adapted decoupled tutorial to the new material system

This commit is contained in:
Bernd Flemisch 2010-05-25 13:27:16 +00:00 committed by Andreas Lauser
parent 4324b50f0f
commit f669136297
5 changed files with 398 additions and 174 deletions

View File

@ -1,6 +1,8 @@
// $Id$
/*****************************************************************************
* Copyright (C) 2008-2009 by Markus Wolff *
* Copyright (C) 20010 by Markus Wolff *
* Copyright (C) 2007-2008 by Bernd Flemisch *
* Copyright (C) 2008-2009 by Andreas Lauser *
* Institute of Hydraulic Engineering *
* University of Stuttgart, Germany *
* email: <givenname>.<name>@iws.uni-stuttgart.de *
@ -14,104 +16,98 @@
* This program is distributed WITHOUT ANY WARRANTY. *
*****************************************************************************/
#include "config.h"
#include <iostream>
#include <iomanip>
#include <dune/grid/sgrid.hh> /*@\label{tutorial-decoupled:include-begin}@*/
#include <dune/grid/io/file/vtk/vtkwriter.hh>
#include <dune/istl/io.hh>
#include <dune/common/timer.hh>
#include "dumux/fractionalflow/variableclass2p.hh"
#include "dumux/fractionalflow/define2pmodel.hh"
#include "dumux/material/fluids/water.hh"
#include "dumux/material/fluids/lowviscosityoil.hh"
#include "tutorial_soilproperties_decoupled.hh"
#include "dumux/material/twophaserelations.hh"
#include "tutorialproblem_decoupled.hh"
#include "dumux/diffusion/fv/fvvelocity2p.hh"
#include "dumux/transport/fv/fvsaturation2p.hh"
#include "dumux/fractionalflow/impes/impes.hh"
#include "dumux/timedisc/timeloop.hh" /*@\label{tutorial-decoupled:include-end}@*/
#include "tutorialproblem_decoupled.hh"
#include <dune/grid/common/gridinfo.hh>
#include <dune/common/exceptions.hh>
#include <dune/common/mpihelper.hh>
#include <iostream>
#include <boost/format.hpp>
////////////////////////
// the main function
////////////////////////
void usage(const char *progname)
{
std::cout << boost::format("usage: %s [--restart restartTime] tEnd\n")%progname;
exit(1);
}
int main(int argc, char** argv)
{
try{
// define the problem dimensions
const int dim=2; /*@\label{tutorial-decoupled:dim}@*/
try {
typedef TTAG(TutorialProblemDecoupled) TypeTag;
typedef GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
typedef GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
typedef GET_PROP_TYPE(TypeTag, PTAG(Problem)) Problem;
typedef Dune::FieldVector<Scalar, Grid::dimensionworld> GlobalPosition;
// create a grid object
typedef double Scalar; /*@\label{tutorial-decoupled:grid-begin}@*/
typedef Dune::SGrid<dim,dim> Grid;
typedef Grid::LevelGridView GridView;
typedef Dune::FieldVector<Grid::ctype,dim> FieldVector;
Dune::FieldVector<int,dim> N(10); N[0] = 30;
FieldVector L(0);
FieldVector H(60); H[0] = 300;
static const int dim = Grid::dimension;
// initialize MPI, finalize is done automatically on exit
Dune::MPIHelper::instance(argc, argv);
////////////////////////////////////////////////////////////
// parse the command line arguments
////////////////////////////////////////////////////////////
if (argc < 2)
usage(argv[0]);
// deal with the restart stuff
int argPos = 1;
bool restart = false;
double restartTime = 0;
if (std::string("--restart") == argv[argPos]) {
restart = true;
++argPos;
std::istringstream(argv[argPos++]) >> restartTime;
}
if (argc - argPos != 1) {
usage(argv[0]);
}
// read the initial time step and the end time
double tEnd, dt;
std::istringstream(argv[argPos++]) >> tEnd;
dt = tEnd;
////////////////////////////////////////////////////////////
// create the grid
