changed: ewoms/models/pvs -> opm/models/pvs

This commit is contained in:
Arne Morten Kvarving 2019-09-16 12:15:11 +02:00
parent a5d4b823f5
commit f558f5d98b
24 changed files with 2195 additions and 14 deletions

View File

@ -29,7 +29,7 @@
#include "config.h"
#include <opm/models/utils/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"

View File

@ -29,7 +29,7 @@
#include "config.h"
#include <opm/models/utils/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"

View File

@ -29,7 +29,7 @@
#include "config.h"
#include <opm/models/utils/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"

View File

@ -29,7 +29,7 @@
#include "config.h"
#include <opm/models/utils/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include <opm/models/discretization/vcfv/vcfvdiscretization.hh>
#include "problems/co2injectionproblem.hh"

View File

@ -28,7 +28,7 @@
#include "config.h"
#include <opm/models/utils/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/cuvetteproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,7 +28,7 @@
#include "config.h"
#include <opm/models/utils/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/diffusionproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,7 +28,7 @@
#include "config.h"
#include <opm/models/utils/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/infiltrationproblem.hh"
BEGIN_PROPERTIES

View File

@ -30,7 +30,7 @@
#include "config.h"
#include <opm/models/utils/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/obstacleproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,7 +28,7 @@
#include "config.h"
#include <opm/models/utils/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/outflowproblem.hh"
BEGIN_PROPERTIES

View File

@ -28,7 +28,7 @@
#ifndef EWOMS_CUVETTE_PROBLEM_HH
#define EWOMS_CUVETTE_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>

View File

@ -27,7 +27,7 @@
#ifndef EWOMS_INFILTRATION_PROBLEM_HH
#define EWOMS_INFILTRATION_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/H2OAirMesityleneFluidSystem.hpp>

View File

@ -27,7 +27,7 @@
#ifndef EWOMS_OUTFLOW_PROBLEM_HH
#define EWOMS_OUTFLOW_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/H2ON2LiquidPhaseFluidSystem.hpp>

View File

@ -28,7 +28,7 @@
#ifndef EWOMS_WATER_AIR_PROBLEM_HH
#define EWOMS_WATER_AIR_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/simulators/linalg/parallelistlbackend.hh>
#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>

View File

@ -28,7 +28,7 @@
#include "config.h"
#include <opm/models/utils/start.hh>
#include <ewoms/models/pvs/pvsmodel.hh>
#include <opm/models/pvs/pvsmodel.hh>
#include "problems/waterairproblem.hh"
BEGIN_PROPERTIES

View File

@ -0,0 +1,204 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::PvsBoundaryRateVector
*/
#ifndef EWOMS_PVS_BOUNDARY_RATE_VECTOR_HH
#define EWOMS_PVS_BOUNDARY_RATE_VECTOR_HH
#include "pvsproperties.hh"
#include <opm/models/common/energymodule.hh>
#include <opm/material/common/Valgrind.hpp>
namespace Opm {
/*!
* \ingroup PvsModel
*
* \brief Implements a rate vector on the boundary for the fully
* implicit compositional multi-phase primary variable
* switching compositional model.
*/
template <class TypeTag>
class PvsBoundaryRateVector : public GET_PROP_TYPE(TypeTag, RateVector)
{
typedef typename GET_PROP_TYPE(TypeTag, RateVector) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) ExtensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
typedef Opm::EnergyModule<TypeTag, enableEnergy> EnergyModule;
typedef Opm::MathToolbox<Evaluation> Toolbox;
public:
PvsBoundaryRateVector()
: ParentType()
{}
/*!
* \copydoc
* ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(Scalar)
*/
PvsBoundaryRateVector(const Evaluation& value)
: ParentType(value)
{}
/*!
* \copydoc ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(const
* ImmiscibleBoundaryRateVector& )
*/
PvsBoundaryRateVector(const PvsBoundaryRateVector& value) = default;
PvsBoundaryRateVector& operator=(const PvsBoundaryRateVector& value) = default;
/*!
* \copydoc ImmiscibleBoundaryRateVector::setFreeFlow
*/
template <class Context, class FluidState>
void setFreeFlow(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fluidState)
{
ExtensiveQuantities extQuants;
extQuants.updateBoundary(context, bfIdx, timeIdx, fluidState);
const auto& insideIntQuants = context.intensiveQuantities(bfIdx, timeIdx);
unsigned focusDofIdx = context.focusDofIndex();
unsigned interiorDofIdx = context.interiorScvIndex(bfIdx, timeIdx);
////////
// advective fluxes of all components in all phases
////////
(*this) = Evaluation(0.0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Evaluation density;
if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) {
if (focusDofIdx == interiorDofIdx)
density = fluidState.density(phaseIdx);
else
density = Opm::getValue(fluidState.density(phaseIdx));
}
else if (focusDofIdx == interiorDofIdx)
density = insideIntQuants.fluidState().density(phaseIdx);
else
density = Opm::getValue(insideIntQuants.fluidState().density(phaseIdx));
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
Evaluation molarity;
if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) {
if (focusDofIdx == interiorDofIdx)
molarity = fluidState.molarity(phaseIdx, compIdx);
else
molarity = Opm::getValue(fluidState.molarity(phaseIdx, compIdx));
}
else if (focusDofIdx == interiorDofIdx)
molarity = insideIntQuants.fluidState().molarity(phaseIdx, compIdx);
else
molarity = Opm::getValue(insideIntQuants.fluidState().molarity(phaseIdx, compIdx));
// add advective flux of current component in current
// phase
(*this)[conti0EqIdx + compIdx] += extQuants.volumeFlux(phaseIdx)*molarity;
}
if (enableEnergy) {
Evaluation specificEnthalpy;
if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) {
if (focusDofIdx == interiorDofIdx)
specificEnthalpy = fluidState.enthalpy(phaseIdx);
else
specificEnthalpy = Opm::getValue(fluidState.enthalpy(phaseIdx));
}
else if (focusDofIdx == interiorDofIdx)
specificEnthalpy = insideIntQuants.fluidState().enthalpy(phaseIdx);
else
specificEnthalpy = Opm::getValue(insideIntQuants.fluidState().enthalpy(phaseIdx));
Evaluation enthalpyRate = density*extQuants.volumeFlux(phaseIdx)*specificEnthalpy;
EnergyModule::addToEnthalpyRate(*this, enthalpyRate);
}
}
if (enableEnergy)
// heat conduction
EnergyModule::addToEnthalpyRate(*this, EnergyModule::thermalConductionRate(extQuants));
#ifndef NDEBUG
for (unsigned i = 0; i < numEq; ++i)
Opm::Valgrind::CheckDefined((*this)[i]);
#endif
}
/*!
* \copydoc ImmiscibleBoundaryRateVector::setInFlow
*/
template <class Context, class FluidState>
void setInFlow(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
// we only allow fluxes in the direction opposite to the outer unit normal
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
Evaluation& val = this->operator[](eqIdx);
val = Toolbox::min(0.0, val);
}
}
/*!
* \copydoc ImmiscibleBoundaryRateVector::setOutFlow
*/
template <class Context, class FluidState>
void setOutFlow(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
this->setFreeFlow(context, bfIdx, timeIdx, fluidState);
// we only allow fluxes in the same direction as the outer unit normal
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
Evaluation& val = this->operator[](eqIdx);
val = Toolbox::max(0.0, val);
}
}
/*!
* \copydoc ImmiscibleBoundaryRateVector::setNoFlow
*/
void setNoFlow()
{ (*this) = Evaluation(0.0); }
};
} // namespace Opm
#endif

