Merge pull request #1377 from totto82/useEbosEclOutput

Start using ecl output from Ebos
This commit is contained in:
Andreas Lauser 2018-01-10 15:01:27 +01:00 committed by GitHub
commit f34cfafc22
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 452 additions and 473 deletions

View File

@ -208,6 +208,7 @@ list (APPEND PUBLIC_HEADER_FILES
opm/autodiff/WellDensitySegmented.hpp
opm/autodiff/WellStateFullyImplicitBlackoil.hpp
opm/autodiff/SimulatorFullyImplicitBlackoilOutput.hpp
opm/autodiff/BlackoilOutputEbos.hpp
opm/autodiff/VFPProperties.hpp
opm/autodiff/VFPHelpers.hpp
opm/autodiff/VFPProdProperties.hpp

View File

@ -69,6 +69,7 @@ function(add_test_compare_restarted_simulation)
${PARAM_ABS_TOL} ${PARAM_REL_TOL}
${COMPARE_SUMMARY_COMMAND}
${COMPARE_ECL_COMMAND}
0
TEST_ARGS ${TEST_ARGS})
endfunction()
@ -102,6 +103,37 @@ function(add_test_compare_parallel_simulation)
TEST_ARGS ${TEST_ARGS})
endfunction()
###########################################################################
# TEST: add_test_compare_parallel_restarted_simulation
###########################################################################
# Input:
# - casename: basename (no extension)
#
# Details:
# - This test class compares the output from a restarted parallel simulation
# to that of a non-restarted parallel simulation.
function(add_test_compare_parallel_restarted_simulation)
set(oneValueArgs CASENAME FILENAME SIMULATOR ABS_TOL REL_TOL)
set(multiValueArgs TEST_ARGS)
cmake_parse_arguments(PARAM "$" "${oneValueArgs}" "${multiValueArgs}" ${ARGN} )
set(RESULT_PATH ${BASE_RESULT_PATH}/restart/${PARAM_SIMULATOR}+${PARAM_CASENAME})
set(TEST_ARGS ${OPM_DATA_ROOT}/${PARAM_CASENAME}/${PARAM_FILENAME} ${PARAM_TEST_ARGS})
opm_add_test(compareParallelRestartedSim_${PARAM_SIMULATOR}+${PARAM_FILENAME} NO_COMPILE
EXE_NAME ${PARAM_SIMULATOR}
DRIVER_ARGS ${OPM_DATA_ROOT}/${PARAM_CASENAME} ${RESULT_PATH}
${CMAKE_BINARY_DIR}/bin
${PARAM_FILENAME}
${PARAM_ABS_TOL} ${PARAM_REL_TOL}
${COMPARE_SUMMARY_COMMAND}
${COMPARE_ECL_COMMAND}
1
TEST_ARGS ${TEST_ARGS})
endfunction()
if(NOT TARGET test-suite)
add_custom_target(test-suite)
endif()
@ -219,6 +251,13 @@ foreach(sim flow flow_legacy)
REL_TOL ${rel_tol_restart})
endforeach()
add_test_compare_parallel_restarted_simulation(CASENAME spe1
FILENAME SPE1CASE2_ACTNUM
SIMULATOR flow
ABS_TOL ${abs_tol_restart}
REL_TOL ${rel_tol_restart})
# Init tests
opm_set_test_driver(${PROJECT_SOURCE_DIR}/tests/run-init-regressionTest.sh "")

