
|
||||
tests/test_syntax.cpp
|
||||
tests/test_scalar_mult.cpp
|
||||
tests/test_welldensitysegmented.cpp
|
||||
)
|
||||
|
||||
list (APPEND TEST_DATA_FILES
|
||||
@ -86,4 +88,5 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/autodiff/SimulatorFullyImplicitBlackoil.hpp
|
||||
opm/autodiff/SimulatorIncompTwophaseAd.hpp
|
||||
opm/autodiff/TransportSolverTwophaseAd.hpp
|
||||
opm/autodiff/WellDensitySegmented.hpp
|
||||
)
|
||||
|
172
opm/autodiff/WellDensitySegmented.cpp
Normal file
172
opm/autodiff/WellDensitySegmented.cpp
Normal file
@ -0,0 +1,172 @@
|
||||
/*
|
||||
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <opm/autodiff/WellDensitySegmented.hpp>
|
||||
#include <opm/core/wells.h>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
#include <numeric>
|
||||
#include <cmath>
|
||||
|
||||
|
||||
std::vector<double> Opm::WellDensitySegmented::computeConnectionPressureDelta(const Wells& wells,
|
||||
const WellState& wstate,
|
||||
const PhaseUsage& phase_usage,
|
||||
const std::vector<double>& b_perf,
|
||||
const std::vector<double>& rsmax_perf,
|
||||
const std::vector<double>& rvmax_perf,
|
||||
const std::vector<double>& z_perf,
|
||||
const std::vector<double>& surf_dens,
|
||||
const double gravity)
|
||||
{
|
||||
// Verify that we have consistent input.
|
||||
const int np = wells.number_of_phases;
|
||||
const int nw = wells.number_of_wells;
|
||||
const int nperf = wells.well_connpos[nw];
|
||||
if (wells.number_of_phases != phase_usage.num_phases) {
|
||||
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. phase_usage.");
|
||||
}
|
||||
if (surf_dens.size() != size_t(wells.number_of_phases)) {
|
||||
OPM_THROW(std::logic_error, "Inconsistent input: surf_dens vs. phase_usage.");
|
||||
}
|
||||
if (nperf*np != int(wstate.perfRates().size())) {
|
||||
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. wstate.");
|
||||
}
|
||||
if (nperf*np != int(b_perf.size())) {
|
||||
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. b_perf.");
|
||||
}
|
||||
if (nperf != int(z_perf.size())) {
|
||||
OPM_THROW(std::logic_error, "Inconsistent input: wells vs. z_perf.");
|
||||
}
|
||||
if ((!rsmax_perf.empty()) || (!rvmax_perf.empty())) {
|
||||
// Need both oil and gas phases.
|
||||
if (!phase_usage.phase_used[BlackoilPhases::Liquid]) {
|
||||
OPM_THROW(std::logic_error, "Oil phase inactive, but non-empty rsmax_perf or rvmax_perf.");
|
||||
}
|
||||
if (!phase_usage.phase_used[BlackoilPhases::Vapour]) {
|
||||
OPM_THROW(std::logic_error, "Gas phase inactive, but non-empty rsmax_perf or rvmax_perf.");
|
||||
}
|
||||
}
|
||||
|
||||
// Algorithm:
|
||||
|
||||
// We'll assume the perforations are given in order from top to
|
||||
// bottom for each well. By top and bottom we do not necessarily
|
||||
// mean in a geometric sense (depth), but in a topological sense:
|
||||
// the 'top' perforation is nearest to the surface topologically.
|
||||
// Our goal is to compute a pressure delta for each perforation.
|
||||
|
||||
// 1. Compute the flow (in surface volume units for each
|
||||
// component) exiting up the wellbore from each perforation,
|
||||
// taking into account flow from lower in the well, and
|
||||
// in/out-flow at each perforation.
|
||||
std::vector<double> q_out_perf(nperf*np);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
// Iterate over well perforations from bottom to top.
|
||||
for (int perf = wells.well_connpos[w+1] - 1; perf >= wells.well_connpos[w]; --perf) {
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
if (perf == wells.well_connpos[w+1] - 1) {
|
||||
// This is the bottom perforation. No flow from below.
|
||||
q_out_perf[perf*np + phase] = 0.0;
|
||||
} else {
|
||||
// Set equal to flow from below.
|
||||
q_out_perf[perf*np + phase] = q_out_perf[(perf+1)*np + phase];
|
||||
}
|
||||
// Subtract outflow through perforation.
|
||||
q_out_perf[perf*np + phase] -= wstate.perfRates()[perf*np + phase];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 2. Compute the component mix at each perforation as the
|
||||
// absolute values of the surface rates divided by their sum.
|
||||
// Then compute volume ratios (formation factors) for each perforation.
|
||||
// Finally compute densities for the segments associated with each perforation.
|
||||
const int gaspos = phase_usage.phase_pos[BlackoilPhases::Vapour];
|
||||
const int oilpos = phase_usage.phase_pos[BlackoilPhases::Liquid];
|
||||
std::vector<double> mix(np);
|
||||
std::vector<double> x(np);
|
||||
std::vector<double> dens(nperf);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w+1]; ++perf) {
|
||||
// Find component mix.