View File

@ -0,0 +1,94 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::PvsExtensiveQuantities
*/
#ifndef EWOMS_PVS_EXTENSIVE_QUANTITIES_HH
#define EWOMS_PVS_EXTENSIVE_QUANTITIES_HH
#include "pvsproperties.hh"
#include <opm/models/common/multiphasebaseextensivequantities.hh>
#include <opm/models/common/energymodule.hh>
#include <opm/models/common/diffusionmodule.hh>
namespace Opm {
/*!
* \ingroup PvsModel
* \ingroup ExtensiveQuantities
*
* \brief Contains all data which is required to calculate all fluxes at a flux
* integration point for the primary variable switching model.
*
* This means pressure and concentration gradients, phase densities at
* the integration point, etc.
*/
template <class TypeTag>
class PvsExtensiveQuantities
: public MultiPhaseBaseExtensiveQuantities<TypeTag>
, public EnergyExtensiveQuantities<TypeTag, GET_PROP_VALUE(TypeTag, EnableEnergy)>
, public DiffusionExtensiveQuantities<TypeTag, GET_PROP_VALUE(TypeTag, EnableDiffusion)>
{
typedef MultiPhaseBaseExtensiveQuantities<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
enum { enableDiffusion = GET_PROP_VALUE(TypeTag, EnableDiffusion) };
typedef Opm::DiffusionExtensiveQuantities<TypeTag, enableDiffusion> DiffusionExtensiveQuantities;
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
typedef Opm::EnergyExtensiveQuantities<TypeTag, enableEnergy> EnergyExtensiveQuantities;
public:
/*!
* \copydoc ParentType::update
*/
void update(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, scvfIdx, timeIdx);
DiffusionExtensiveQuantities::update_(elemCtx, scvfIdx, timeIdx);
EnergyExtensiveQuantities::update_(elemCtx, scvfIdx, timeIdx);
}
/*!
* \copydoc ParentType::updateBoundary
*/
template <class Context, class FluidState>
void updateBoundary(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
ParentType::updateBoundary(context, bfIdx, timeIdx, fluidState);
DiffusionExtensiveQuantities::updateBoundary_(context, bfIdx, timeIdx, fluidState);
EnergyExtensiveQuantities::updateBoundary_(context, bfIdx, timeIdx, fluidState);
}
};
} // namespace Opm
#endif

View File

@ -0,0 +1,73 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::PvsIndices
*/
#ifndef EWOMS_PVS_INDICES_HH
#define EWOMS_PVS_INDICES_HH
#include "pvsproperties.hh"
#include <opm/models/common/energymodule.hh>
namespace Opm {
/*!
* \ingroup PvsModel
*
* \brief The indices for the compositional multi-phase primary
* variable switching model.
*
* \tparam PVOffset The first index in a primary variable vector.
*/
template <class TypeTag, int PVOffset>
class PvsIndices
: public EnergyIndices<PVOffset + GET_PROP_VALUE(TypeTag, NumComponents),
GET_PROP_VALUE(TypeTag, EnableEnergy)>
{
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
typedef Opm::EnergyIndices<PVOffset + numComponents, enableEnergy> EnergyIndices;
public:
//! Number of partial differential equations or primary variables, respectively
static const int numEq = numComponents + EnergyIndices::numEq_;
// Primary variable indices
//! Index for the pressure of the first phase
static const int pressure0Idx = PVOffset + 0;
//! Index of the either the saturation or the mole
//! fraction of the phase with the lowest index
static const int switch0Idx = PVOffset + 1;
// equation indices
//! Index of the mass conservation equation for the first component
static const int conti0EqIdx = PVOffset;
};
} // namespace Opm
#endif