View File

@ -1125,315 +1125,6 @@ namespace Opm {
return regionValues;
}
SimulationDataContainer getSimulatorData ( const SimulationDataContainer& /*localState*/) const
{
typedef std::vector<double> VectorType;
const auto& ebosModel = ebosSimulator().model();
const auto& phaseUsage = phaseUsage_;
// extract everything which can possibly be written to disk
const int numCells = ebosModel.numGridDof();
const int num_phases = numPhases();
SimulationDataContainer simData( numCells, 0, num_phases );
//Get shorthands for water, oil, gas
const int aqua_active = phaseUsage.phase_used[Opm::PhaseUsage::Aqua];
const int liquid_active = phaseUsage.phase_used[Opm::PhaseUsage::Liquid];
const int vapour_active = phaseUsage.phase_used[Opm::PhaseUsage::Vapour];
const int aqua_pos = phaseUsage.phase_pos[ Opm::PhaseUsage::Aqua ];
const int liquid_pos = phaseUsage.phase_pos[ Opm::PhaseUsage::Liquid ];
const int vapour_pos = phaseUsage.phase_pos[ Opm::PhaseUsage::Vapour ];
VectorType zero;
VectorType& pressureOil = simData.pressure();
VectorType& temperature = simData.temperature();
VectorType& saturation = simData.saturation();
// WATER
if( aqua_active ) {
simData.registerCellData( "1OVERBW", 1 );
simData.registerCellData( "WAT_DEN", 1 );
simData.registerCellData( "WAT_VISC", 1 );
simData.registerCellData( "WATKR", 1 );
}
VectorType& bWater = aqua_active ? simData.getCellData( "1OVERBW" ) : zero;
VectorType& rhoWater = aqua_active ? simData.getCellData( "WAT_DEN" ) : zero;
VectorType& muWater = aqua_active ? simData.getCellData( "WAT_VISC" ) : zero;
VectorType& krWater = aqua_active ? simData.getCellData( "WATKR" ) : zero;
// OIL
if( liquid_active ) {
simData.registerCellData( "1OVERBO", 1 );
simData.registerCellData( "OIL_DEN", 1 );
simData.registerCellData( "OIL_VISC", 1 );
simData.registerCellData( "OILKR", 1 );
}
VectorType& bOil = liquid_active ? simData.getCellData( "1OVERBO" ) : zero;
VectorType& rhoOil = liquid_active ? simData.getCellData( "OIL_DEN" ) : zero;
VectorType& muOil = liquid_active ? simData.getCellData( "OIL_VISC" ) : zero;
VectorType& krOil = liquid_active ? simData.getCellData( "OILKR" ) : zero;
// GAS
if( vapour_active ) {
simData.registerCellData( "1OVERBG", 1 );
simData.registerCellData( "GAS_DEN", 1 );
simData.registerCellData( "GAS_VISC", 1 );
simData.registerCellData( "GASKR", 1 );
}
VectorType& bGas = vapour_active ? simData.getCellData( "1OVERBG" ) : zero;
VectorType& rhoGas = vapour_active ? simData.getCellData( "GAS_DEN" ) : zero;
VectorType& muGas = vapour_active ? simData.getCellData( "GAS_VISC" ) : zero;
VectorType& krGas = vapour_active ? simData.getCellData( "GASKR" ) : zero;
simData.registerCellData( BlackoilState::GASOILRATIO, 1 );
simData.registerCellData( BlackoilState::RV, 1 );
simData.registerCellData( "RSSAT", 1 );
simData.registerCellData( "RVSAT", 1 );
VectorType& Rs = simData.getCellData( BlackoilState::GASOILRATIO );
VectorType& Rv = simData.getCellData( BlackoilState::RV );
VectorType& RsSat = simData.getCellData( "RSSAT" );
VectorType& RvSat = simData.getCellData( "RVSAT" );
simData.registerCellData( "PBUB", 1 );
simData.registerCellData( "PDEW", 1 );
VectorType& Pb = simData.getCellData( "PBUB" );
VectorType& Pd = simData.getCellData( "PDEW" );
simData.registerCellData( "SOMAX", 1 );
VectorType& somax = simData.getCellData( "SOMAX" );
// Two components for hysteresis parameters
// pcSwMdc/krnSwMdc, one for oil-water and one for gas-oil
simData.registerCellData( "PCSWMDC_GO", 1 );
simData.registerCellData( "KRNSWMDC_GO", 1 );
simData.registerCellData( "PCSWMDC_OW", 1 );
simData.registerCellData( "KRNSWMDC_OW", 1 );
VectorType& pcSwMdc_go = simData.getCellData( "PCSWMDC_GO" );
