mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Work in progress: degree 2 quadratures.
Also, changed quadrature degrees used to get exact quadratures for all terms.
This commit is contained in:
parent
cf38936c99
commit
f6b2306dab
@ -29,6 +29,10 @@ namespace Opm
|
||||
{
|
||||
|
||||
|
||||
// --------------- Helpers for TransportModelTracerTofDiscGal ---------------
|
||||
|
||||
|
||||
|
||||
/// A class providing discontinuous Galerkin basis functions.
|
||||
struct DGBasis
|
||||
{
|
||||
@ -103,8 +107,83 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
static void cross(const double* a, const double* b, double* res)
|
||||
{
|
||||
res[0] = a[1]*b[2] - a[2]*b[1];
|
||||
res[1] = a[2]*b[0] - a[0]*b[2];
|
||||
res[2] = a[0]*b[1] - a[1]*b[0];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
static double triangleArea3d(const double* p0,
|
||||
const double* p1,
|
||||
const double* p2)
|
||||
{
|
||||
double a[3] = { p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2] };
|
||||
double b[3] = { p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2] };
|
||||
double cr[3];
|
||||
cross(a, b, cr);
|
||||
return 0.5*std::sqrt(cr[0]*cr[0] + cr[1]*cr[1] + cr[2]*cr[2]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Calculates the determinant of a 3 x 3 matrix, represented as
|
||||
/// three three-dimensional arrays.
|
||||
static double determinantOf(const double* a0,
|
||||
const double* a1,
|
||||
const double* a2)
|
||||
{
|
||||
return
|
||||
a0[0] * (a1[1] * a2[2] - a2[1] * a1[2]) -
|
||||
a0[1] * (a1[0] * a2[2] - a2[0] * a1[2]) +
|
||||
a0[2] * (a1[0] * a2[1] - a2[0] * a1[1]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Computes the volume of a tetrahedron consisting of 4 vertices
|
||||
/// with 3-dimensional coordinates
|
||||
static double tetVolume(const double* p0,
|
||||
const double* p1,
|
||||
const double* p2,
|
||||
const double* p3)
|
||||
{
|
||||
double a[3] = { p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2] };
|
||||
double b[3] = { p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2] };
|
||||
double c[3] = { p3[0] - p0[0], p3[1] - p0[1], p3[2] - p0[2] };
|
||||
return std::fabs(determinantOf(a, b, c) / 6.0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// A class providing numerical quadrature for cells.
|
||||
/// In general: \int_{cell} g(x) dx = \sum_{i=0}^{n-1} w_i g(x_i).
|
||||
/// Note that this class does multiply weights by cell volume,
|
||||
/// so weights always sum to cell volume.
|
||||
/// Degree 1 method:
|
||||
/// Midpoint (centroid) method.
|
||||
/// n = 1, w_0 = cell volume, x_0 = cell centroid
|
||||
/// Degree 2 method:
|
||||
/// Based on subdivision of each cell face into triangles
|
||||
/// with the face centroid as a common vertex, and then
|
||||
/// subdividing the cell into tetrahedra with the cell
|
||||
/// centroid as a common vertex. Then apply the tetrahedron
|
||||
/// rule with the following 4 nodes (uniform weights):
|
||||
/// a = 0.138196601125010515179541316563436
|
||||
/// x_i has all barycentric coordinates = a, except for
|
||||
/// the i'th coordinate which is = 1 - 3a.
|
||||
/// This rule is from http://nines.cs.kuleuven.be/ecf,
|
||||
/// it is the second degree 2 4-point rule for tets,
|
||||
/// referenced to Stroud(1971).
|
||||
/// The tetrahedra are numbered T_{i,j}, and are given by the
|
||||
/// cell centroid C, the face centroid FC_i, and two nodes
|
||||
/// of face i: FN_{i,j}, FN_{i,j+1}.
|
||||
class CellQuadrature
|
||||
{
|
||||
public:
|
||||
@ -113,25 +192,93 @@ namespace Opm
|
||||
const int degree)
|
||||
: grid_(grid), cell_(cell), degree_(degree)
|
||||
{
|
||||
if (degree > 1) {
|
||||
THROW("Only quadrature degree up to 1 for now.");
|
||||
if (degree > 2) {
|
||||
THROW("CellQuadrature exact for polynomial degrees > 1 not implemented.");
|
||||
}
|
||||
if (degree == 2) {
|
||||
// Prepare subdivision.
|
||||
}
|
||||
}
|
||||
|
||||
int numQuadPts() const
|
||||
{
|
||||
return 1;
|
||||
if (degree_ < 2) {
|
||||
return 1;
|
||||
}
|
||||
// Degree 2 case.