View File

@ -0,0 +1,297 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::PvsIntensiveQuantities
*/
#ifndef EWOMS_PVS_INTENSIVE_QUANTITIES_HH
#define EWOMS_PVS_INTENSIVE_QUANTITIES_HH
#include "pvsproperties.hh"
#include <opm/models/common/energymodule.hh>
#include <opm/models/common/diffusionmodule.hh>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/constraintsolvers/MiscibleMultiPhaseComposition.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <iostream>
namespace Opm {
/*!
* \ingroup PvsModel
* \ingroup IntensiveQuantities
*
* \brief Contains the quantities which are are constant within a
* finite volume in the compositional multi-phase primary
* variable switching model.
*/
template <class TypeTag>
class PvsIntensiveQuantities
: public GET_PROP_TYPE(TypeTag, DiscIntensiveQuantities)
, public DiffusionIntensiveQuantities<TypeTag, GET_PROP_VALUE(TypeTag, EnableDiffusion) >
, public EnergyIntensiveQuantities<TypeTag, GET_PROP_VALUE(TypeTag, EnableEnergy) >
, public GET_PROP_TYPE(TypeTag, FluxModule)::FluxIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, DiscIntensiveQuantities) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, FluxModule) FluxModule;
enum { switch0Idx = Indices::switch0Idx };
enum { pressure0Idx = Indices::pressure0Idx };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { enableDiffusion = GET_PROP_VALUE(TypeTag, EnableDiffusion) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
enum { dimWorld = GridView::dimensionworld };
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef Opm::MiscibleMultiPhaseComposition<Scalar, FluidSystem, Evaluation> MiscibleMultiPhaseComposition;
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem, Evaluation> ComputeFromReferencePhase;
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
typedef Dune::FieldVector<Evaluation, numPhases> EvalPhaseVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef typename FluxModule::FluxIntensiveQuantities FluxIntensiveQuantities;
typedef Opm::DiffusionIntensiveQuantities<TypeTag, enableDiffusion> DiffusionIntensiveQuantities;
typedef Opm::EnergyIntensiveQuantities<TypeTag, enableEnergy> EnergyIntensiveQuantities;
public:
//! The type of the object returned by the fluidState() method
typedef Opm::CompositionalFluidState<Evaluation, FluidSystem> FluidState;
PvsIntensiveQuantities()
{ }
PvsIntensiveQuantities(const PvsIntensiveQuantities& other) = default;
PvsIntensiveQuantities& operator=(const PvsIntensiveQuantities& other) = default;
/*!
* \copydoc ImmiscibleIntensiveQuantities::update
*/
void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, dofIdx, timeIdx);
EnergyIntensiveQuantities::updateTemperatures_(fluidState_, elemCtx, dofIdx, timeIdx);
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
const auto& problem = elemCtx.problem();
/////////////
// set the saturations
/////////////
Evaluation sumSat = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fluidState_.setSaturation(phaseIdx, priVars.explicitSaturationValue(phaseIdx, timeIdx));
Opm::Valgrind::CheckDefined(fluidState_.saturation(phaseIdx));
sumSat += fluidState_.saturation(phaseIdx);
}
Opm::Valgrind::CheckDefined(priVars.implicitSaturationIdx());
Opm::Valgrind::CheckDefined(sumSat);
fluidState_.setSaturation(priVars.implicitSaturationIdx(), 1.0 - sumSat);
/////////////
// set the pressures of the fluid phases
/////////////
// calculate capillary pressure
const MaterialLawParams& materialParams =
problem.materialLawParams(elemCtx, dofIdx, timeIdx);
EvalPhaseVector pC;
MaterialLaw::capillaryPressures(pC, materialParams, fluidState_);
// set the absolute phase pressures in the fluid state
const Evaluation& p0 = priVars.makeEvaluation(pressure0Idx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fluidState_.setPressure(phaseIdx, p0 + (pC[phaseIdx] - pC[0]));
/////////////
// calculate the phase compositions
/////////////
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
unsigned lowestPresentPhaseIdx = priVars.lowestPresentPhaseIdx();
unsigned numNonPresentPhases = 0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!priVars.phaseIsPresent(phaseIdx))
++numNonPresentPhases;
}
// now comes the tricky part: calculate phase compositions
if (numNonPresentPhases == numPhases - 1) {
// only one phase is present, i.e. the primary variables
// contain the complete composition of the phase
Evaluation sumx = 0.0;
for (unsigned compIdx = 1; compIdx < numComponents; ++compIdx) {
const Evaluation& x = priVars.makeEvaluation(switch0Idx + compIdx - 1, timeIdx);
fluidState_.setMoleFraction(lowestPresentPhaseIdx, compIdx, x);
sumx += x;
}
// set the mole fraction of the first component
fluidState_.setMoleFraction(lowestPresentPhaseIdx, 0, 1 - sumx);
// calculate the composition of the remaining phases (as
// well as the densities of all phases). this is the job
// of the "ComputeFromReferencePhase" constraint solver
ComputeFromReferencePhase::solve(fluidState_, paramCache,
lowestPresentPhaseIdx,
/*setViscosity=*/true,
/*setEnthalpy=*/false);
}
else {
// create the auxiliary constraints
unsigned numAuxConstraints = numComponents + numNonPresentPhases - numPhases;
Opm::MMPCAuxConstraint<Evaluation> auxConstraints[numComponents];
unsigned auxIdx = 0;
unsigned switchIdx = 0;
for (; switchIdx < numPhases - 1; ++switchIdx) {
unsigned compIdx = switchIdx + 1;
unsigned switchPhaseIdx = switchIdx;
if (switchIdx >= lowestPresentPhaseIdx)
switchPhaseIdx += 1;
if (!priVars.phaseIsPresent(switchPhaseIdx)) {
auxConstraints[auxIdx].set(lowestPresentPhaseIdx, compIdx,
priVars.makeEvaluation(switch0Idx + switchIdx, timeIdx));
++auxIdx;
}
}
for (; auxIdx < numAuxConstraints; ++auxIdx, ++switchIdx) {
unsigned compIdx = numPhases - numNonPresentPhases + auxIdx;
auxConstraints[auxIdx].set(lowestPresentPhaseIdx, compIdx,
priVars.makeEvaluation(switch0Idx + switchIdx, timeIdx));
}
// both phases are present, i.e. phase compositions are a result of the the
// gas <-> liquid equilibrium. This is the job of the
// "MiscibleMultiPhaseComposition" constraint solver
MiscibleMultiPhaseComposition::solve(fluidState_, paramCache,
priVars.phasePresence(),
auxConstraints,
numAuxConstraints,
/*setViscosity=*/true,
/*setEnthalpy=*/false);
}
#ifndef NDEBUG
// make valgrind happy and set the enthalpies to NaN
if (!enableEnergy) {
Scalar myNan = std::numeric_limits<Scalar>::quiet_NaN();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fluidState_.setEnthalpy(phaseIdx, myNan);
}
#endif
/////////////
// calculate the remaining quantities
/////////////
// calculate relative permeabilities
MaterialLaw::relativePermeabilities(relativePermeability_,
materialParams, fluidState_);
Opm::Valgrind::CheckDefined(relativePermeability_);
// mobilities
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
mobility_[phaseIdx] =
relativePermeability_[phaseIdx] / fluidState().viscosity(phaseIdx);
// porosity
porosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
Opm::Valgrind::CheckDefined(porosity_);
// intrinsic permeability
intrinsicPerm_ = problem.intrinsicPermeability(elemCtx, dofIdx, timeIdx);
// update the quantities specific for the velocity model
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
// energy related quantities
EnergyIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
// update the diffusion specific quantities of the intensive quantities
DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
fluidState_.checkDefined();
}
/*!
* \copydoc ImmiscibleIntensiveQuantities::fluidState
*/
const FluidState& fluidState() const
{ return fluidState_; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::intrinsicPermeability
*/
const DimMatrix& intrinsicPermeability() const
{ return intrinsicPerm_; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::relativePermeability
*/
const Evaluation& relativePermeability(unsigned phaseIdx) const
{ return relativePermeability_[phaseIdx]; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::mobility
*/
const Evaluation& mobility(unsigned phaseIdx) const
{ return mobility_[phaseIdx]; }
/*!
* \copydoc ImmiscibleIntensiveQuantities::porosity
*/
const Evaluation& porosity() const
{ return porosity_; }
private:
FluidState fluidState_;
Evaluation porosity_;
DimMatrix intrinsicPerm_;
Evaluation relativePermeability_[numPhases];
Evaluation mobility_[numPhases];
};
} // namespace Opm
#endif

View File

@ -0,0 +1,200 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::PvsLocalResidual
*/
#ifndef EWOMS_PVS_LOCAL_RESIDUAL_HH
#define EWOMS_PVS_LOCAL_RESIDUAL_HH
#include "pvsproperties.hh"
#include <opm/models/common/diffusionmodule.hh>
#include <opm/models/common/energymodule.hh>
#include <opm/material/common/Valgrind.hpp>
namespace Opm {
/*!
* \ingroup PvsModel
*
* \brief Element-wise calculation of the local residual for the
* compositional multi-phase primary variable switching model.
*/
template <class TypeTag>
class PvsLocalResidual : public GET_PROP_TYPE(TypeTag, DiscLocalResidual)
{
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { enableDiffusion = GET_PROP_VALUE(TypeTag, EnableDiffusion) };
typedef Opm::DiffusionModule<TypeTag, enableDiffusion> DiffusionModule;
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
typedef Opm::EnergyModule<TypeTag, enableEnergy> EnergyModule;
typedef Opm::MathToolbox<Evaluation> Toolbox;
public:
/*!
* \copydoc ImmiscibleLocalResidual::addPhaseStorage
*/
template <class LhsEval>
void addPhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx,
unsigned phaseIdx) const
{
const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
const auto& fs = intQuants.fluidState();
// compute storage term of all components within all phases
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
unsigned eqIdx = conti0EqIdx + compIdx;
storage[eqIdx] +=
Toolbox::template decay<LhsEval>(fs.molarity(phaseIdx, compIdx))
* Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.porosity());
}
EnergyModule::addPhaseStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx), phaseIdx);
}
/*!
* \copydoc ImmiscibleLocalResidual::computeStorage
*/
template <class LhsEval>
void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx) const
{
storage = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
addPhaseStorage(storage, elemCtx, dofIdx, timeIdx, phaseIdx);
EnergyModule::addSolidEnergyStorage(storage, elemCtx.intensiveQuantities(dofIdx, timeIdx));
}
/*!
* \copydoc ImmiscibleLocalResidual::computeFlux
*/
void computeFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx) const
{
flux = 0.0;
addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx);
Opm::Valgrind::CheckDefined(flux);
addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
Opm::Valgrind::CheckDefined(flux);
}
/*!
* \copydoc ImmiscibleLocalResidual::addAdvectiveFlux
*/
void addAdvectiveFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx) const
{
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned focusDofIdx = elemCtx.focusDofIndex();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// data attached to upstream and the downstream DOFs
// of the current phase
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const IntensiveQuantities& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
// this is a bit hacky because it is specific to the element-centered
// finite volume scheme. (N.B. that if finite differences are used to
// linearize the system of equations, it does not matter.)
if (upIdx == focusDofIdx) {
Evaluation tmp =
up.fluidState().molarDensity(phaseIdx)
* extQuants.volumeFlux(phaseIdx);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
flux[conti0EqIdx + compIdx] +=
tmp*up.fluidState().moleFraction(phaseIdx, compIdx);
}
}
else {
Evaluation tmp =
Toolbox::value(up.fluidState().molarDensity(phaseIdx))
* extQuants.volumeFlux(phaseIdx);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
flux[conti0EqIdx + compIdx] +=
tmp*Toolbox::value(up.fluidState().moleFraction(phaseIdx, compIdx));
}
}
}
EnergyModule::addAdvectiveFlux(flux, elemCtx, scvfIdx, timeIdx);
}
/*!
* \copydoc ImmiscibleLocalResidual::addDiffusiveFlux
*/
void addDiffusiveFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx) const
{
DiffusionModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
EnergyModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
}
/*!
* \copydoc ImmiscibleLocalResidual::computeSource
*/
void computeSource(RateVector& source,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx) const
{
Opm::Valgrind::SetUndefined(source);
elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx);
Opm::Valgrind::CheckDefined(source);
}
};
} // namespace Opm
#endif