VectorType& krnSwMdc_go = simData.getCellData( "KRNSWMDC_GO" );
VectorType& pcSwMdc_ow = simData.getCellData( "PCSWMDC_OW" );
VectorType& krnSwMdc_ow = simData.getCellData( "KRNSWMDC_OW" );
if (has_solvent_) {
simData.registerCellData( "SSOL", 1 );
}
VectorType& ssol = has_solvent_ ? simData.getCellData( "SSOL" ) : zero;
if (has_polymer_) {
simData.registerCellData( "POLYMER", 1 );
}
VectorType& cpolymer = has_polymer_ ? simData.getCellData( "POLYMER" ) : zero;
std::vector<int> failed_cells_pb;
std::vector<int> failed_cells_pd;
const auto& gridView = ebosSimulator().gridView();
auto elemIt = gridView.template begin</*codim=*/ 0, Dune::Interior_Partition>();
const auto& elemEndIt = gridView.template end</*codim=*/ 0, Dune::Interior_Partition>();
ElementContext elemCtx(ebosSimulator());
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const int satIdx = cellIdx * num_phases;
pressureOil[cellIdx] = fs.pressure(FluidSystem::oilPhaseIdx).value();
temperature[cellIdx] = fs.temperature(FluidSystem::oilPhaseIdx).value();
somax[cellIdx] = ebosSimulator().model().maxOilSaturation(cellIdx);
const auto& matLawManager = ebosSimulator().problem().materialLawManager();
if (matLawManager->enableHysteresis()) {
matLawManager->oilWaterHysteresisParams(
pcSwMdc_ow[cellIdx],
krnSwMdc_ow[cellIdx],
cellIdx);
matLawManager->gasOilHysteresisParams(
pcSwMdc_go[cellIdx],
krnSwMdc_go[cellIdx],
cellIdx);
}
if (aqua_active) {
saturation[ satIdx + aqua_pos ] = fs.saturation(FluidSystem::waterPhaseIdx).value();
bWater[cellIdx] = fs.invB(FluidSystem::waterPhaseIdx).value();
rhoWater[cellIdx] = fs.density(FluidSystem::waterPhaseIdx).value();
muWater[cellIdx] = fs.viscosity(FluidSystem::waterPhaseIdx).value();
krWater[cellIdx] = intQuants.relativePermeability(FluidSystem::waterPhaseIdx).value();
}
if (vapour_active) {
saturation[ satIdx + vapour_pos ] = fs.saturation(FluidSystem::gasPhaseIdx).value();
bGas[cellIdx] = fs.invB(FluidSystem::gasPhaseIdx).value();
rhoGas[cellIdx] = fs.density(FluidSystem::gasPhaseIdx).value();
muGas[cellIdx] = fs.viscosity(FluidSystem::gasPhaseIdx).value();
krGas[cellIdx] = intQuants.relativePermeability(FluidSystem::gasPhaseIdx).value();
Rs[cellIdx] = fs.Rs().value();
Rv[cellIdx] = fs.Rv().value();
RsSat[cellIdx] = FluidSystem::saturatedDissolutionFactor(fs,
FluidSystem::oilPhaseIdx,
intQuants.pvtRegionIndex(),
/*maxOilSaturation=*/1.0).value();
RvSat[cellIdx] = FluidSystem::saturatedDissolutionFactor(fs,
FluidSystem::gasPhaseIdx,
intQuants.pvtRegionIndex(),
/*maxOilSaturation=*/1.0).value();
try {
Pb[cellIdx] = FluidSystem::bubblePointPressure(fs, intQuants.pvtRegionIndex()).value();
}
catch (const NumericalProblem& e) {
const auto globalIdx = ebosSimulator_.gridManager().grid().globalCell()[cellIdx];
failed_cells_pb.push_back(globalIdx);
}
try {
Pd[cellIdx] = FluidSystem::dewPointPressure(fs, intQuants.pvtRegionIndex()).value();
}
catch (const NumericalProblem& e) {
const auto globalIdx = ebosSimulator_.gridManager().grid().globalCell()[cellIdx];
failed_cells_pd.push_back(globalIdx);
}
}
if( liquid_active )
{
saturation[ satIdx + liquid_pos ] = fs.saturation(FluidSystem::oilPhaseIdx).value();
bOil[cellIdx] = fs.invB(FluidSystem::oilPhaseIdx).value();
rhoOil[cellIdx] = fs.density(FluidSystem::oilPhaseIdx).value();
muOil[cellIdx] = fs.viscosity(FluidSystem::oilPhaseIdx).value();
krOil[cellIdx] = intQuants.relativePermeability(FluidSystem::oilPhaseIdx).value();
}
if (has_solvent_)
{
ssol[cellIdx] = intQuants.solventSaturation().value();
}
if (has_polymer_)
{
cpolymer[cellIdx] = intQuants.polymerConcentration().value();
}
// hack to make the intial output of rs and rv Ecl compatible.
// For cells with swat == 1 Ecl outputs; rs = rsSat and rv=rvSat, in all but the initial step