////////////////////////////////////////////////////////////
Dune::FieldVector<int,dim> N(1); N[0] = 100;
Dune::FieldVector<double ,dim> L(0);
Dune::FieldVector<double,dim> H(60); H[0] = 300;
Grid grid(N,L,H);
GridView gridView(grid.levelView(0));/*@\label{tutorial-decoupled:grid-end}@*/
////////////////////////////////////////////////////////////
// instantiate and run the concrete problem
////////////////////////////////////////////////////////////
// define fluid and solid properties and constitutive relationships
Dumux::Water wettingfluid; /*@\label{tutorial-decoupled:water}@*/
Dumux::LowViscosityOil nonwettingfluid; /*@\label{tutorial-decoupled:oil}@*/
Dumux::TutorialSoil<Grid, Scalar> soil; /*@\label{tutorial-decoupled:soil}@*/
Dumux::TwoPhaseRelations<Grid, Scalar> materialLaw(soil, wettingfluid, nonwettingfluid);/*@\label{tutorial-decoupled:twophaserelations}@*/
Problem problem(grid.leafView(), L, H);
// create object containing the variables
typedef Dumux::VariableClass<GridView, Scalar> VariableClass;
VariableClass variables(gridView);
// load restart file if necessarry
if (restart)
problem.deserialize(restartTime);
//choose kind of two-phase model. Default: pw, Sw, vtotal
struct Dumux::DefineModel modelDef;
// modelDef.pressureType = modelDef.pressureW;
// modelDef.saturationType = modelDef.saturationW;
// modelDef.velocityType = modelDef.velocityTotal;
// create object including the problem definition
typedef Dumux::TutorialProblemDecoupled<GridView, Scalar, VariableClass> Problem;
Problem problem(variables, wettingfluid, nonwettingfluid, soil, materialLaw,L, H); /*@\label{tutorial-decoupled:problem}@*/
// create object including the discretisation of the pressure equation
typedef Dumux::FVVelocity2P<GridView, Scalar, VariableClass, Problem> Diffusion;
Diffusion diffusion(gridView, problem, modelDef); /*@\label{tutorial-decoupled:diffusion}@*/
// create object including the space discretisation of the saturation equation
typedef Dumux::FVSaturation2P<GridView, Scalar, VariableClass, Problem> Transport;
Transport transport(gridView, problem, modelDef); /*@\label{tutorial-decoupled:transport}@*/
// some parameters used in the IMPES-object
int iterFlag = 0;
int nIter = 2;
double maxDefect = 1e-5;
// create object including the IMPES (IMplicit Pressure Explicit Saturation) algorithm
typedef Dune::IMPES<GridView, Diffusion, Transport, VariableClass> IMPES;
IMPES impes(diffusion, transport, iterFlag, nIter, maxDefect); /*@\label{tutorial-decoupled:impes}@*/
// some parameters needed for the TimeLoop-object
double tStart = 0; // start simulation at t = tStart
double tEnd = 4e7; // stop simulation at t = tEnd
const char* fileName = "tutorial_decoupled"; // name of the output files
int modulo = 1; // define time step interval in which output files are generated
double cFLFactor = 0.9; // security factor for the Courant-Friedrichs-Lewy-Criterion
// create TimeLoop-object
Dumux::TimeLoop<GridView, IMPES> timeloop(gridView, tStart, tEnd, fileName, modulo, cFLFactor); /*@\label{tutorial-decoupled:timeloop}@*/
Dune::Timer timer;
timer.reset();
// start simulation
timeloop.execute(impes); /*@\label{tutorial-decoupled:execute}@*/
// run the simulation
if (!problem.simulate(dt, tEnd))
return 2;
return 0;
}
catch (Dune::Exception &e){
catch (Dune::Exception &e) {
std::cerr << "Dune reported error: " << e << std::endl;
return 1;
}
catch (...){
std::cerr << "Unknown exception thrown!" << std::endl;
return 1;
catch (...) {
std::cerr << "Unknown exception thrown!\n";
throw;
}
return 3;
}