|
||||
int sumnodes = 0;
|
||||
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
|
||||
const int face = grid_.cell_faces[hf];
|
||||
sumnodes += grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
|
||||
}
|
||||
return 4*sumnodes;
|
||||
}
|
||||
|
||||
void quadPtCoord(int /*index*/, double* coord) const
|
||||
void quadPtCoord(const int index, double* coord) const
|
||||
{
|
||||
const double* cc = grid_.cell_centroids + grid_.dimensions*cell_;
|
||||
std::copy(cc, cc + grid_.dimensions, coord);
|
||||
const int dim = grid_.dimensions;
|
||||
const double* cc = grid_.cell_centroids + dim*cell_;
|
||||
if (degree_ < 2) {
|
||||
std::copy(cc, cc + dim, coord);
|
||||
return;
|
||||
}
|
||||
// Degree 2 case.
|
||||
int tetindex = index / 4;
|
||||
const int subindex = index % 4;
|
||||
const double* nc = grid_.node_coordinates;
|
||||
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
|
||||
const int face = grid_.cell_faces[hf];
|
||||
const int nfn = grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
|
||||
if (nfn <= tetindex) {
|
||||
// Our tet is not associated with this face.
|
||||
tetindex -= nfn;
|
||||
continue;
|
||||
}
|
||||
const double* fc = grid_.face_centroids + dim*face;
|
||||
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face];
|
||||
const int node0 = fnodes[tetindex];
|
||||
const int node1 = fnodes[(tetindex + 1) % nfn];
|
||||
const double* n0c = nc + dim*node0;
|
||||
const double* n1c = nc + dim*node1;
|
||||
const double a = 0.138196601125010515179541316563436;
|
||||
// Barycentric coordinates of our point in the tet.
|
||||
double baryc[4] = { a, a, a, a };
|
||||
baryc[subindex] = 1.0 - 3.0*a;
|
||||
for (int dd = 0; dd < dim; ++dd) {
|
||||
coord[dd] = baryc[0]*cc[dd] + baryc[1]*fc[dd] + baryc[2]*n0c[dd] + baryc[3]*n1c[dd];
|
||||
}
|
||||
return;
|
||||
}
|
||||
THROW("Should never reach this point.");
|
||||
}
|
||||
|
||||
double quadPtWeight(int /*index*/) const
|
||||
double quadPtWeight(const int index) const
|
||||
{
|
||||
return 1.0;
|
||||
if (degree_ < 2) {
|
||||
return grid_.cell_volumes[cell_];
|
||||
}
|
||||
// Degree 2 case.
|
||||
const int dim = grid_.dimensions;
|
||||
const double* cc = grid_.cell_centroids + dim*cell_;
|
||||
int tetindex = index / 4;
|
||||
const double* nc = grid_.node_coordinates;
|
||||
for (int hf = grid_.cell_facepos[cell_]; hf < grid_.cell_facepos[cell_ + 1]; ++hf) {
|
||||
const int face = grid_.cell_faces[hf];
|
||||
const int nfn = grid_.face_nodepos[face + 1] - grid_.face_nodepos[face];
|
||||
if (nfn <= tetindex) {
|
||||
// Our tet is not associated with this face.
|
||||
tetindex -= nfn;
|
||||
continue;
|
||||
}
|
||||
const double* fc = grid_.face_centroids + dim*face;
|
||||
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face];
|
||||
const int node0 = fnodes[tetindex];
|
||||
const int node1 = fnodes[(tetindex + 1) % nfn];
|
||||
const double* n0c = nc + dim*node0;
|
||||
const double* n1c = nc + dim*node1;
|
||||
return 0.25*tetVolume(cc, fc, n0c, n1c);
|
||||
}
|
||||
THROW("Should never reach this point.");
|
||||
}
|
||||
|
||||
private:
|
||||
@ -142,7 +289,28 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/// A class providing numerical quadrature for faces.
|
||||
/// In general: \int_{face} g(x) dx = \sum_{i=0}^{n-1} w_i g(x_i).
|
||||
/// Note that this class does multiply weights by face area,
|
||||
/// so weights always sum to face area.
|
||||
/// Degree 1 method:
|
||||
/// Midpoint (centroid) method.
|
||||
/// n = 1, w_0 = face area, x_0 = face centroid
|
||||
/// Degree 2 method:
|
||||
/// Based on subdivision of the face into triangles,
|
||||
/// with the centroid as a common vertex, and the triangle
|
||||
/// edge midpoint rule.
|
||||
/// Triangle i consists of the centroid C, nodes N_i and N_{i+1}.
|
||||
/// Its area is A_i.
|
||||
/// n = 2 * nn (nn = num nodes in face)
|
||||
/// For i = 0..(nn-1):
|
||||
/// w_i = 1/3 A_i.
