Simplified and cleaned up tutorial.

This commit is contained in:
Atgeirr Flø Rasmussen 2012-05-30 14:40:17 +02:00
parent f10a76ffd1
commit f20f3eaf11

View File

@ -35,14 +35,7 @@
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
#include <opm/core/transport/transport_source.h>
#include <opm/core/transport/CSRMatrixUmfpackSolver.hpp>
#include <opm/core/transport/NormSupport.hpp>
#include <opm/core/transport/ImplicitAssembly.hpp>
#include <opm/core/transport/ImplicitTransport.hpp>
#include <opm/core/transport/JacobianSystem.hpp>
#include <opm/core/transport/CSRMatrixBlockAssembler.hpp>
#include <opm/core/transport/SinglePointUpwindTwoPhase.hpp>
#include <opm/core/transport/reorder/TransportModelTwophase.hpp>
#include <opm/core/TwophaseState.hpp>
@ -68,8 +61,8 @@
/// The conservation of mass for each phase writes:
/// \f[\frac{\partial}{\partial t}(\phi\rho_\alpha s_\alpha)+\nabla\cdot(\rho_\alpha u_\alpha)=q_\alpha\f]
/// where \f$s_\alpha\f$ denotes the saturation of the phase \f$\alpha\f$ and \f$q_\alpha\f$ is a source term. Let
/// us consider a two phase flow with oil and water. We assume that the phases are incompressible. Since
/// \f$s_w+s_o=1\f$, we get
/// us consider a two phase flow with oil and water. We assume that the rock and both fluid phases are incompressible. Since
/// \f$s_w+s_o=1\f$, we may add the conservation equations to get
/// \f[ \nabla\cdot u=\frac{q_w}{\rho_w}+\frac{q_o}{\rho_o}.\f]
/// where we define
/// \f[u=u_w+u_o.\f]
@ -84,7 +77,7 @@
/// as
/// \f[f_w=\frac{\lambda_w}{\lambda_w+\lambda_o}\f]
/// and obtain
/// \f[\phi\frac{\partial s}{\partial t}+\nabla\cdot(f_w u)=\frac{q_w}{\rho_w}\f]
/// \f[\phi\frac{\partial s_w}{\partial t}+\nabla\cdot(f_w u)=\frac{q_w}{\rho_w}\f]
/// which is referred to as the <strong>transport equation</strong>. The pressure and
/// transport equation are coupled. In this tutorial, we implement a splitting scheme,
/// where, at each time step, we decouple the two equations. We solve first
@ -92,111 +85,6 @@
/// the transport equation assuming that \f$u\f$ is constant in time in the time step
/// interval we are considering.
/// \page tutorial3
/// \section commentedcode3 Commented code:
/// \page tutorial3
/// \details
/// We define a class which computes mobility, capillary pressure and
/// the minimum and maximum saturation value for each cell.
/// \code
class TwophaseFluid
{
public:
/// \endcode
/// \page tutorial3
/// \details Constructor operator. Takes in the fluid properties defined
/// \c props
/// \code
TwophaseFluid(const Opm::IncompPropertiesInterface& props);
/// \endcode
/// \page tutorial3
/// \details Density for each phase.
/// \code
double density(int phase) const;
/// \endcode
/// \page tutorial3
/// \details Computes the mobility and its derivative with respect to saturation
/// for a given cell \c c and saturation \c sat. The template classes \c Sat,
/// \c Mob, \c DMob are typically arrays. By using templates, we do not have to
/// investigate how these array objects are implemented
/// (as long as they have an \c operator[] method).
/// \code
template <class Sat, class Mob, class DMob>
void mobility(int c, const Sat& s, Mob& mob, DMob& dmob) const;
/// \endcode
/// \page tutorial3
/// \details Computes the capillary pressure and its derivative with respect
/// to saturation
/// for a given cell \c c and saturation \c sat.
/// \code
template <class Sat, class Pcap, class DPcap>
void pc(int c, const Sat& s, Pcap& pcap, DPcap& dpcap) const;
/// \endcode
/// \page tutorial3
/// \details Returns the minimum permitted saturation.