View File

@ -77,7 +77,7 @@ SET_PROP(TutorialProblemCoupled, FluidSystem) /*@\label{tutorial-coupled:set-f
// Set the spatial parameters
SET_PROP(TutorialProblemCoupled, SpatialParameters) /*@\label{tutorial-coupled:set-spatialparameters}@*/
{
typedef Dumux::TutorialSpatialParameters<TypeTag> type;
typedef Dumux::TutorialSpatialParametersCoupled<TypeTag> type;
};
// Disable gravity

View File

@ -1,130 +1,260 @@
// $Id$
/*****************************************************************************
* Copyright (C) 2008-2009 by Markus Wolff *
* Institute of Hydraulic Engineering *
* University of Stuttgart, Germany *
* email: <givenname>.<name>@iws.uni-stuttgart.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version, as long as this copyright notice *
* is included in its original form. *
* *
* This program is distributed WITHOUT ANY WARRANTY. *
*****************************************************************************/
#ifndef TUTORIALPROBLEM_DECOUPLED_HH
#define TUTORIALPROBLEM_DECOUPLED_HH
* Copyright (C) 2007-2008 by Klaus Mosthaf *
* Copyright (C) 2007-2008 by Bernd Flemisch *
* Copyright (C) 2008-2009 by Andreas Lauser *
* Institute of Hydraulic Engineering *
* University of Stuttgart, Germany *
* email: <givenname>.<name>@iws.uni-stuttgart.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version, as long as this copyright notice *
* is included in its original form. *
* *
* This program is distributed WITHOUT ANY WARRANTY. *
*****************************************************************************/
#ifndef DUMUX_TUTORIALPROBLEM_DECOUPLED_HH
#define DUMUX_TUTORIALPROBLEM_DECOUPLED_HH
#include "dumux/fractionalflow/fractionalflowproblem.hh"
#if HAVE_UG
#include <dune/grid/uggrid.hh>
#endif
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/sgrid.hh>
#include <dumux/new_material/components/h2o.hh>
#include <dumux/new_material/components/oil.hh>
#include <dumux/new_decoupled/2p/impes/impesproblem2p.hh>
#include <dumux/new_decoupled/2p/diffusion/fv/fvvelocity2p.hh>
#include <dumux/new_decoupled/2p/transport/fv/fvsaturation2p.hh>
#include <dumux/new_decoupled/2p/transport/fv/capillarydiffusion.hh>
#include <dumux/new_decoupled/2p/transport/fv/gravitypart.hh>
#include "tutorialspatialparameters_decoupled.hh"
namespace Dumux
{
/** \todo Please doc me! */
template<class TypeTag>
class TutorialProblemDecoupled;
template<class GridView, class Scalar, class VariableClass> class TutorialProblemDecoupled /*@\label{tutorial-decoupled:tutorialproblem}@*/
: public FractionalFlowProblem<GridView, Scalar, VariableClass>
//////////
// Specify the properties for the lens problem
//////////
namespace Properties
{
enum
{dim=GridView::dimension, dimWorld = GridView::dimensionworld};
enum{wetting = 0, nonwetting = 1};
typedef typename GridView::Grid Grid;
typedef typename GridView::Intersection Intersection;
typedef typename GridView::Traits::template Codim<0>::Entity Element;
typedef Dune::FieldVector<Scalar,dim> LocalPosition;
typedef Dune::FieldVector<Scalar,dimWorld> GlobalPosition;
NEW_TYPE_TAG(TutorialProblemDecoupled, INHERITS_FROM(DecoupledTwoP, Transport));
// Set the grid type
SET_PROP(TutorialProblemDecoupled, Grid)
{
// typedef Dune::YaspGrid<2> type;
typedef Dune::SGrid<2, 2> type;
};
// Set the problem property
SET_PROP(TutorialProblemDecoupled, Problem)
{
public:
typedef Dumux::TutorialProblemDecoupled<TTAG(TutorialProblemDecoupled)> type;
};
// Set the model properties
SET_PROP(TutorialProblemDecoupled, SaturationModel)
{
typedef Dumux::FVSaturation2P<TTAG(TutorialProblemDecoupled)> type;
};
SET_PROP(TutorialProblemDecoupled, PressureModel)
{