// where it outputs rs and rv values calculated by the initialization. To be compatible we overwrite
// rs and rv with the values computed in the initially.
// Volume factors, densities and viscosities need to be recalculated with the updated rs and rv values.
if (ebosSimulator_.episodeIndex() < 0 && vapour_active && liquid_active ) {
const auto& fs_updated = ebosSimulator().problem().initialFluidState(cellIdx);
// use initial rs and rv values
Rv[cellIdx] = fs_updated.Rv();
Rs[cellIdx] = fs_updated.Rs();
//re-compute the volume factors, viscosities and densities.
rhoOil[cellIdx] = FluidSystem::density(fs_updated,
FluidSystem::oilPhaseIdx,
intQuants.pvtRegionIndex());
rhoGas[cellIdx] = FluidSystem::density(fs_updated,
FluidSystem::gasPhaseIdx,
intQuants.pvtRegionIndex());
bOil[cellIdx] = FluidSystem::inverseFormationVolumeFactor(fs_updated,
FluidSystem::oilPhaseIdx,
intQuants.pvtRegionIndex());
bGas[cellIdx] = FluidSystem::inverseFormationVolumeFactor(fs_updated,
FluidSystem::gasPhaseIdx,
intQuants.pvtRegionIndex());
muOil[cellIdx] = FluidSystem::viscosity(fs_updated,
FluidSystem::oilPhaseIdx,
intQuants.pvtRegionIndex());
muGas[cellIdx] = FluidSystem::viscosity(fs_updated,
FluidSystem::gasPhaseIdx,
intQuants.pvtRegionIndex());
}
}
const size_t max_num_cells_faillog = 20;
int pb_size = failed_cells_pb.size(), pd_size = failed_cells_pd.size();
std::vector<int> displ_pb, displ_pd, recv_len_pb, recv_len_pd;
const auto& comm = grid_.comm();
if ( comm.rank() == 0 )
{
displ_pb.resize(comm.size()+1, 0);
displ_pd.resize(comm.size()+1, 0);
recv_len_pb.resize(comm.size());
recv_len_pd.resize(comm.size());
}
comm.gather(&pb_size, recv_len_pb.data(), 1, 0);
comm.gather(&pd_size, recv_len_pd.data(), 1, 0);
std::partial_sum(recv_len_pb.begin(), recv_len_pb.end(), displ_pb.begin()+1);
std::partial_sum(recv_len_pd.begin(), recv_len_pd.end(), displ_pd.begin()+1);
std::vector<int> global_failed_cells_pb, global_failed_cells_pd;
if ( comm.rank() == 0 )
{
global_failed_cells_pb.resize(displ_pb.back());
global_failed_cells_pd.resize(displ_pd.back());
}
comm.gatherv(failed_cells_pb.data(), static_cast<int>(failed_cells_pb.size()),
global_failed_cells_pb.data(), recv_len_pb.data(),
displ_pb.data(), 0);
comm.gatherv(failed_cells_pd.data(), static_cast<int>(failed_cells_pd.size()),
global_failed_cells_pd.data(), recv_len_pd.data(),
displ_pd.data(), 0);
std::sort(global_failed_cells_pb.begin(), global_failed_cells_pb.end());
std::sort(global_failed_cells_pd.begin(), global_failed_cells_pd.end());
if (global_failed_cells_pb.size() > 0) {
std::stringstream errlog;
errlog << "Finding the bubble point pressure failed for " << global_failed_cells_pb.size() << " cells [";
errlog << global_failed_cells_pb[0];
const size_t max_elems = std::min(max_num_cells_faillog, failed_cells_pb.size());
for (size_t i = 1; i < max_elems; ++i) {
errlog << ", " << global_failed_cells_pb[i];
}
if (global_failed_cells_pb.size() > max_num_cells_faillog) {
errlog << ", ...";
}
errlog << "]";
OpmLog::warning("Bubble point numerical problem", errlog.str());
}
if (global_failed_cells_pd.size() > 0) {
std::stringstream errlog;
errlog << "Finding the dew point pressure failed for " << global_failed_cells_pd.size() << " cells [";
errlog << global_failed_cells_pd[0];
const size_t max_elems = std::min(max_num_cells_faillog, global_failed_cells_pd.size());
for (size_t i = 1; i < max_elems; ++i) {
errlog << ", " << global_failed_cells_pd[i];
}
if (global_failed_cells_pd.size() > max_num_cells_faillog) {
errlog << ", ...";
}
errlog << "]";
OpmLog::warning("Dew point numerical problem", errlog.str());
}
return simData;
}
const FIPDataType& getFIPData() const {
return fip_;
}