/// \code
double s_min(int c) const;
/// \endcode
/// \page tutorial3
/// \details Returns the maximum permitted saturation
/// \code
double s_max(int c) const;
/// \endcode
/// \page tutorial3
/// \details Private variables
/// \code
private:
const Opm::IncompPropertiesInterface& props_;
std::vector<double> smin_;
std::vector<double> smax_;
};
/// \endcode
/// \page tutorial3
/// \details We set up the transport model.
/// \code
typedef Opm::SinglePointUpwindTwoPhase<TwophaseFluid> TransportModel;
/// \endcode
/// \page tutorial3
/// \details
/// The transport equation is nonlinear. We use an implicit transport solver
/// which implements a Newton-Raphson solver.
/// We define the format of the objects
/// which will be used by the solver.
/// \code
using namespace Opm::ImplicitTransportDefault;
typedef NewtonVectorCollection< ::std::vector<double> > NVecColl;
typedef JacobianSystem< struct CSRMatrix, NVecColl > JacSys;
template <class Vector>
class MaxNorm {
public:
static double
norm(const Vector& v) {
return AccumulationNorm <Vector, MaxAbs>::norm(v);
}
};
/// \endcode
/// \page tutorial3
/// \details
/// We set up the solver.
/// \code
typedef Opm::ImplicitTransport<TransportModel,
JacSys ,
MaxNorm ,
VectorNegater ,
VectorZero ,
MatrixZero ,
VectorAssign > TransportSolver;
/// \endcode
/// \page tutorial3
@ -208,65 +96,64 @@ int main ()
/// \endcode
/// \page tutorial3
/// \details
/// We define the grid. A cartesian grid with 1200 cells.
/// We define the grid. A cartesian grid with 400 cells,
/// each being 10m along each side. Note that we treat the
/// grid as 3-dimensional, but have a thickness of only one
/// layer in the Z direction.
///
/// The Opm::GridManager is responsible for creating and destroying the grid,
/// the UnstructuredGrid data structure contains the actual grid topology
/// and geometry.
/// \code
int dim = 3;
int nx = 20;
int ny = 20;
int nz = 1;
double dx = 10.;
double dy = 10.;
double dz = 10.;
double dx = 10.0;
double dy = 10.0;
double dz = 10.0;
using namespace Opm;
GridManager grid(nx, ny, nz, dx, dy, dz);
int num_cells = grid.c_grid()->number_of_cells;
GridManager grid_manager(nx, ny, nz, dx, dy, dz);
const UnstructuredGrid& grid = *grid_manager.c_grid();
int num_cells = grid.number_of_cells;
/// \endcode
/// \page tutorial3
/// \details
/// We define the properties of the fluid.\n
/// Number of phases.
/// Number of phases, phase densities, phase viscosities,
/// rock porosity and permeability.
///
/// We always use SI units in the simulator. Many units are
/// available for use, however. They are stored as constants in
/// the Opm::unit namespace, while prefixes are in the Opm::prefix
/// namespace. See Units.hpp for more.
/// \code
int num_phases = 2;
using namespace unit;
using namespace prefix;
/// \endcode
/// \page tutorial3
/// \details density vector (one component per phase).
/// \code
std::vector<double> rho(2, 1000.);
/// \endcode
/// \page tutorial3
/// \details viscosity vector (one component per phase).
/// \code
std::vector<double> mu(2, 1.*centi*Poise);
/// \endcode
/// \page tutorial3
/// \details porosity and permeability of the rock.
/// \code
using namespace Opm::unit;
using namespace Opm::prefix;
std::vector<double> density(num_phases, 1000.0);
std::vector<double> viscosity(num_phases, 1.0*centi*Poise);
double porosity = 0.5;
double k = 10*milli*darcy;
double permeability = 10.0*milli*darcy;
/// \endcode
/// \page tutorial3
/// \details We define the relative permeability function. We use a basic fluid
/// description and set this function to be linear. For more realistic fluid, the
/// saturation function is given by the data.
/// saturation function may be interpolated from experimental data.