typedef Dumux::FVVelocity2P<TTAG(TutorialProblemDecoupled)> type;
};
SET_INT_PROP(TutorialProblemDecoupled, VelocityFormulation,
GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices))::velocityW);
//SET_INT_PROP(TutorialProblemDecoupled, PressureFormulation,
// GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices))::pressureGlobal);
// Set the wetting phase
SET_PROP(TutorialProblemDecoupled, WettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public:
typedef Dumux::LiquidPhase<Scalar, Dumux::H2O<Scalar> > type;
};
// Set the non-wetting phase
SET_PROP(TutorialProblemDecoupled, NonwettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public:
typedef Dumux::LiquidPhase<Scalar, Dumux::Oil<Scalar> > type;
};
// Set the soil properties
SET_PROP(TutorialProblemDecoupled, SpatialParameters)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public:
TutorialProblemDecoupled(VariableClass& variables, Fluid& wettingphase, Fluid& nonwettingphase, Matrix2p<Grid, Scalar>& soil,
TwoPhaseRelations<Grid, Scalar>& materialLaw = *(new TwoPhaseRelations<Grid,Scalar>),
const Dune::FieldVector<Scalar,dim> Left = 0, const Dune::FieldVector<Scalar,dim> Right = 0)
: FractionalFlowProblem<GridView, Scalar, VariableClass>(variables, wettingphase, nonwettingphase, soil, materialLaw),
Left_(Left[0]), Right_(Right[0]), eps_(1e-8)
{}
typedef Dumux::TutorialSpatialParametersDecoupled<TypeTag> type;
};
// function returning source/sink terms for the pressure equation
// depending on the position within the domain
virtual std::vector<Scalar> source(const GlobalPosition& globalPos,
const Element& e, /*@\label{tutorial-decoupled:qpress}@*/
const LocalPosition& localPos)
SET_TYPE_PROP(TutorialProblemDecoupled, DiffusivePart, Dumux::CapillaryDiffusion<TypeTag>);
// Disable gravity
SET_BOOL_PROP(TutorialProblemDecoupled, EnableGravity, false);
SET_SCALAR_PROP(TutorialProblemDecoupled, CFLFactor, 0.3);
}
/*!
* \ingroup DecoupledProblems
*/
template<class TypeTag = TTAG(TutorialProblemDecoupled)>
class TutorialProblemDecoupled: public IMPESProblem2P<TypeTag, TutorialProblemDecoupled<TypeTag> >
{
typedef TutorialProblemDecoupled<TypeTag> ThisType;
typedef IMPESProblem2P<TypeTag, ThisType> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices)) Indices;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FluidSystem)) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FluidState)) FluidState;
enum
{
dim = GridView::dimension, dimWorld = GridView::dimensionworld
};
enum
{
wPhaseIdx = Indices::wPhaseIdx, nPhaseIdx = Indices::nPhaseIdx
};
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
typedef typename GridView::Traits::template Codim<0>::Entity Element;
typedef typename GridView::Intersection Intersection;
typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<Scalar, dim> LocalPosition;
public:
TutorialProblemDecoupled(const GridView &gridView, const GlobalPosition lowerLeft = 0, const GlobalPosition upperRight = 0) :
ParentType(gridView), lowerLeft_(lowerLeft), upperRight_(upperRight)
{
return std::vector<Scalar>(2,0.0);
}
using FractionalFlowProblem<GridView, Scalar, VariableClass>::bctypePress;
/*!
* \name Problem parameters
*/
// \{
// function returning the boundary condition type for solution
// of the pressure equation depending on the position within the domain
typename BoundaryConditions::Flags bctypePress(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:bctypepress}@*/
/*!
* \brief The problem name.
*
* This is used as a prefix for files generated by the simulation.
*/
const char *name() const
{
if (globalPos[0] < eps_)
return "tutorial_decoupled";
}
bool shouldWriteRestartFile() const
{
return false;
}
/*!