599
opm/models/pvs/pvsmodel.hh Normal file
View File

@ -0,0 +1,599 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::PvsModel
*/
#ifndef EWOMS_PVS_MODEL_HH
#define EWOMS_PVS_MODEL_HH
#include <opm/material/densead/Math.hpp>
#include "pvsproperties.hh"
#include "pvslocalresidual.hh"
#include "pvsnewtonmethod.hh"
#include "pvsprimaryvariables.hh"
#include "pvsratevector.hh"
#include "pvsboundaryratevector.hh"
#include "pvsintensivequantities.hh"
#include "pvsextensivequantities.hh"
#include "pvsindices.hh"
#include <opm/models/common/multiphasebasemodel.hh>
#include <opm/models/common/diffusionmodule.hh>
#include <opm/models/common/energymodule.hh>
#include <opm/models/io/vtkcompositionmodule.hh>
#include <opm/models/io/vtkenergymodule.hh>
#include <opm/models/io/vtkdiffusionmodule.hh>
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
namespace Opm {
template <class TypeTag>
class PvsModel;
}
BEGIN_PROPERTIES
//! The type tag for the isothermal single phase problems
NEW_TYPE_TAG(PvsModel, INHERITS_FROM(MultiPhaseBaseModel,
VtkPhasePresence,
VtkComposition,
VtkEnergy,
VtkDiffusion));
//! Use the PVS local jacobian operator for the PVS model
SET_TYPE_PROP(PvsModel,
LocalResidual,
Opm::PvsLocalResidual<TypeTag>);
//! Use the PVS specific newton method for the PVS model
SET_TYPE_PROP(PvsModel, NewtonMethod, Opm::PvsNewtonMethod<TypeTag>);
//! the Model property
SET_TYPE_PROP(PvsModel, Model, Opm::PvsModel<TypeTag>);
//! the PrimaryVariables property
SET_TYPE_PROP(PvsModel, PrimaryVariables, Opm::PvsPrimaryVariables<TypeTag>);
//! the RateVector property
SET_TYPE_PROP(PvsModel, RateVector, Opm::PvsRateVector<TypeTag>);
//! the BoundaryRateVector property
SET_TYPE_PROP(PvsModel, BoundaryRateVector, Opm::PvsBoundaryRateVector<TypeTag>);
//! the IntensiveQuantities property
SET_TYPE_PROP(PvsModel, IntensiveQuantities, Opm::PvsIntensiveQuantities<TypeTag>);
//! the ExtensiveQuantities property
SET_TYPE_PROP(PvsModel, ExtensiveQuantities, Opm::PvsExtensiveQuantities<TypeTag>);
//! The indices required by the isothermal PVS model
SET_TYPE_PROP(PvsModel, Indices, Opm::PvsIndices<TypeTag, /*PVIdx=*/0>);
// set the model to a medium verbosity
SET_INT_PROP(PvsModel, PvsVerbosity, 1);
//! Disable the energy equation by default
SET_BOOL_PROP(PvsModel, EnableEnergy, false);
// disable molecular diffusion by default
SET_BOOL_PROP(PvsModel, EnableDiffusion, false);
//! The basis value for the weight of the pressure primary variable
SET_SCALAR_PROP(PvsModel, PvsPressureBaseWeight, 1.0);
//! The basis value for the weight of the saturation primary variables
SET_SCALAR_PROP(PvsModel, PvsSaturationsBaseWeight, 1.0);
//! The basis value for the weight of the mole fraction primary variables
SET_SCALAR_PROP(PvsModel, PvsMoleFractionsBaseWeight, 1.0);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup PvsModel
*
* \brief A generic compositional multi-phase model using primary-variable
* switching.
*
* This model assumes a flow of \f$M \geq 1\f$ fluid phases
* \f$\alpha\f$, each of which is assumed to be a mixture \f$N \geq
* M\f$ chemical species \f$\kappa\f$.
*
* By default, the standard multi-phase Darcy approach is used to determine
* the velocity, i.e.
* \f[
* \mathbf{v}_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K}
* \left(\mathbf{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right) \;,
* \f]
* although the actual approach which is used can be specified via the
* \c FluxModule property. For example, the velocity model can by
* changed to the Forchheimer approach by
* \code
* SET_TYPE_PROP(MyProblemTypeTag, FluxModule, Opm::ForchheimerFluxModule<TypeTag>);
* \endcode
*
* The core of the model is the conservation mass of each component by
* means of the equation
* \f[
* \sum_\alpha \frac{\partial\;\phi c_\alpha^\kappa S_\alpha }{\partial t}
* - \sum_\alpha \mathrm{div} \left\{ c_\alpha^\kappa \mathbf{v}_\alpha \right\}
* - q^\kappa = 0 \;.
* \f]
*
* To close the system mathematically, \f$M\f$ model equations are
* also required. This model uses the primary variable switching
* assumptions, which are given by:
* \f[
* 0 \stackrel{!}{=}
* f_\alpha = \left\{
* \begin{array}{cl}
* S_\alpha& \quad \text{if phase }\alpha\text{ is not present} \ \
* 1 - \sum_\kappa x_\alpha^\kappa& \quad \text{else}
* \end{array}
* \right.
* \f]
*
* To make this approach applicable, a pseudo primary variable
* <em>phase presence</em> has to be introduced. Its purpose is to
* specify for each phase whether it is present or not. It is a
* <em>pseudo</em> primary variable because it is not directly considered when
* linearizing the system in the Newton method, but after each Newton
* iteration, it gets updated like the "real" primary variables. The
* following rules are used for this update procedure:
*
* <ul>
* <li>If phase \f$\alpha\f$ is present according to the pseudo
* primary variable, but \f$S_\alpha < 0\f$ after the Newton
* update, consider the phase \f$\alpha\f$ disappeared for the
* next iteration and use the set of primary variables which
* correspond to the new phase presence.</li>
* <li>If phase \f$\alpha\f$ is not present according to the pseudo
* primary variable, but the sum of the component mole fractions
* in the phase is larger than 1, i.e. \f$\sum_\kappa
* x_\alpha^\kappa > 1\f$, consider the phase \f$\alpha\f$ present
* in the the next iteration and update the set of primary
* variables to make it consistent with the new phase
* presence.</li>
* <li>In all other cases don't modify the phase presence for phase
* \f$\alpha\f$.</li>
*
* </ul>
*
* The model always requires \f$N\f$ primary variables, but their
* interpretation is dependent on the phase presence:
*
* <ul>
*
* <li>The first primary variable is always interpreted as the
* pressure of the phase with the lowest index \f$PV_0 =
* p_0\f$.</li>
*
* <li>Then, \f$M - 1\f$ "switching primary variables" follow, which
* are interpreted depending in the presence of the first
* \f$M-1\f$ phases: If phase \f$\alpha\f$ is present, its
* saturation \f$S_\alpha = PV_i\f$ is used as primary variable;
* if it is not present, the mole fraction \f$PV_i =
* x_{\alpha^\star}^\alpha\f$ of the component with index
* \f$\alpha\f$ in the phase with the lowest index that is present
* \f$\alpha^\star\f$ is used instead.</li>
*
* <li>Finally, the mole fractions of the \f$N-M\f$ components with
* the largest index in the phase with the lowest index that is
* present \f$x_{\alpha^\star}^\kappa\f$ are used as primary
* variables.</li>
*
* </ul>
*/
template <class TypeTag>
class PvsModel
: public MultiPhaseBaseModel<TypeTag>
{
typedef MultiPhaseBaseModel<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { enableDiffusion = GET_PROP_VALUE(TypeTag, EnableDiffusion) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GridView::template Codim<0>::Iterator ElementIterator;
typedef Opm::EnergyModule<TypeTag, enableEnergy> EnergyModule;
public:
PvsModel(Simulator& simulator)
: ParentType(simulator)
{
verbosity_ = EWOMS_GET_PARAM(TypeTag, int, PvsVerbosity);
numSwitched_ = 0;
}
/*!
* \brief Register all run-time parameters for the PVS compositional model.
*/
static void registerParameters()
{
ParentType::registerParameters();
// register runtime parameters of the VTK output modules
Opm::VtkPhasePresenceModule<TypeTag>::registerParameters();
Opm::VtkCompositionModule<TypeTag>::registerParameters();
if (enableDiffusion)
Opm::VtkDiffusionModule<TypeTag>::registerParameters();
if (enableEnergy)
Opm::VtkEnergyModule<TypeTag>::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, int, PvsVerbosity,
"The verbosity level of the primary variable "
"switching model");
}
/*!
* \copydoc FvBaseDiscretization::name
*/
static std::string name()
{ return "pvs"; }
/*!
* \copydoc FvBaseDiscretization::primaryVarName
*/
std::string primaryVarName(unsigned pvIdx) const
{
std::string s;
if (!(s = EnergyModule::primaryVarName(pvIdx)).empty())
return s;
std::ostringstream oss;
if (pvIdx == Indices::pressure0Idx)
oss << "pressure_" << FluidSystem::phaseName(/*phaseIdx=*/0);