|
||||
/// w_{nn+i} = 1/3 A_{i-1} + 1/3 A_i
|
||||
/// x_i = (N_i + N_{i+1})/2
|
||||
/// x_{nn+i} = (C + N_i)/2
|
||||
/// All N and A indices are interpreted cyclic, modulus nn.
|
||||
class FaceQuadrature
|
||||
{
|
||||
public:
|
||||
@ -151,25 +319,79 @@ namespace Opm
|
||||
const int degree)
|
||||
: grid_(grid), face_(face), degree_(degree)
|
||||
{
|
||||
if (degree > 1) {
|
||||
THROW("Only quadrature degree up to 1 for now.");
|
||||
if (grid_.dimensions != 3) {
|
||||
THROW("FaceQuadrature only implemented for 3D case.");
|
||||
}
|
||||
if (degree_ > 2) {
|
||||
THROW("FaceQuadrature exact for polynomial degrees > 2 not implemented.");
|
||||
}
|
||||
}
|
||||
|
||||
int numQuadPts() const
|
||||
{
|
||||
return 1;
|
||||
if (degree_ < 2) {
|
||||
return 1;
|
||||
}
|
||||
// Degree 2 case.
|
||||
return 2 * (grid_.face_nodepos[face_ + 1] - grid_.face_nodepos[face_]);
|
||||
}
|
||||
|
||||
void quadPtCoord(int /*index*/, double* coord) const
|
||||
void quadPtCoord(const int index, double* coord) const
|
||||
{
|
||||
const double* fc = grid_.face_centroids + grid_.dimensions*face_;
|
||||
std::copy(fc, fc + grid_.dimensions, coord);
|
||||
const int dim = grid_.dimensions;
|
||||
const double* fc = grid_.face_centroids + dim*face_;
|
||||
if (degree_ < 2) {
|
||||
std::copy(fc, fc + dim, coord);
|
||||
return;
|
||||
}
|
||||
// Degree 2 case.
|
||||
const int nn = grid_.face_nodepos[face_ + 1] - grid_.face_nodepos[face_];
|
||||
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face_];
|
||||
const double* nc = grid_.node_coordinates;
|
||||
if (index < nn) {
|
||||
// Boundary edge midpoint.
|
||||
const int node0 = fnodes[index];
|
||||
const int node1 = fnodes[(index + 1)%nn];
|
||||
for (int dd = 0; dd < dim; ++dd) {
|
||||
coord[dd] = 0.5*(nc[dim*node0 + dd] + nc[dim*node1 + dd]);
|
||||
}
|
||||
} else {
|
||||
// Interiour edge midpoint.
|
||||
// Recall that index is now in [nn, 2*nn).
|
||||
const int node = fnodes[index - nn];
|
||||
for (int dd = 0; dd < dim; ++dd) {
|
||||
coord[dd] = 0.5*(nc[dim*node + dd] + fc[dd]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double quadPtWeight(int /*index*/) const
|
||||
double quadPtWeight(const int index) const
|
||||
{
|
||||
return 1.0;
|
||||
if (degree_ < 2) {
|
||||
return grid_.face_areas[face_];
|
||||
}
|
||||
// Degree 2 case.
|
||||
const int dim = grid_.dimensions;
|
||||
const double* fc = grid_.face_centroids + dim*face_;
|
||||
const int nn = grid_.face_nodepos[face_ + 1] - grid_.face_nodepos[face_];
|
||||
const int* fnodes = grid_.face_nodes + grid_.face_nodepos[face_];
|
||||
const double* nc = grid_.node_coordinates;
|
||||
if (index < nn) {
|
||||
// Boundary edge midpoint.
|
||||
const int node0 = fnodes[index];
|
||||
const int node1 = fnodes[(index + 1)%nn];
|
||||
const double area = triangleArea3d(nc + dim*node1, nc + dim*node0, fc);
|
||||
return area / 3.0;
|
||||
} else {
|
||||
// Interiour edge midpoint.
|
||||
// Recall that index is now in [nn, 2*nn).
|
||||
const int node0 = fnodes[(index - 1) % nn];
|
||||
const int node1 = fnodes[index - nn];
|
||||
const int node2 = fnodes[(index + 1) % nn];
|
||||
const double area0 = triangleArea3d(nc + dim*node1, nc + dim*node0, fc);
|
||||
const double area1 = triangleArea3d(nc + dim*node2, nc + dim*node1, fc);
|
||||
return (area0 + area1) / 3.0;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
@ -179,6 +401,8 @@ namespace Opm
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
// Initial version: only a constant interpolation.
|
||||
static void interpolateVelocity(const UnstructuredGrid& grid,
|
||||
const int cell,
|
||||
@ -206,6 +430,9 @@ namespace Opm
|
||||
|
||||
|
||||
|
||||
// --------------- Methods of TransportModelTracerTofDiscGal ---------------
|
||||
|
||||
|
||||
|
||||
/// Construct solver.