/// \code
SaturationPropsBasic::RelPermFunc rel_perm_func;
rel_perm_func = SaturationPropsBasic::Linear;
SaturationPropsBasic::RelPermFunc rel_perm_func = SaturationPropsBasic::Linear;
/// \endcode
/// \page tutorial3
/// \details We construct a basic fluid with the properties we have defined above.
/// Each property is constant and hold for all cells.
/// \details We construct a basic fluid and rock property object
/// with the properties we have defined above. Each property is
/// constant and hold for all cells.
/// \code
IncompPropertiesBasic props(num_phases, rel_perm_func, rho, mu,
porosity, k, dim, num_cells);
TwophaseFluid fluid(props);
IncompPropertiesBasic props(num_phases, rel_perm_func, density, viscosity,
porosity, permeability, grid.dimensions, num_cells);
/// \endcode
/// \page tutorial3
/// \details Gravity parameters. Here, we set zero gravity.
/// \code
@ -275,16 +162,17 @@ int main ()
/// \endcode
/// \page tutorial3
/// \details We set up the pressure solver.
/// \details We may now set up the pressure solver. At this point,
/// unchanging parameters such as transmissibility are computed
/// and stored internally by the IncompTpfa class.
/// \code
LinearSolverUmfpack linsolver;
IncompTpfa psolver(*grid.c_grid(), props.permeability(), grav, linsolver);
IncompTpfa psolver(grid, props.permeability(), grav, linsolver);
/// \endcode
/// \page tutorial3
/// \details We set up the source term
/// \details We set up the source term. Positive numbers indicate that the cell is a source,
/// while negative numbers indicate a sink.
/// \code
std::vector<double> src(num_cells, 0.0);
src[0] = 1.;
@ -292,83 +180,55 @@ int main ()
/// \endcode
/// \page tutorial3
/// \details We set up the wells. Here, there are no well and we let them empty.
/// \details We set up data vectors for the wells. Here, there are
/// no wells and we let them be empty dummies.
/// \code
std::vector<double> empty_wdp;
std::vector<double> empty_wdp;
std::vector<double> empty_well_bhp;
std::vector<double> empty_well_flux;
/// \endcode
/// \page tutorial3
/// \details We set up the source term for the transport solver.
/// \code
TransportSource* tsrc = create_transport_source(2, 2);
double ssrc[] = { 1.0, 0.0 };
double ssink[] = { 0.0, 1.0 };
double zdummy[] = { 0.0, 0.0 };
for (int cell = 0; cell < num_cells; ++cell) {
if (src[cell] > 0.0) {
append_transport_source(cell, 2, 0, src[cell], ssrc, zdummy, tsrc);
} else if (src[cell] < 0.0) {
append_transport_source(cell, 2, 0, src[cell], ssink, zdummy, tsrc);
}
}
/// \endcode
/// \page tutorial3
/// \details We compute the pore volume
/// \code
std::vector<double> porevol;
Opm::computePorevolume(*grid.c_grid(), props.porosity(), porevol);
Opm::computePorevolume(grid, props.porosity(), porevol);
/// \endcode
/// \page tutorial3
/// \details We set up the transport solver.
/// \details Set up the transport solver. This is a reordering implicit Euler transport solver.
/// \code
const bool guess_old_solution = true;
TransportModel model (fluid, *grid.c_grid(), porevol, grav, guess_old_solution);
TransportSolver tsolver(model);
const double tolerance = 1e-9;
const int max_iterations = 30;
Opm::TransportModelTwophase transport_solver(grid, props, tolerance, max_iterations);
/// \endcode
/// \page tutorial3
/// \details Time integration parameters
/// \code
double dt = 0.1*day;
int num_time_steps = 20;
const double dt = 0.1*day;
const int num_time_steps = 20;
/// \endcode
/// \page tutorial3
/// \details Control paramaters for the implicit solver.
/// \code
ImplicitTransportDetails::NRReport rpt;
ImplicitTransportDetails::NRControl ctrl;
/// \endcode
/// \page tutorial3
/// \details We define a vector which contains all cell indexes. We use this
/// vector to set up parameters on the whole domains.
/// vector to set up parameters on the whole domain.
/// \code
std::vector<int> allcells(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells[cell] = cell;
}
/// \endcode
/// \page tutorial3
/// \details We set up the boundary conditions. Letting bcs empty is equivalent
/// to no flow boundary conditions.