else if (Indices::switch0Idx <= pvIdx
&& pvIdx < Indices::switch0Idx + numPhases - 1)
oss << "switch_" << pvIdx - Indices::switch0Idx;
else if (Indices::switch0Idx + numPhases - 1 <= pvIdx
&& pvIdx < Indices::switch0Idx + numComponents - 1)
oss << "auxMoleFrac^" << FluidSystem::componentName(pvIdx);
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::eqName
*/
std::string eqName(unsigned eqIdx) const
{
std::string s;
if (!(s = EnergyModule::eqName(eqIdx)).empty())
return s;
std::ostringstream oss;
if (Indices::conti0EqIdx <= eqIdx && eqIdx < Indices::conti0EqIdx
+ numComponents) {
unsigned compIdx = eqIdx - Indices::conti0EqIdx;
oss << "continuity^" << FluidSystem::componentName(compIdx);
}
else
assert(false);
return oss.str();
}
/*!
* \copydoc FvBaseDiscretization::updateFailed
*/
void updateFailed()
{
ParentType::updateFailed();
numSwitched_ = 0;
}
/*!
* \copydoc FvBaseDiscretization::updateBegin
*/
void updateBegin()
{
ParentType::updateBegin();
// find the a reference pressure. The first degree of freedom
// might correspond to non-interior entities which would lead
// to an undefined value, so we have to iterate...
size_t nDof = this->numTotalDof();
for (unsigned dofIdx = 0; dofIdx < nDof; ++ dofIdx) {
if (this->dofTotalVolume(dofIdx) > 0.0) {
referencePressure_ =
this->solution(/*timeIdx=*/0)[dofIdx][/*pvIdx=*/Indices::pressure0Idx];
if (referencePressure_ > 0.0)
break;
}
}
}
/*!
* \copydoc FvBaseDiscretization::primaryVarWeight
*/
Scalar primaryVarWeight(unsigned globalDofIdx, unsigned pvIdx) const
{
Scalar tmp = EnergyModule::primaryVarWeight(*this, globalDofIdx, pvIdx);
if (tmp > 0)
// energy related quantity
return tmp;
if (Indices::pressure0Idx == pvIdx) {
return 10 / referencePressure_;
}
if (Indices::switch0Idx <= pvIdx && pvIdx < Indices::switch0Idx
+ numPhases - 1) {
unsigned phaseIdx = pvIdx - Indices::switch0Idx;
if (!this->solution(/*timeIdx=*/0)[globalDofIdx].phaseIsPresent(phaseIdx))
// for saturations, the weight is always 1
return 1;
// for saturations, the PvsMoleSaturationsBaseWeight
// property determines the weight
return GET_PROP_VALUE(TypeTag, PvsSaturationsBaseWeight);
}
// for mole fractions, the PvsMoleFractionsBaseWeight
// property determines the weight
return GET_PROP_VALUE(TypeTag, PvsMoleFractionsBaseWeight);
}
/*!
* \copydoc FvBaseDiscretization::eqWeight
*/
Scalar eqWeight(unsigned globalDofIdx, unsigned eqIdx) const
{
Scalar tmp = EnergyModule::eqWeight(*this, globalDofIdx, eqIdx);
if (tmp > 0)
// energy related equation
return tmp;
unsigned compIdx = eqIdx - Indices::conti0EqIdx;
assert(0 <= compIdx && compIdx <= numComponents);
// make all kg equal
return FluidSystem::molarMass(compIdx);
}
/*!
* \copydoc FvBaseDiscretization::advanceTimeLevel
*/
void advanceTimeLevel()
{
ParentType::advanceTimeLevel();
numSwitched_ = 0;
}
/*!
* \brief Return true if the primary variables were switched for
* at least one vertex after the last timestep.
*/
bool switched() const
{ return numSwitched_ > 0; }
/*!
* \copydoc FvBaseDiscretization::serializeEntity
*/
template <class DofEntity>
void serializeEntity(std::ostream& outstream, const DofEntity& dofEntity)
{
// write primary variables
ParentType::serializeEntity(outstream, dofEntity);
unsigned dofIdx = static_cast<unsigned>(this->dofMapper().index(dofEntity));
if (!outstream.good())
throw std::runtime_error("Could not serialize DOF "+std::to_string(dofIdx));
outstream << this->solution(/*timeIdx=*/0)[dofIdx].phasePresence() << " ";
}
/*!
* \copydoc FvBaseDiscretization::deserializeEntity
*/
template <class DofEntity>
void deserializeEntity(std::istream& instream, const DofEntity& dofEntity)
{
// read primary variables
ParentType::deserializeEntity(instream, dofEntity);
// read phase presence
unsigned dofIdx = static_cast<unsigned>(this->dofMapper().index(dofEntity));
if (!instream.good())
throw std::runtime_error("Could not deserialize DOF "+std::to_string(dofIdx));
short tmp;
instream >> tmp;
this->solution(/*timeIdx=*/0)[dofIdx].setPhasePresence(tmp);
this->solution(/*timeIdx=*/1)[dofIdx].setPhasePresence(tmp);
}
/*!
* \internal
* \brief Do the primary variable switching after a Newton iteration.
*
* This is an internal method that needs to be public because it
* gets called by the Newton method after an update.
*/
void switchPrimaryVars_()
{
numSwitched_ = 0;
int succeeded;
try {
std::vector<bool> visited(this->numGridDof(), false);
ElementContext elemCtx(this->simulator_);
ElementIterator elemIt = this->gridView_.template begin<0>();
ElementIterator elemEndIt = this->gridView_.template end<0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updateStencil(elem);
size_t numLocalDof = elemCtx.stencil(/*timeIdx=*/0).numPrimaryDof();
for (unsigned dofIdx = 0; dofIdx < numLocalDof; ++dofIdx) {
unsigned globalIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
if (visited[globalIdx])
continue;
visited[globalIdx] = true;
// compute the intensive quantities of the current degree of freedom
auto& priVars = this->solution(/*timeIdx=*/0)[globalIdx];
elemCtx.updateIntensiveQuantities(priVars, dofIdx, /*timeIdx=*/0);
const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
// evaluate primary variable switch
short oldPhasePresence = priVars.phasePresence();
// set the primary variables and the new phase state
// from the current fluid state
priVars.assignNaive(intQuants.fluidState());
if (oldPhasePresence != priVars.phasePresence()) {
if (verbosity_ > 1)
printSwitchedPhases_(elemCtx,
dofIdx,
intQuants.fluidState(),
oldPhasePresence,
priVars);
++numSwitched_;
}
}
}
succeeded = 1;
}
catch (...)
{
std::cout << "rank " << this->simulator_.gridView().comm().rank()
<< " caught an exception during primary variable switching"
<< "\n" << std::flush;
succeeded = 0;
}
succeeded = this->simulator_.gridView().comm().min(succeeded);
if (!succeeded)
throw Opm::NumericalIssue("A process did not succeed in adapting the primary variables");
// make sure that if there was a variable switch in an
// other partition we will also set the switch flag
// for our partition.
numSwitched_ = this->gridView_.comm().sum(numSwitched_);
if (verbosity_ > 0)
this->simulator_.model().newtonMethod().endIterMsg()
<< ", num switched=" << numSwitched_;
}
template <class FluidState>
void printSwitchedPhases_(const ElementContext& elemCtx,
unsigned dofIdx,
const FluidState& fs,
short oldPhasePresence,
const PrimaryVariables& newPv) const
{
typedef Opm::MathToolbox<typename FluidState::Scalar> FsToolbox;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
bool oldPhasePresent = (oldPhasePresence& (1 << phaseIdx)) > 0;
bool newPhasePresent = newPv.phaseIsPresent(phaseIdx);
if (oldPhasePresent == newPhasePresent)
continue;
const auto& pos = elemCtx.pos(dofIdx, /*timeIdx=*/0);
if (oldPhasePresent && !newPhasePresent) {
std::cout << "'" << FluidSystem::phaseName(phaseIdx)
<< "' phase disappears at position " << pos
<< ". saturation=" << fs.saturation(phaseIdx)
<< std::flush;
}
else {
Scalar sumx = 0;
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
sumx += FsToolbox::value(fs.moleFraction(phaseIdx, compIdx));
std::cout << "'" << FluidSystem::phaseName(phaseIdx)
<< "' phase appears at position " << pos
<< " sum x = " << sumx << std::flush;
}
}
std::cout << ", new primary variables: ";
newPv.print();
std::cout << "\n" << std::flush;
}
void registerOutputModules_()
{
ParentType::registerOutputModules_();
// add the VTK output modules which are meaningful for the model
this->addOutputModule(new Opm::VtkPhasePresenceModule<TypeTag>(this->simulator_));
this->addOutputModule(new Opm::VtkCompositionModule<TypeTag>(this->simulator_));
if (enableDiffusion)
this->addOutputModule(new Opm::VtkDiffusionModule<TypeTag>(this->simulator_));
if (enableEnergy)
this->addOutputModule(new Opm::VtkEnergyModule<TypeTag>(this->simulator_));
}
mutable Scalar referencePressure_;
// number of switches of the phase state in the last Newton
// iteration
unsigned numSwitched_;
// verbosity of the model
int verbosity_;
};
}
#endif