|
||||
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + np*perf,
|
||||
q_out_perf.begin() + np*(perf+1), 0.0);
|
||||
if (tot_surf_rate != 0.0) {
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
mix[phase] = std::fabs(q_out_perf[perf*np + phase]/tot_surf_rate);
|
||||
}
|
||||
} else {
|
||||
// No flow => use well specified fractions for mix.
|
||||
std::copy(wells.comp_frac + w*np, wells.comp_frac + (w+1)*np, mix.begin());
|
||||
}
|
||||
// Compute volume ratio.
|
||||
x = mix;
|
||||
double rs = 0.0;
|
||||
double rv = 0.0;
|
||||
if (!rsmax_perf.empty() && mix[oilpos] > 0.0) {
|
||||
rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]);
|
||||
}
|
||||
if (!rvmax_perf.empty() && mix[gaspos] > 0.0) {
|
||||
rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]);
|
||||
}
|
||||
if (rs != 0.0) {
|
||||
// Subtract gas in oil from gas mixture
|
||||
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/(1.0 - rs*rv);
|
||||
}
|
||||
if (rv != 0.0) {
|
||||
// Subtract oil in gas from oil mixture
|
||||
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);;
|
||||
}
|
||||
double volrat = 0.0;
|
||||
for (int phase = 0; phase < np; ++phase) {
|
||||
volrat += x[phase] / b_perf[perf*np + phase];
|
||||
}
|
||||
// Compute segment density.
|
||||
dens[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
|
||||
}
|
||||
}
|
||||
|
||||
// 3. Compute pressure differences between perforations.
|
||||
// dp_perf will contain the pressure difference between a
|
||||
// perforation and the one above it, except for the first
|
||||
// perforation for each well, for which it will be the
|
||||
// difference to the reference (bhp) depth.
|
||||
std::vector<double> dp_perf(nperf);
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w+1]; ++perf) {
|
||||
const double z_above = perf == wells.well_connpos[w] ? wells.depth_ref[w] : z_perf[perf - 1];
|
||||
const double dz = z_perf[perf] - z_above;
|
||||
dp_perf[perf] = dz * dens[perf] * gravity;
|
||||
}
|
||||
}
|
||||
|
||||
// 4. Compute pressure differences to the reference point (bhp) by
|
||||
// accumulating the already computed adjacent pressure
|
||||
// differences, storing the result in dp_perf.
|
||||
// This accumulation must be done per well.
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
const auto beg = dp_perf.begin() + wells.well_connpos[w];
|
||||
const auto end = dp_perf.begin() + wells.well_connpos[w + 1];
|
||||
std::partial_sum(beg, end, beg);
|
||||
}
|
||||
|
||||
return dp_perf;
|
||||
}
|
66
opm/autodiff/WellDensitySegmented.hpp
Normal file
66
opm/autodiff/WellDensitySegmented.hpp
Normal file
@ -0,0 +1,66 @@
|
||||
/*
|
||||
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_WELLDENSITYSEGMENTED_HEADER_INCLUDED
|
||||
#define OPM_WELLDENSITYSEGMENTED_HEADER_INCLUDED
|
||||
|
||||
#include <vector>
|
||||
|
||||
struct Wells;
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class WellState;
|
||||
class PhaseUsage;
|
||||
|
||||
|
||||
/// A class giving a well model, by which we mean a way to compute
|
||||
/// the pressure deltas of each perforation and the bottom-hole
|
||||
/// pressure. This class contains an explicit model, that uses a
|
||||
/// different density for each well segment, that is between each
|
||||
/// pair of perforations.
|
||||
class WellDensitySegmented
|
||||
{
|
||||
public:
|
||||
/// Compute pressure deltas.
|
||||
/// Notation: N = number of perforations, P = number of phases.