View File

@ -0,0 +1,391 @@
/*
Copyright (c) 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILOUTPUTEBOS_HEADER_INCLUDED
#define OPM_BLACKOILOUTPUTEBOS_HEADER_INCLUDED
#include <ebos/eclproblem.hh>
#include <ewoms/common/start.hh>
#include <opm/core/grid.h>
#include <opm/simulators/timestepping/SimulatorTimerInterface.hpp>
#include <opm/core/utility/DataMap.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/wells/DynamicListEconLimited.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/output/data/Cells.hpp>
#include <opm/output/data/Solution.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/ParallelDebugOutput.hpp>
#include <opm/autodiff/Compat.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/ThreadHandle.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/parser/eclipse/EclipseState/InitConfig/InitConfig.hpp>
#include <string>
#include <sstream>
#include <iomanip>
#include <fstream>
#include <thread>
#include <map>
#include <boost/filesystem.hpp>
#ifdef HAVE_OPM_GRID
#include <dune/grid/CpGrid.hpp>
#endif
namespace Opm
{
/// Extra data to read/write for OPM restarting
struct ExtraData
{
double suggested_step = -1.0;
};
/** \brief Wrapper ECL output. */
template<class TypeTag>
class BlackoilOutputEbos
{
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
// constructor creating different sub writers
BlackoilOutputEbos(Simulator& ebosSimulator,
const ParameterGroup& param)
: output_( [ &param ] () -> bool {
// If output parameter is true or all, then we do output
const std::string outputString = param.getDefault("output", std::string("all"));
return ( outputString == "all" || outputString == "true" );
}()
),
ebosSimulator_(ebosSimulator),
phaseUsage_(phaseUsageFromDeck(eclState())),
parallelOutput_( output_ ? new ParallelDebugOutput< Grid >( grid(), eclState(), schedule(), phaseUsage_.num_phases, phaseUsage_ ) : 0 ),
restart_double_si_( output_ ? param.getDefault("restart_double_si", false) : false ),
asyncOutput_()
{
// For output.
if ( output_ )
{
// create output thread if enabled and rank is I/O rank
// async output is enabled by default if pthread are enabled
#if HAVE_PTHREAD
const bool asyncOutputDefault = true;
#else
const bool asyncOutputDefault = false;
#endif
if( param.getDefault("async_output", asyncOutputDefault ) )
{
const bool isIORank = parallelOutput_ ? parallelOutput_->isIORank() : true;
#if HAVE_PTHREAD
asyncOutput_.reset( new ThreadHandle( isIORank ) );
#else
OPM_THROW(std::runtime_error,"Pthreads were not found, cannot enable async_output");
#endif
}
}
}
/*!
* \brief Write a blackoil reservoir state to disk for later inspection with
* visualization tools like ResInsight. This function will extract the
* requested output cell properties specified by the RPTRST keyword
* and write these to file.
*/
template<class SimulationDataContainer, class Model>
void writeTimeStep(const SimulatorTimerInterface& timer,
const SimulationDataContainer& reservoirStateDummy,
const Opm::WellStateFullyImplicitBlackoil& /*wellStateDummy*/,
const Model& physicalModel,
const bool substep = false,
const double nextstep = -1.0,
const SimulatorReport& simulatorReport = SimulatorReport())
{
data::Solution fip{};
if( output_ )
{
// Get FIP dat
getSummaryData( fip, phaseUsage_, physicalModel, summaryConfig() );
// Add TCPU if simulatorReport is not defaulted.
const double totalSolverTime = simulatorReport.solver_time;
const Opm::WellStateFullyImplicitBlackoil& localWellState = physicalModel.wellModel().wellState();
if( parallelOutput_ && parallelOutput_->isParallel() )
{
// If this is not the initial write and no substep, then the well
// state used in the computation is actually the one of the last
// step. We need that well state for the gathering. Otherwise
// It an exception with a message like "global state does not
// contain well ..." might be thrown.
// The distribution of data::solution is not done here
data::Solution localCellDataDummy{};
int wellStateStepNumber = ( ! substep && timer.reportStepNum() > 0) ?
(timer.reportStepNum() - 1) : timer.reportStepNum();
// collect all solutions to I/O rank
parallelOutput_->collectToIORank( reservoirStateDummy, localWellState,
localCellDataDummy,
wellStateStepNumber );
// Note that at this point the extraData are assumed to be global, i.e. identical across all processes.
}
const WellStateFullyImplicitBlackoil& wellState = (parallelOutput_ && parallelOutput_->isParallel() ) ? parallelOutput_->globalWellState() : localWellState;
// The writeOutput expects a local data::solution vector and a global data::well vector.
ebosSimulator_.problem().writeOutput( wellState.report(phaseUsage_), timer.simulationTimeElapsed(), substep, totalSolverTime, nextstep, fip);
}
}
template <class SimulationDataContainer, class WellState>
void initFromRestartFile(const PhaseUsage& /*phaseUsage*/,
const Grid& /*grid */,
SimulationDataContainer& simulatorstate,
WellState& wellstate,
ExtraData& extra) {
std::map<std::string, bool> extra_keys {
{"OPMEXTRA" , false}
};
// gives a dummy dynamic_list_econ_limited
DynamicListEconLimited dummy_list_econ_limited;
const auto& defunct_well_names = ebosSimulator_.gridManager().defunctWellNames();
WellsManager wellsmanager(eclState(),
schedule(),
eclState().getInitConfig().getRestartStep(),
Opm::UgGridHelpers::numCells(grid()),
Opm::UgGridHelpers::globalCell(grid()),
Opm::UgGridHelpers::cartDims(grid()),
Opm::UgGridHelpers::dimensions(grid()),