* \brief Returns the temperature within the domain.
*
* This problem assumes a temperature of 10 degrees Celsius.
*/
Scalar temperature(const GlobalPosition& globalPos, const Element& element) const
{
return 273.15 + 10; // -> 10°C
}
// \}
Scalar referencePressure(const GlobalPosition& globalPos, const Element& element) const
{
return 1e5; // -> 10°C
}
std::vector<Scalar> source(const GlobalPosition& globalPos, const Element& element)
{
return BoundaryConditions::dirichlet;
return std::vector<Scalar>(2, 0.0);
}
typename BoundaryConditions::Flags bctypePress(const GlobalPosition& globalPos, const Intersection& intersection) const
{
if ((globalPos[0] < lowerLeft_[0] + eps_))
return BoundaryConditions::dirichlet;
// all other boundaries
return BoundaryConditions::neumann;
}
// function returning the boundary condition type for solution
// of the saturation equation depending on the position within the domain
BoundaryConditions::Flags bctypeSat (const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:bctypesat}@*/
BoundaryConditions::Flags bctypeSat(const GlobalPosition& globalPos, const Intersection& intersection) const
{
if (globalPos[0]> (Right_ - eps_) || globalPos[0] < eps_)
{
if (globalPos[0] < lowerLeft_[0] + eps_)
return Dumux::BoundaryConditions::dirichlet;
}
else
return Dumux::BoundaryConditions::neumann;
}
Scalar dirichletPress(const GlobalPosition& globalPos, const Intersection& intersection) const
{
if (globalPos[0] < lowerLeft_[0] + eps_)
return 2e5;
// all other boundaries
return Dumux::BoundaryConditions::neumann;
return 0;
}
// function returning the Dirichlet boundary condition for the solution
// of the pressure equation depending on the position within the domain
Scalar dirichletPress(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:gpress}@*/
Scalar dirichletSat(const GlobalPosition& globalPos, const Intersection& intersection) const
{
return 1e6;
if (globalPos[0] < lowerLeft_[0] + eps_)
return 1;
// all other boundaries
return 0;
}
// function returning the Dirichlet boundary condition for the solution
// of the saturation equation depending on the position within the domain
Scalar dirichletSat(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:gsat}@*/
std::vector<Scalar> neumannPress(const GlobalPosition& globalPos, const Intersection& intersection) const
{
if (globalPos[0] < eps_)
std::vector<Scalar> neumannFlux(2,0.0);
if (globalPos[0] > upperRight_[0] - eps_)
{
return 1.0;
neumannFlux[nPhaseIdx] = 3e-4;
}
// all other boundaries
return 0.0;
}
using FractionalFlowProblem<GridView, Scalar, VariableClass>::neumannPress;
// function returning the Neumann boundary condition for the solution
// of the pressure equation depending on the position within the domain
std::vector<Scalar> neumannPress(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:jpress}@*/
{
std::vector<Scalar> neumannFlux(2, 0.0);
if (globalPos[0]> Right_ - eps_)
{
neumannFlux[nonwetting] = 3e-4;
}
// all other boundaries
return neumannFlux;
}
// function returning the initial saturation
// depending on the position within the domain
Scalar initSat (const GlobalPosition& globalPos, const Element& e, /*@\label{tutorial-decoupled:initsat}@*/
const Dune::FieldVector<Scalar,dim>& xi) const
Scalar neumannSat(const GlobalPosition& globalPos, const Intersection& intersection, Scalar factor) const
{
return 0.0;
return 0;
}
Scalar initSat(const GlobalPosition& globalPos, const Element& element) const
{
return 0;
}
private:
Scalar Left_;
Scalar Right_;
GlobalPosition lowerLeft_;
GlobalPosition upperRight_;
Scalar eps_;
static const Scalar eps_ = 1e-6;
};
} // end namespace
} //end namespace
#endif