|
||||
/// \param[in] grid A 2d or 3d grid.
|
||||
@ -307,9 +534,9 @@ namespace Opm
|
||||
// Do quadrature over the face to compute
|
||||
// \int_{\partial K} u_h^{ext} (v(x) \cdot n) b_j ds
|
||||
// (where u_h^{ext} is the upstream unknown (tof)).
|
||||
const double normal_velocity = flux / grid_.face_areas[face];
|
||||
FaceQuadrature quad(grid_, face, degree_);
|
||||
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
||||
// u^ext flux B (B = {b_j})
|
||||
quad.quadPtCoord(quad_pt, &coord_[0]);
|
||||
DGBasis::eval(grid_, cell, degree_, &coord_[0], &basis_[0]);
|
||||
DGBasis::eval(grid_, upstream_cell, degree_, &coord_[0], &basis_nb_[0]);
|
||||
@ -317,7 +544,7 @@ namespace Opm
|
||||
tof_coeff_ + num_basis*upstream_cell, 0.0);
|
||||
const double w = quad.quadPtWeight(quad_pt);
|
||||
for (int j = 0; j < num_basis; ++j) {
|
||||
rhs_[j] -= w * tof_upstream * flux * basis_[j];
|
||||
rhs_[j] -= w * tof_upstream * normal_velocity * basis_[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -325,8 +552,7 @@ namespace Opm
|
||||
// Compute cell jacobian contribution. We use Fortran ordering
|
||||
// for jac_, i.e. rows cycling fastest.
|
||||
{
|
||||
const double cvol = grid_.cell_volumes[cell];
|
||||
CellQuadrature quad(grid_, cell, degree_);
|
||||
CellQuadrature quad(grid_, cell, 2*degree_ - 1);
|
||||
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
||||
// b_i (v \cdot \grad b_j)
|
||||
quad.quadPtCoord(quad_pt, &coord_[0]);
|
||||
@ -337,7 +563,7 @@ namespace Opm
|
||||
for (int j = 0; j < num_basis; ++j) {
|
||||
for (int i = 0; i < num_basis; ++i) {
|
||||
for (int dd = 0; dd < dim; ++dd) {
|
||||
jac_[j*num_basis + i] += w * basis_[i] * grad_basis_[dim*j + dd] * velocity_[dd] * cvol;
|
||||
jac_[j*num_basis + i] -= w * basis_[j] * grad_basis_[dim*i + dd] * velocity_[dd];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -359,7 +585,8 @@ namespace Opm
|
||||
}
|
||||
// Do quadrature over the face to compute
|
||||
// \int_{\partial K} b_i (v(x) \cdot n) b_j ds
|
||||
FaceQuadrature quad(grid_, face, degree_);
|
||||
const double normal_velocity = flux / grid_.face_areas[face];
|
||||
FaceQuadrature quad(grid_, face, 2*degree_);
|
||||
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
||||
// u^ext flux B (B = {b_j})
|
||||
quad.quadPtCoord(quad_pt, &coord_[0]);
|
||||
@ -367,26 +594,31 @@ namespace Opm
|
||||
const double w = quad.quadPtWeight(quad_pt);
|
||||
for (int j = 0; j < num_basis; ++j) {
|
||||
for (int i = 0; i < num_basis; ++i) {
|
||||
jac_[j*num_basis + i] += w * basis_[i] * flux * basis_[j];
|
||||
jac_[j*num_basis + i] += w * basis_[i] * normal_velocity * basis_[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute downstream jacobian contribution from sink terms.
|
||||
// Contribution from inflow sources would be
|
||||
// similar to the contribution from upstream faces, but
|
||||
// it is zero since we let all external inflow be associated
|
||||
// with a zero tof.
|
||||
if (source_[cell] < 0.0) {
|
||||
// A sink.
|
||||
const double flux = -source_[cell]; // Sign convention for flux: outflux > 0.
|
||||
const double flux_density = flux / grid_.cell_volumes[cell];
|
||||
// Do quadrature over the cell to compute
|
||||
// \int_{K} b_i flux b_j dx
|
||||
CellQuadrature quad(grid_, cell, degree_);
|
||||
CellQuadrature quad(grid_, cell, 2*degree_);
|
||||
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
|
||||
quad.quadPtCoord(quad_pt, &coord_[0]);
|
||||
DGBasis::eval(grid_, cell, degree_, &coord_[0], &basis_[0]);
|
||||
const double w = quad.quadPtWeight(quad_pt);
|
||||
for (int j = 0; j < num_basis; ++j) {
|
||||
for (int i = 0; i < num_basis; ++i) {
|
||||
jac_[j*num_basis + i] += w * basis_[i] * flux * basis_[j];
|
||||
jac_[j*num_basis + i] += w * basis_[i] * flux_density * basis_[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user