Opm::UgGridHelpers::cell2Faces(grid()),
Opm::UgGridHelpers::beginFaceCentroids(grid()),
dummy_list_econ_limited,
grid().comm().size() > 1,
defunct_well_names);
const Wells* wells = wellsmanager.c_wells();
std::map<std::string, RestartKey> solution_keys {};
auto restart_values = ebosSimulator_.problem().eclIO().loadRestart(solution_keys, extra_keys);
const int nw = wells->number_of_wells;
if (nw > 0) {
wellstate.resize(wells, simulatorstate, phaseUsage_ ); //Resize for restart step
wellsToState( restart_values.wells, phaseUsage_, wellstate );
}
const auto opmextra_iter = restart_values.extra.find("OPMEXTRA");
if (opmextra_iter != restart_values.extra.end()) {
std::vector<double> opmextra = opmextra_iter->second;
assert(opmextra.size() == 1);
extra.suggested_step = opmextra[0];
} else {
OpmLog::warning("Restart data is missing OPMEXTRA field, restart run may deviate from original run.");
extra.suggested_step = -1.0;
}
}
bool requireFIPNUM() const
{ return summaryConfig().requireFIPNUM(); }
const Grid& grid()
{ return ebosSimulator_.gridManager().grid(); }
const Schedule& schedule() const
{ return ebosSimulator_.gridManager().schedule(); }
const SummaryConfig& summaryConfig() const
{ return ebosSimulator_.gridManager().summaryConfig(); }
const EclipseState& eclState() const
{ return ebosSimulator_.gridManager().eclState(); }
bool isRestart() const {
const auto& initconfig = eclState().getInitConfig();
return initconfig.restartRequested();
}
private:
/**
* Checks if the summaryConfig has a keyword with the standardized field, region, or block prefixes.
*/
inline bool hasFRBKeyword(const SummaryConfig& summaryConfig, const std::string keyword) {
std::string field_kw = "F" + keyword;
std::string region_kw = "R" + keyword;
std::string block_kw = "B" + keyword;
return summaryConfig.hasKeyword(field_kw)
|| summaryConfig.hasKeyword(region_kw)
|| summaryConfig.hasKeyword(block_kw);
}
/**
* Returns the data as asked for in the summaryConfig
*/
template<class Model>
void getSummaryData(data::Solution& output,
const Opm::PhaseUsage& phaseUsage,
const Model& physicalModel,
const SummaryConfig& summaryConfig) {
typedef typename Model::FIPDataType FIPDataType;
typedef typename FIPDataType::VectorType VectorType;
FIPDataType fd = physicalModel.getFIPData();
//Get shorthands for water, oil, gas
const int aqua_active = phaseUsage.phase_used[Opm::PhaseUsage::Aqua];
const int liquid_active = phaseUsage.phase_used[Opm::PhaseUsage::Liquid];
const int vapour_active = phaseUsage.phase_used[Opm::PhaseUsage::Vapour];
/**
* Now process all of the summary config files
*/
// Water in place
if (aqua_active && hasFRBKeyword(summaryConfig, "WIP")) {
output.insert("WIP",
Opm::UnitSystem::measure::volume,
std::move( fd.fip[ FIPDataType::FIP_AQUA ] ),
data::TargetType::SUMMARY );
}
if (liquid_active) {
const VectorType& oipl = fd.fip[FIPDataType::FIP_LIQUID];
VectorType oip ( oipl );
const size_t size = oip.size();
const VectorType& oipg = vapour_active ? fd.fip[FIPDataType::FIP_VAPORIZED_OIL] : VectorType(size, 0.0);
if( vapour_active )
{
// oip = oipl + oipg
for( size_t i=0; i<size; ++ i ) {
oip[ i ] += oipg[ i ];
}
}
//Oil in place (liquid phase only)
if (hasFRBKeyword(summaryConfig, "OIPL")) {
output.insert("OIPL",
Opm::UnitSystem::measure::volume,
std::move( oipl ),
data::TargetType::SUMMARY );
}
//Oil in place (gas phase only)
if (hasFRBKeyword(summaryConfig, "OIPG")) {
output.insert("OIPG",
Opm::UnitSystem::measure::volume,
std::move( oipg ),
data::TargetType::SUMMARY );
}
// Oil in place (in liquid and gas phases)
if (hasFRBKeyword(summaryConfig, "OIP") || hasFRBKeyword(summaryConfig, "OE")) {
output.insert("OIP",
Opm::UnitSystem::measure::volume,
std::move( oip ),
data::TargetType::SUMMARY );
}
}
if (vapour_active) {
const VectorType& gipg = fd.fip[ FIPDataType::FIP_VAPOUR];
VectorType gip( gipg );
const size_t size = gip.size();
const VectorType& gipl = liquid_active ? fd.fip[ FIPDataType::FIP_DISSOLVED_GAS ] : VectorType(size,0.0);
if( liquid_active )
{
// gip = gipg + gipl
for( size_t i=0; i<size; ++ i ) {
gip[ i ] += gipl[ i ];
}
}
// Gas in place (gas phase only)
if (hasFRBKeyword(summaryConfig, "GIPG")) {
output.insert("GIPG",
Opm::UnitSystem::measure::volume,
std::move( gipg ),
data::TargetType::SUMMARY );
}
// Gas in place (liquid phase only)
if (hasFRBKeyword(summaryConfig, "GIPL")) {
output.insert("GIPL",
Opm::UnitSystem::measure::volume,
std::move( gipl ),
data::TargetType::SUMMARY );
}
// Gas in place (in both liquid and gas phases)
if (hasFRBKeyword(summaryConfig, "GIP")) {
output.insert("GIP",
Opm::UnitSystem::measure::volume,
std::move( gip ),
data::TargetType::SUMMARY );
}
}
// Cell pore volume in reservoir conditions
if (hasFRBKeyword(summaryConfig, "RPV")) {
output.insert("RPV",
Opm::UnitSystem::measure::volume,
std::move( fd.fip[FIPDataType::FIP_PV]),
data::TargetType::SUMMARY );
}
// Pressure averaged value (hydrocarbon pore volume weighted)
if (summaryConfig.hasKeyword("FPRH") || summaryConfig.hasKeyword("RPRH")) {
output.insert("PRH",
Opm::UnitSystem::measure::pressure,
std::move(fd.fip[FIPDataType::FIP_WEIGHTED_PRESSURE]),
data::TargetType::SUMMARY );
}
}
protected:
const bool output_;
Simulator& ebosSimulator_;
Opm::PhaseUsage phaseUsage_;
std::unique_ptr< ParallelDebugOutputInterface > parallelOutput_;
const bool restart_double_si_;
std::unique_ptr< ThreadHandle > asyncOutput_;
};
}
#endif