View File

@ -0,0 +1,129 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::PvsNewtonMethod
*/
#ifndef EWOMS_PVS_NEWTON_METHOD_HH
#define EWOMS_PVS_NEWTON_METHOD_HH
#include "pvsproperties.hh"
namespace Opm {
/*!
* \ingroup PvsModel
*
* \brief A newton solver which is specific to the compositional
* multi-phase PVS model.
*/
template <class TypeTag>
class PvsNewtonMethod : public GET_PROP_TYPE(TypeTag, DiscNewtonMethod)
{
typedef typename GET_PROP_TYPE(TypeTag, DiscNewtonMethod) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { numPhases = FluidSystem::numPhases };
// primary variable indices
enum { pressure0Idx = Indices::pressure0Idx };
enum { switch0Idx = Indices::switch0Idx };
public:
PvsNewtonMethod(Simulator& simulator) : ParentType(simulator)
{}
protected:
friend NewtonMethod<TypeTag>;
friend ParentType;
/*!
* \copydoc FvBaseNewtonMethod::updatePrimaryVariables_
*/
void updatePrimaryVariables_(unsigned globalDofIdx OPM_UNUSED,
PrimaryVariables& nextValue,
const PrimaryVariables& currentValue,
const EqVector& update,
const EqVector& currentResidual OPM_UNUSED)
{
// normal Newton-Raphson update
nextValue = currentValue;
nextValue -= update;
////
// put crash barriers along the update path
////
// saturations: limit the change of any saturation to at most 20%
Scalar sumSatDelta = 0.0;
Scalar maxSatDelta = 0.0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx) {
if (!currentValue.phaseIsPresent(phaseIdx))
continue;
maxSatDelta = std::max(std::abs(update[switch0Idx + phaseIdx]),
maxSatDelta);
sumSatDelta += update[switch0Idx + phaseIdx];
}
maxSatDelta = std::max(std::abs(- sumSatDelta), maxSatDelta);
if (maxSatDelta > 0.2) {
Scalar alpha = 0.2/maxSatDelta;
for (unsigned phaseIdx = 0; phaseIdx < numPhases - 1; ++phaseIdx) {
if (!currentValue.phaseIsPresent(phaseIdx))
continue;
nextValue[switch0Idx + phaseIdx] =
currentValue[switch0Idx + phaseIdx]
- alpha*update[switch0Idx + phaseIdx];
}
}
// limit pressure reference change to 20% of the total value per iteration
clampValue_(nextValue[pressure0Idx],
currentValue[pressure0Idx]*0.8,
currentValue[pressure0Idx]*1.2);
}
/*!
* \copydoc NewtonMethod::endIteration_
*/
void endIteration_(SolutionVector& uCurrentIter,
const SolutionVector& uLastIter)
{
ParentType::endIteration_(uCurrentIter, uLastIter);
this->problem().model().switchPrimaryVars_();
}
void clampValue_(Scalar& val, Scalar minVal, Scalar maxVal) const
{ val = std::max(minVal, std::min(val, maxVal)); }
};
} // namespace Opm
#endif