/// \details We set up the boundary conditions. Letting bcs be empty is equivalent
/// to no-flow boundary conditions.
/// \code
FlowBCManager bcs;
/// \endcode
/// \page tutorial3
/// \details
/// Linear solver init.
/// \code
using ImplicitTransportLinAlgSupport::CSRMatrixUmfpackSolver;
CSRMatrixUmfpackSolver linsolve;
/// \endcode
/// \page tutorial3
/// \details
@ -376,7 +236,7 @@ int main ()
/// initialise water saturation to minimum everywhere.
/// \code
TwophaseState state;
state.init(*grid.c_grid(), 2);
state.init(grid, 2);
state.setFirstSat(allcells, props, TwophaseState::MinSat);
/// \endcode
@ -388,7 +248,8 @@ int main ()
/// \endcode
/// \page tutorial3
/// \details This string will contain the name of a VTK output vector.
/// \details This string stream will be used to construct a new
/// output filename at each timestep.
/// \code
std::ostringstream vtkfilename;
/// \endcode
@ -400,7 +261,10 @@ int main ()
for (int i = 0; i < num_time_steps; ++i) {
/// \endcode
/// \page tutorial3
/// \details Compute the total mobility. It is needed by the pressure solver
/// \details Compute the total mobility. It is needed by the
/// pressure solver and must be recomputed every time step
/// since it depends on the saturation.
/// \code
computeTotalMobility(props, allcells, state.saturation(), totmob);
/// \endcode
@ -412,9 +276,10 @@ int main ()
empty_well_flux);
/// \endcode
/// \page tutorial3
/// \details Transport solver
/// \details Solve the transport equation.
/// \code
tsolver.solve(*grid.c_grid(), tsrc, dt, ctrl, state, linsolve, rpt);
transport_solver.solve(&state.faceflux()[0], &porevol[0], &src[0],
dt, state.saturation());
/// \endcode
/// \page tutorial3
@ -426,75 +291,11 @@ int main ()
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
Opm::writeVtkData(*grid.c_grid(), dm, vtkfile);
Opm::writeVtkData(grid, dm, vtkfile);
}
}
/// \endcode
/// \page tutorial3
/// \details Implementation of the TwophaseFluid class.
/// \code
TwophaseFluid::TwophaseFluid(const Opm::IncompPropertiesInterface& props)
: props_(props),
smin_(props.numCells()*props.numPhases()),
smax_(props.numCells()*props.numPhases())
{
const int num_cells = props.numCells();
std::vector<int> cells(num_cells);
for (int c = 0; c < num_cells; ++c) {
cells[c] = c;
}
props.satRange(num_cells, &cells[0], &smin_[0], &smax_[0]);
}
double TwophaseFluid::density(int phase) const
{
return props_.density()[phase];
}
template <class Sat,
class Mob,
class DMob>
void TwophaseFluid::mobility(int c, const Sat& s, Mob& mob, DMob& dmob) const
{
props_.relperm(1, &s[0], &c, &mob[0], &dmob[0]);
const double* mu = props_.viscosity();
mob[0] /= mu[0];
mob[1] /= mu[1];
/// \endcode
/// \page tutorial3
/// \details We
/// recall that we use Fortran ordering for kr derivatives,
/// therefore dmob[i*2 + j] is row j and column i of the
/// matrix.
/// Each row corresponds to a kr function, so which mu to
/// divide by also depends on the row, j.
/// \code
dmob[0*2 + 0] /= mu[0];
dmob[0*2 + 1] /= mu[1];
dmob[1*2 + 0] /= mu[0];
dmob[1*2 + 1] /= mu[1];
}
template <class Sat,
class Pcap,
class DPcap>
void TwophaseFluid::pc(int /*c */, const Sat& /* s*/, Pcap& pcap, DPcap& dpcap) const
{
pcap = 0.;
dpcap = 0.;
}
double TwophaseFluid::s_min(int c) const
{
return smin_[2*c + 0];
}
double TwophaseFluid::s_max(int c) const
{
return smax_[2*c + 0];
}
/// \endcode
/// \page tutorial3