View File

@ -539,6 +539,8 @@ namespace Opm
schedule(),
summaryConfig()));
eclIO_->writeInitial(computeLegacySimProps_(), int_vectors, nnc_);
Problem& problem = ebosProblem();
problem.setEclIO(std::move(eclIO_));
}
}
@ -550,13 +552,10 @@ namespace Opm
// create output writer after grid is distributed, otherwise the parallel output
// won't work correctly since we need to create a mapping from the distributed to
// the global view
output_writer_.reset(new OutputWriter(grid(),
param_,
eclState(),
schedule(),
summaryConfig(),
std::move(eclIO_),
Opm::phaseUsageFromDeck(deck())) );
output_writer_.reset(new OutputWriter(*ebosSimulator_,
param_));
}
// Run the simulator.

View File

@ -30,6 +30,7 @@
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/Compat.hpp>
#include <opm/core/wells/DynamicListEconLimited.hpp>
#if HAVE_OPM_GRID

View File

@ -22,7 +22,7 @@
#ifndef OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
#define OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
#include <opm/autodiff/SimulatorFullyImplicitBlackoilOutput.hpp>
#include <opm/autodiff/BlackoilOutputEbos.hpp>
#include <opm/autodiff/IterationReport.hpp>
#include <opm/autodiff/NonlinearSolver.hpp>
#include <opm/autodiff/BlackoilModelEbos.hpp>
@ -61,7 +61,7 @@ public:
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilState ReservoirState;
typedef BlackoilOutputWriter OutputWriter;
typedef BlackoilOutputEbos<TypeTag> OutputWriter;
typedef BlackoilModelEbos<TypeTag> Model;
typedef BlackoilModelParameters ModelParameters;
typedef NonlinearSolver<Model> Solver;
@ -140,20 +140,11 @@ public:
failureReport_ = SimulatorReport();
if (output_writer_.isRestart()) {
// This is a restart, populate WellState and ReservoirState state objects from restart file
// This is a restart, populate WellState
ReservoirState stateInit(Opm::UgGridHelpers::numCells(grid()),
Opm::UgGridHelpers::numFaces(grid()),
phaseUsage_.num_phases);
output_writer_.initFromRestartFile(phaseUsage_, grid(), stateInit, prev_well_state, extra);
initHydroCarbonState(stateInit, phaseUsage_, Opm::UgGridHelpers::numCells(grid()), has_disgas_, has_vapoil_);
initHysteresisParams(stateInit);
// communicate the restart solution to ebos
convertInput(/*iterationIdx=*/0, stateInit, ebosSimulator_ );
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
// Sync the overlap region of the inital solution. It was generated
// from the ReservoirState which has wrong values in the ghost region
// for some models (SPE9, Norne, Model 2)
ebosSimulator_.model().syncOverlap();
}
// Create timers and file for writing timing info.
@ -555,147 +546,6 @@ protected:
const Schedule& schedule() const
{ return ebosSimulator_.gridManager().schedule(); }
void initHysteresisParams(ReservoirState& state) {
const int num_cells = Opm::UgGridHelpers::numCells(grid());
typedef std::vector<double> VectorType;
const VectorType& somax = state.getCellData( "SOMAX" );
for (int cellIdx = 0; cellIdx < num_cells; ++cellIdx) {
ebosSimulator_.model().setMaxOilSaturation(somax[cellIdx], cellIdx);
}
if (ebosSimulator_.problem().materialLawManager()->enableHysteresis()) {
auto matLawManager = ebosSimulator_.problem().materialLawManager();
VectorType& pcSwMdc_ow = state.getCellData( "PCSWMDC_OW" );
VectorType& krnSwMdc_ow = state.getCellData( "KRNSWMDC_OW" );
VectorType& pcSwMdc_go = state.getCellData( "PCSWMDC_GO" );
VectorType& krnSwMdc_go = state.getCellData( "KRNSWMDC_GO" );
for (int cellIdx = 0; cellIdx < num_cells; ++cellIdx) {
matLawManager->setOilWaterHysteresisParams(
pcSwMdc_ow[cellIdx],
krnSwMdc_ow[cellIdx],
cellIdx);
matLawManager->setGasOilHysteresisParams(
pcSwMdc_go[cellIdx],
krnSwMdc_go[cellIdx],
cellIdx);
}
}
}
// Used to convert initial Reservoirstate to primary variables in the SolutionVector
void convertInput( const int iterationIdx,
const ReservoirState& reservoirState,
Simulator& simulator ) const
{
SolutionVector& solution = simulator.model().solution( 0 /* timeIdx */ );
const Opm::PhaseUsage pu = phaseUsage_;
const std::vector<bool> active = detail::activePhases(pu);
bool has_solvent = GET_PROP_VALUE(TypeTag, EnableSolvent);
bool has_polymer = GET_PROP_VALUE(TypeTag, EnablePolymer);
const int numCells = reservoirState.numCells();
const int numPhases = phaseUsage_.num_phases;
const auto& oilPressure = reservoirState.pressure();
const auto& saturations = reservoirState.saturation();
const auto& rs = reservoirState.gasoilratio();
const auto& rv = reservoirState.rv();
for( int cellIdx = 0; cellIdx<numCells; ++cellIdx )
{
// set non-switching primary variables
PrimaryVariables& cellPv = solution[ cellIdx ];
// set water saturation
if ( active[Water] ) {
cellPv[BlackoilIndices::waterSaturationIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Water]];
}
if (has_solvent) {
cellPv[BlackoilIndices::solventSaturationIdx] = reservoirState.getCellData( reservoirState.SSOL )[cellIdx];
}
if (has_polymer) {
cellPv[BlackoilIndices::polymerConcentrationIdx] = reservoirState.getCellData( reservoirState.POLYMER )[cellIdx];
}
// set switching variable and interpretation
if ( active[Gas] ) {
if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::OilOnly && has_disgas_ )
{
cellPv[BlackoilIndices::compositionSwitchIdx] = rs[cellIdx];
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Rs );
}
else if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasOnly && has_vapoil_ )
{
// this case (-> gas only with vaporized oil in the gas) is
// relatively expensive as it requires to compute the capillary
// pressure in order to get the gas phase pressure. (the reason why
// ebos uses the gas pressure here is that it makes the common case
// of the primary variable switching code fast because to determine
// whether the oil phase appears one needs to compute the Rv value
// for the saturated gas phase and if this is not available as a
// primary variable, it needs to be computed.) luckily for here, the
// gas-only case is not too common, so the performance impact of this
// is limited.
typedef Opm::SimpleModularFluidState<double,
/*numPhases=*/3,
/*numComponents=*/3,
FluidSystem,
/*storePressure=*/false,
/*storeTemperature=*/false,
/*storeComposition=*/false,
/*storeFugacity=*/false,
/*storeSaturation=*/true,
/*storeDensity=*/false,
/*storeViscosity=*/false,
/*storeEnthalpy=*/false> SatOnlyFluidState;
SatOnlyFluidState fluidState;
if ( active[Water] ) {
fluidState.setSaturation(FluidSystem::waterPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Water]]);
}
else {
fluidState.setSaturation(FluidSystem::waterPhaseIdx, 0.0);
}
fluidState.setSaturation(FluidSystem::oilPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Oil]]);
fluidState.setSaturation(FluidSystem::gasPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Gas]]);
double pC[/*numPhases=*/3] = { 0.0, 0.0, 0.0 };
const MaterialLawParams& matParams = simulator.problem().materialLawParams(cellIdx);
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
double pg = oilPressure[cellIdx] + (pC[FluidSystem::gasPhaseIdx] - pC[FluidSystem::oilPhaseIdx]);
cellPv[BlackoilIndices::compositionSwitchIdx] = rv[cellIdx];
cellPv[BlackoilIndices::pressureSwitchIdx] = pg;
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_pg_Rv );
}
else
{
assert( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasAndOil);
cellPv[BlackoilIndices::compositionSwitchIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Gas]];
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[ cellIdx ];
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Sg );
}
} else {
// for oil-water case oil pressure should be used as primary variable
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
}
}
// store the solution at the beginning of the time step
if( iterationIdx == 0 )
{
simulator.model().solution( 1 /* timeIdx */ ) = solution;
}
}
// Data.
Simulator& ebosSimulator_;