View File

@ -0,0 +1,378 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::PvsPrimaryVariables
*/
#ifndef EWOMS_PVS_PRIMARY_VARIABLES_HH
#define EWOMS_PVS_PRIMARY_VARIABLES_HH
#include "pvsindices.hh"
#include "pvsproperties.hh"
#include <opm/models/discretization/common/fvbaseprimaryvariables.hh>
#include <opm/models/common/energymodule.hh>
#include <opm/material/constraintsolvers/NcpFlash.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <iostream>
namespace Opm {
/*!
* \ingroup PvsModel
*
* \brief Represents the primary variables used in the primary
* variable switching compositional model.
*
* This class is basically a Dune::FieldVector which can retrieve its
* contents from an aribitatry fluid state.
*/
template <class TypeTag>
class PvsPrimaryVariables : public FvBasePrimaryVariables<TypeTag>
{
typedef FvBasePrimaryVariables<TypeTag> ParentType;
typedef PvsPrimaryVariables<TypeTag> ThisType;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
// primary variable indices
enum { pressure0Idx = Indices::pressure0Idx };
enum { switch0Idx = Indices::switch0Idx };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
typedef typename Opm::MathToolbox<Evaluation> Toolbox;
typedef Dune::FieldVector<Scalar, numComponents> ComponentVector;
typedef Opm::EnergyModule<TypeTag, enableEnergy> EnergyModule;
typedef Opm::NcpFlash<Scalar, FluidSystem> NcpFlash;
public:
PvsPrimaryVariables() : ParentType()
{ Opm::Valgrind::SetDefined(*this); }
/*!
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(Scalar)
*/
explicit PvsPrimaryVariables(Scalar value) : ParentType(value)
{
Opm::Valgrind::CheckDefined(value);
Opm::Valgrind::SetDefined(*this);
phasePresence_ = 0;
}
/*!
* \copydoc ImmisciblePrimaryVariables::ImmisciblePrimaryVariables(const
* ImmisciblePrimaryVariables& )
*/
PvsPrimaryVariables(const PvsPrimaryVariables& value) : ParentType(value)
{
Opm::Valgrind::SetDefined(*this);
phasePresence_ = value.phasePresence_;
}
/*!
* \copydoc ImmisciblePrimaryVariables::assignMassConservative
*/
template <class FluidState>
void assignMassConservative(const FluidState& fluidState,
const MaterialLawParams& matParams,
bool isInEquilibrium = false)
{
#ifndef NDEBUG
// make sure the temperature is the same in all fluid phases
for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) {
assert(std::abs(fluidState.temperature(0) - fluidState.temperature(phaseIdx)) < 1e-30);
}
#endif // NDEBUG
// for the equilibrium case, we don't need complicated
// computations.
if (isInEquilibrium) {
assignNaive(fluidState);
return;
}
// use a flash calculation to calculate a fluid state in
// thermodynamic equilibrium
typename FluidSystem::template ParameterCache<Scalar> paramCache;
Opm::CompositionalFluidState<Scalar, FluidSystem> fsFlash;
// use the externally given fluid state as initial value for
// the flash calculation
fsFlash.assign(fluidState);
// calculate the phase densities
paramCache.updateAll(fsFlash);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar rho = FluidSystem::density(fsFlash, paramCache, phaseIdx);
fsFlash.setDensity(phaseIdx, rho);
}
// calculate the "global molarities"
ComponentVector globalMolarities(0.0);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
globalMolarities[compIdx] +=
fsFlash.saturation(phaseIdx) * fsFlash.molarity(phaseIdx, compIdx);
}
}
// run the flash calculation
NcpFlash::template solve<MaterialLaw>(fsFlash, matParams, paramCache, globalMolarities);
// use the result to assign the primary variables
assignNaive(fsFlash);
}
/*!
* \brief Return the fluid phases which are present in a given
* control volume.
*/
short phasePresence() const
{ return phasePresence_; }
/*!
* \brief Set which fluid phases are present in a given control volume.
*
* \param value The new phase presence. The phase with index i is
* present if the i-th bit of \c value is 1.
*/
void setPhasePresence(short value)
{ phasePresence_ = value; }
/*!
* \brief Set whether a given indivividual phase should be present
* or not.
*
* \param phaseIdx The index of the phase which's presence ought to be set or reset.
* \param yesno If true, the presence of the phase is set, else it is reset
*/
void setPhasePresent(unsigned phaseIdx, bool yesno = true)
{
if (yesno)
setPhasePresence(phasePresence_ | (1 << phaseIdx));
else
setPhasePresence(phasePresence_& ~(1 << phaseIdx));
}
/*!
* \brief Returns the index of the phase with's its saturation is
* determined by the closure condition of saturation.
*/
unsigned implicitSaturationIdx() const
{ return lowestPresentPhaseIdx(); }
/*!
* \brief Returns true iff a phase is present for a given phase
* presence.
*
* \param phaseIdx The index of the phase which's presence is
* queried.
* \param phasePresence The bit-map of present phases.
*/
static bool phaseIsPresent(unsigned phaseIdx, short phasePresence)
{ return phasePresence& (1 << phaseIdx); }
/*!
* \brief Returns true iff a phase is present for the current
* phase presence.
*
* \copydoc Doxygen::phaseIdxParam
*/
bool phaseIsPresent(unsigned phaseIdx) const
{ return phasePresence_& (1 << phaseIdx); }
/*!
* \brief Returns the phase with the lowest index that is present.
*/
unsigned lowestPresentPhaseIdx() const
{ return static_cast<unsigned>(ffs(phasePresence_) - 1); }
/*!
* \brief Assignment operator from an other primary variables object
*/
ThisType& operator=(const Implementation& value)
{
ParentType::operator=(value);
phasePresence_ = value.phasePresence_;
return *this;
}
/*!
* \brief Assignment operator from a scalar value
*/
ThisType& operator=(Scalar value)
{
ParentType::operator=(value);
phasePresence_ = 0;
return *this;
}
/*!
* \brief Returns an explcitly stored saturation for a given phase.
*
* (or 0 if the saturation is not explicitly stored.)
*
* \copydoc Doxygen::phaseIdxParam
*/
Evaluation explicitSaturationValue(unsigned phaseIdx, unsigned timeIdx) const
{
if (!phaseIsPresent(phaseIdx) || phaseIdx == lowestPresentPhaseIdx())
// non-present phases have saturation 0
return 0.0;
unsigned varIdx = switch0Idx + phaseIdx - 1;
if (std::is_same<Evaluation, Scalar>::value)
return (*this)[varIdx]; // finite differences
else {
// automatic differentiation
if (timeIdx != 0)
Toolbox::createConstant((*this)[varIdx]);
return Toolbox::createVariable((*this)[varIdx], varIdx);
}
}
/*!
* \copydoc ImmisciblePrimaryVariables::assignNaive
*/
template <class FluidState>
void assignNaive(const FluidState& fluidState)
{
typedef Opm::MathToolbox<typename FluidState::Scalar> FsToolbox;
// assign the phase temperatures. this is out-sourced to
// the energy module
EnergyModule::setPriVarTemperatures(*this, fluidState);
// set the pressure of the first phase
(*this)[pressure0Idx] = FsToolbox::value(fluidState.pressure(/*phaseIdx=*/0));
Opm::Valgrind::CheckDefined((*this)[pressure0Idx]);
// determine the phase presence.
phasePresence_ = 0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// use a NCP condition to determine if the phase is
// present or not
Scalar a = 1;
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
a -= FsToolbox::value(fluidState.moleFraction(phaseIdx, compIdx));
}
Scalar b = FsToolbox::value(fluidState.saturation(phaseIdx));
if (b > a)
phasePresence_ |= (1 << phaseIdx);
}
// some phase must be present
if (phasePresence_ == 0)
throw Opm::NumericalIssue("Phase state was 0, i.e., no fluid is present");
// set the primary variables which correspond to mole
// fractions of the present phase which has the lowest index.
unsigned lowestPhaseIdx = lowestPresentPhaseIdx();
for (unsigned switchIdx = 0; switchIdx < numPhases - 1; ++switchIdx) {
unsigned phaseIdx = switchIdx;
unsigned compIdx = switchIdx + 1;
if (switchIdx >= lowestPhaseIdx)
++phaseIdx;
if (phaseIsPresent(phaseIdx)) {
(*this)[switch0Idx + switchIdx] = FsToolbox::value(fluidState.saturation(phaseIdx));
Opm::Valgrind::CheckDefined((*this)[switch0Idx + switchIdx]);
}
else {
(*this)[switch0Idx + switchIdx] =
FsToolbox::value(fluidState.moleFraction(lowestPhaseIdx, compIdx));
Opm::Valgrind::CheckDefined((*this)[switch0Idx + switchIdx]);
}
}
// set the mole fractions in of the remaining components in
// the phase with the lowest index
for (unsigned compIdx = numPhases - 1; compIdx < numComponents - 1; ++compIdx) {
(*this)[switch0Idx + compIdx] =
FsToolbox::value(fluidState.moleFraction(lowestPhaseIdx, compIdx + 1));
Opm::Valgrind::CheckDefined((*this)[switch0Idx + compIdx]);
}
}
/*!
* \copydoc FlashPrimaryVariables::print
*/
void print(std::ostream& os = std::cout) const
{
os << "(p_" << FluidSystem::phaseName(0) << " = "
<< this->operator[](pressure0Idx);
unsigned lowestPhaseIdx = lowestPresentPhaseIdx();
for (unsigned switchIdx = 0; switchIdx < numPhases - 1; ++switchIdx) {
unsigned phaseIdx = switchIdx;
unsigned compIdx = switchIdx + 1;
if (phaseIdx >= lowestPhaseIdx)
++phaseIdx; // skip the saturation of the present
// phase with the lowest index
if (phaseIsPresent(phaseIdx)) {
os << ", S_" << FluidSystem::phaseName(phaseIdx) << " = "
<< (*this)[switch0Idx + switchIdx];
}
else {
os << ", x_" << FluidSystem::phaseName(lowestPhaseIdx) << "^"
<< FluidSystem::componentName(compIdx) << " = "
<< (*this)[switch0Idx + switchIdx];
}
}
for (unsigned compIdx = numPhases - 1; compIdx < numComponents - 1;
++compIdx) {
os << ", x_" << FluidSystem::phaseName(lowestPhaseIdx) << "^"
<< FluidSystem::componentName(compIdx + 1) << " = "
<< (*this)[switch0Idx + compIdx];
}
os << ")";
os << ", phase presence: " << static_cast<int>(phasePresence_) << std::flush;
}
private:
short phasePresence_;
};
} // namespace Opm
#endif