|
||||
/// \param[in] wells struct with static well info
|
||||
/// \param[in] wstate dynamic well solution information, only perfRates() is used
|
||||
/// \param[in] phase_usage specifies which phases are active and not
|
||||
/// \param[in] b_perf inverse ('little b') formation volume factor, size NP, P values per perforation
|
||||
/// \param[in] rsmax_perf saturation point for rs (gas in oil) at each perforation, size N
|
||||
/// \param[in] rvmax_perf saturation point for rv (oil in gas) at each perforation, size N
|
||||
/// \param[in] z_perf depth values for each perforation, size N
|
||||
/// \param[in] surf_dens surface densities for active components, size P
|
||||
/// \param[in] gravity gravity acceleration constant
|
||||
static std::vector<double> computeConnectionPressureDelta(const Wells& wells,
|
||||
const WellState& wstate,
|
||||
const PhaseUsage& phase_usage,
|
||||
const std::vector<double>& b_perf,
|
||||
const std::vector<double>& rsmax_perf,
|
||||
const std::vector<double>& rvmax_perf,
|
||||
const std::vector<double>& z_perf,
|
||||
const std::vector<double>& surf_dens,
|
||||
const double gravity);
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // OPM_WELLDENSITYSEGMENTED_HEADER_INCLUDED
|
101
tests/test_welldensitysegmented.cpp
Normal file
101
tests/test_welldensitysegmented.cpp
Normal file
@ -0,0 +1,101 @@
|
||||
/*
|
||||
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#if HAVE_DYNAMIC_BOOST_TEST
|
||||
#define BOOST_TEST_DYN_LINK
|
||||
#endif
|
||||
|
||||
#define BOOST_TEST_MODULE WellDensitySegmentedTest
|
||||
|
||||
#include <opm/autodiff/WellDensitySegmented.hpp>
|
||||
#include <opm/core/wells.h>
|
||||
#include <opm/core/simulator/WellState.hpp>
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
#include <opm/core/utility/Units.hpp>
|
||||
|
||||
#include <boost/test/unit_test.hpp>
|
||||
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
|
||||
using namespace Opm;
|
||||
|
||||
BOOST_AUTO_TEST_CASE(TestPressureDeltas)
|
||||
{
|
||||
// Simple water injector.
|
||||
const int np = 3;
|
||||
const int nperf = 10;
|
||||
const double ref_depth = 0.0;
|
||||
const double comp_frac_w[np] = { 1.0, 0.0, 0.0 };
|
||||
const double comp_frac_o[np] = { 0.0, 1.0, 0.0 };
|
||||
const int cells[nperf/2] = { 0, 1, 2, 3, 4 };
|
||||
const double WI[nperf/2] = { 1.0, 1.0, 1.0, 1.0, 1.0 };
|
||||
std::shared_ptr<Wells> wells(create_wells(np, 2, nperf), destroy_wells);
|
||||
BOOST_REQUIRE(wells);
|
||||
int ok = add_well(INJECTOR, ref_depth, nperf/2, comp_frac_w, cells, WI, "INJ", wells.get());
|
||||
BOOST_REQUIRE(ok);
|
||||
ok = add_well(PRODUCER, ref_depth, nperf/2, comp_frac_o, cells, WI, "PROD", wells.get());
|
||||
BOOST_REQUIRE(ok);
|
||||
std::vector<double> rates = { 1.0, 0.0, 0.0,
|
||||
1.0, 0.0, 0.0,
|
||||
1.0, 0.0, 0.0,
|
||||
1.0, 0.0, 0.0,
|
||||
1.0, 0.0, 0.0,
|
||||
1.0, 0.0, 0.0,
|
||||
1.0, 0.0, 0.0,
|
||||
1.0, 0.0, 0.0,
|
||||
1.0, 0.0, 0.0,
|
||||
1.0, 0.0, 0.0 };
|
||||
WellState wellstate;
|
||||
wellstate.perfRates() = rates;
|
||||
PhaseUsage pu;
|
||||
pu.num_phases = 3;
|
||||
pu.phase_used[0] = true;
|
||||
pu.phase_used[1] = true;
|
||||
pu.phase_used[2] = true;
|
||||
pu.phase_pos[0] = 0;
|
||||
pu.phase_pos[1] = 1;
|
||||
pu.phase_pos[2] = 2;
|
||||
const std::vector<double> b_perf = { 2.0, 3.0, 100,
|
||||
2.1, 3.3, 110,
|
||||
2.2, 3.6, 120,
|
||||
2.3, 4.0, 130,
|
||||
2.4, 4.5, 140,
|
||||
2.0, 3.0, 100,
|
||||
2.1, 3.3, 110,
|
||||
2.2, 3.6, 120,
|
||||
2.3, 4.0, 130,
|
||||
2.4, 4.5, 140 };
|
||||
const std::vector<double> rsmax_perf = { 50, 50, 50, 50, 50, 50, 50, 50, 50, 50 };
|
||||
const std::vector<double> rvmax_perf = { 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01 };
|
||||
const std::vector<double> z_perf = { 10, 30, 50, 70, 90, 10, 30, 50, 70, 90 };
|
||||
const std::vector<double> surf_dens = { 1000.0, 800.0, 10.0 };
|
||||
const double gravity = Opm::unit::gravity;
|
||||
const std::vector<double> dp = WellDensitySegmented::computeConnectionPressureDelta(*wells, wellstate, pu, b_perf, rsmax_perf, rvmax_perf, z_perf, surf_dens, gravity);
|
||||
const std::vector<double> answer = { 20e3*gravity, 62e3*gravity, 106e3*gravity, 152e3*gravity, 200e3*gravity,
|
||||
20e3*gravity, 62e3*gravity, 106e3*gravity, 152e3*gravity, 200e3*gravity };
|
||||
BOOST_REQUIRE_EQUAL(dp.size(), answer.size());
|
||||
// for (auto p : dp) { std::cout << p << std::endl; }
|
||||
for (size_t i = 0; i < dp.size(); ++i) {
|
||||
BOOST_CHECK_CLOSE(dp[i], answer[i], 1e-8);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user