View File

@ -12,16 +12,23 @@ ABS_TOL="$5"
REL_TOL="$6"
COMPARE_SUMMARY_COMMAND="$7"
COMPARE_ECL_COMMAND="$8"
EXE_NAME="${9}"
shift 9
PARALLEL="${9}"
EXE_NAME="${10}"
shift 10
TEST_ARGS="$@"
rm -Rf ${RESULT_PATH}
mkdir -p ${RESULT_PATH}
cd ${RESULT_PATH}
${BINPATH}/${EXE_NAME} ${TEST_ARGS}.DATA timestep.adaptive=false output_dir=${RESULT_PATH}
if test $PARALLEL -eq 1
then
CMD_PREFIX="mpirun -np 4 "
else
CMD_PREFIX=""
fi
${CMD_PREFIX} ${BINPATH}/${EXE_NAME} ${TEST_ARGS}.DATA timestep.adaptive=false output_dir=${RESULT_PATH}
test $? -eq 0 || exit 1
${BINPATH}/${EXE_NAME} ${TEST_ARGS}_RESTART.DATA timestep.adaptive=false output_dir=${RESULT_PATH}
${CMD_PREFIX} ${BINPATH}/${EXE_NAME} ${TEST_ARGS}_RESTART.DATA timestep.adaptive=false output_dir=${RESULT_PATH}
test $? -eq 0 || exit 1
ecode=0