View File

@ -27,7 +27,7 @@ namespace Dumux
{
template<class TypeTag>
class TutorialSpatialParameters: public BoxSpatialParameters<TypeTag> /*@\label{tutorial-coupled:tutorialSpatialParameters}@*/
class TutorialSpatialParametersCoupled: public BoxSpatialParameters<TypeTag> /*@\label{tutorial-coupled:tutorialSpatialParameters}@*/
{
// Get informations for current implementation via property system
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
@ -81,7 +81,7 @@ public:
}
// constructor
TutorialSpatialParameters(const GridView& gridView) :
TutorialSpatialParametersCoupled(const GridView& gridView) :
BoxSpatialParameters<TypeTag>(gridView), K_(0)
{
for (int i = 0; i < dim; i++)

View File

@ -0,0 +1,98 @@
// $Id: test_2p_spatialparamsinjection.hh 3456 2010-04-09 12:11:51Z mwolff $
/*****************************************************************************
* Copyright (C) 2008-2009 by Markus Wolff *
* Institute of Hydraulic Engineering *
* University of Stuttgart, Germany *
* email: <givenname>.<name>@iws.uni-stuttgart.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version, as long as this copyright notice *
* is included in its original form. *
* *
* This program is distributed WITHOUT ANY WARRANTY. *
*****************************************************************************/
#ifndef TUTORIALSPATIALPARAMETERS_DECOUPLED_HH
#define TUTORIALSPATIALPARAMETERS_DECOUPLED_HH
//#include <dumux/new_material/fluidmatrixinteractions/2p/linearmaterial.hh>
#include <dumux/new_material/fluidmatrixinteractions/2p/regularizedbrookscorey.hh>
#include <dumux/new_material/fluidmatrixinteractions/2p/efftoabslaw.hh>
namespace Dumux
{
/** \todo Please doc me! */
template<class TypeTag>
class TutorialSpatialParametersDecoupled
{
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
typedef typename Grid::ctype CoordScalar;
enum
{dim=Grid::dimension, dimWorld=Grid::dimensionworld, numEq=1};
typedef typename Grid::Traits::template Codim<0>::Entity Element;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<CoordScalar, dim> LocalPosition;
typedef Dune::FieldMatrix<Scalar,dim,dim> FieldMatrix;
typedef RegularizedBrooksCorey<Scalar> RawMaterialLaw;
// typedef LinearMaterial<Scalar> RawMaterialLaw;
public:
typedef EffToAbsLaw<RawMaterialLaw> MaterialLaw;
typedef typename MaterialLaw::Params MaterialLawParams;
void update (Scalar saturationW, const Element& element)
{
}
const FieldMatrix& intrinsicPermeability (const GlobalPosition& globalPos, const Element& element) const
{
return K_;
}
double porosity(const GlobalPosition& globalPos, const Element& element) const
{
return 0.2;
}
// return the brooks-corey context depending on the position
const MaterialLawParams& materialLawParams(const GlobalPosition& globalPos, const Element &element) const
{
return materialLawParams_;
}
TutorialSpatialParametersDecoupled(const GridView& gridView)
: K_(0)
{
for (int i = 0; i < dim; i++)
K_[i][i] = 1e-7;
// residual saturations
materialLawParams_.setSwr(0);
materialLawParams_.setSnr(0);
// parameters for the Brooks-Corey Law
// entry pressures
materialLawParams_.setPe(10000);
// Brooks-Corey shape parameters
materialLawParams_.setAlpha(2);
}
private:
MaterialLawParams materialLawParams_;
FieldMatrix K_;
};
} // end namespace
#endif