View File

@ -0,0 +1,59 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \ingroup PvsModel
*
* \brief Declares the properties required for the compositional
* multi-phase primary variable switching model.
*/
#ifndef EWOMS_PVS_PROPERTIES_HH
#define EWOMS_PVS_PROPERTIES_HH
#include <opm/models/common/multiphasebaseproperties.hh>
#include <opm/models/common/diffusionmodule.hh>
#include <opm/models/common/energymodule.hh>
#include <opm/models/io/vtkcompositionmodule.hh>
#include <opm/models/io/vtkphasepresencemodule.hh>
#include <opm/models/io/vtkdiffusionmodule.hh>
#include <opm/models/io/vtkenergymodule.hh>
BEGIN_PROPERTIES
//! Specifies whether energy is considered as a conservation quantity or not
NEW_PROP_TAG(EnableEnergy);
//! Enable diffusive fluxes?
NEW_PROP_TAG(EnableDiffusion);
//! The verbosity of the model (0 -> do not print anything, 2 -> spam stdout a lot)
NEW_PROP_TAG(PvsVerbosity);
//! The basis value for the weight of the pressure primary variable
NEW_PROP_TAG(PvsPressureBaseWeight);
//! The basis value for the weight of the saturation primary variables
NEW_PROP_TAG(PvsSaturationsBaseWeight);
//! The basis value for the weight of the mole fraction primary variables
NEW_PROP_TAG(PvsMoleFractionsBaseWeight);
END_PROPERTIES
#endif

View File

@ -0,0 +1,148 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::PvsRateVector
*/
#ifndef EWOMS_PVS_RATE_VECTOR_HH
#define EWOMS_PVS_RATE_VECTOR_HH
#include "pvsindices.hh"
#include <opm/models/common/energymodule.hh>
#include <opm/material/constraintsolvers/NcpFlash.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/common/fvector.hh>
namespace Opm {
/*!
* \ingroup PvsModel
*
* \brief Implements a vector representing molar, mass or volumetric rates.
*
* This class is basically a Dune::FieldVector which can be set using either mass, molar
* or volumetric rates.
*/
template <class TypeTag>
class PvsRateVector
: public Dune::FieldVector<typename GET_PROP_TYPE(TypeTag, Evaluation),
GET_PROP_VALUE(TypeTag, NumEq)>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) };
typedef Dune::FieldVector<Evaluation, numEq> ParentType;
typedef Opm::EnergyModule<TypeTag, enableEnergy> EnergyModule;
public:
PvsRateVector() : ParentType()
{ Opm::Valgrind::SetUndefined(*this); }
/*!
* \copydoc ImmiscibleRateVector::ImmiscibleRateVector(Scalar)
*/
PvsRateVector(const Evaluation& value)
: ParentType(value)
{}
/*!
* \copydoc ImmiscibleRateVector::ImmiscibleRateVector(const ImmiscibleRateVector&)
*/
PvsRateVector(const PvsRateVector& value) : ParentType(value)
{}
/*!
* \copydoc ImmiscibleRateVector::setMassRate
*/
void setMassRate(const ParentType& value)
{
// convert to molar rates
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
(*this)[conti0EqIdx + compIdx] = value[conti0EqIdx + compIdx];
(*this)[conti0EqIdx + compIdx] /= FluidSystem::molarMass(compIdx);
}
}
/*!
* \copydoc ImmiscibleRateVector::setMolarRate
*/
void setMolarRate(const ParentType& value)
{ ParentType::operator=(value); }
/*!
* \copydoc ImmiscibleRateVector::setEnthalpyRate
*/
template <class RhsEval>
void setEnthalpyRate(const RhsEval& rate)
{ EnergyModule::setEnthalpyRate(*this, rate); }
/*!
* \copydoc ImmiscibleRateVector::setVolumetricRate
*/
template <class FluidState, class RhsEval>
void setVolumetricRate(const FluidState& fluidState, unsigned phaseIdx, const RhsEval& volume)
{
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
(*this)[conti0EqIdx + compIdx] =
fluidState.density(phaseIdx, compIdx)
* fluidState.moleFraction(phaseIdx, compIdx)
* volume;
EnergyModule::setEnthalpyRate(*this, fluidState, phaseIdx, volume);
}
/*!
* \brief Assignment operator from a scalar or a function evaluation
*/
template <class RhsEval>
PvsRateVector& operator=(const RhsEval& value)
{
for (unsigned i=0; i < this->size(); ++i)
(*this)[i] = value;
return *this;
}
/*!
* \brief Assignment operator from another rate vector
*/
PvsRateVector& operator=(const PvsRateVector& other)
{
for (unsigned i=0; i < this->size(); ++i)
(*this)[i] = other[i];
return *this;
}
};
} // namespace Opm
#endif