mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
First partial implementation of Coats' stable IMPES step limit.
This commit is contained in:
parent
8bd7d89d00
commit
f70309c76b
125
src/cfs_tpfa.c
125
src/cfs_tpfa.c
@ -2,6 +2,7 @@
|
||||
#include <stddef.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "blas_lapack.h"
|
||||
#include "flow_bc.h"
|
||||
@ -1053,6 +1054,130 @@ cfs_tpfa_retrieve_gravtrans(grid_t *G,
|
||||
}
|
||||
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
static double
|
||||
cfs_tpfa_impes_maxtime_cell(int c,
|
||||
grid_t *G,
|
||||
struct compr_quantities *cq,
|
||||
const double *trans,
|
||||
const double *porevol,
|
||||
struct cfs_tpfa_data *h,
|
||||
const double *dpmobf,
|
||||
const double *surf_dens)
|
||||
/* ---------------------------------------------------------------------- */
|
||||
{
|
||||
/* Reference:
|
||||
K. H. Coats, "IMPES Stability: The Stable Step", SPE 69225
|
||||
|
||||
Capillary pressure parts not included.
|
||||
*/
|
||||
|
||||
int i, j, f, c2;
|
||||
double f11, f12, f21, f22;
|
||||
double gsgn, dp, dz, tr, tmob, detF, eqv_flux;
|
||||
const double *pmob;
|
||||
/* This is intended to be compatible with the dune-porsol blackoil
|
||||
code. This library is otherwise not depending on particular
|
||||
orderings of phases or components, so at some point this
|
||||
function should be generalized. */
|
||||
assert (cq->nphases == 3);
|
||||
enum { Water = 0, Oil = 1, Gas = 2 };
|
||||
enum { num_phases = 3 };
|
||||
double gamma[num_phases];
|
||||
double pot[num_phases];
|
||||
/* Notation: dpmob[Oil][Water] is d/ds_w(lambda_o) */
|
||||
double dpmob[num_phases][num_phases]
|
||||
= { {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0} };
|
||||
|
||||
/* Computing gamma */
|
||||
|
||||
/* Filling the dpmob array from available data.
|
||||
Note that we only need the following combinations:
|
||||
(Water, Water)
|
||||
(Water, Gas)
|
||||
(Oil, Water)
|
||||
(Oil, Gas)
|
||||
(Gas, Gas)
|
||||
|
||||
No derivatives w.r.t. Oil is needed, since there are only two
|
||||
independent saturation variables.
|
||||
|
||||
The lack of (Gas, Water) may be due to assumptions on the
|
||||
three-phase model used (should be checked to be compatible
|
||||
with our choices).
|
||||
*/
|
||||
|
||||
|
||||
f11 = f12 = f21 = f22 = 0.0;
|
||||
for (i = G->cell_facepos[c]; i < G->cell_facepos[c + 1]; ++i) {
|
||||
f = G->cell_faces[i];
|
||||
if ((c2 = G->face_cells[2*f + 0]) == c) {
|
||||
gsgn = 1.0;
|
||||
c2 = G->face_cells[2*f + 1];
|
||||
} else {
|
||||
gsgn = -1.0;
|
||||
}
|
||||
|
||||
/* Initially only interiour faces */
|
||||
if (c2 >= 0) {
|
||||
dp = h->x[c] - h->x[c2];
|
||||
dz = G->cell_centroids[3*c + 2] = G->cell_centroids[3*c2 + 2];
|
||||
for (j = 0; j < cq->nphases; ++j) {
|
||||
pot[j] = fabs(dp - gamma[j]*dz);
|
||||
}
|
||||
pmob = cq->phasemobf + f*cq->nphases;
|
||||
tr = trans[f];
|
||||
tmob = pmob[Water] + pmob[Oil] + pmob[Gas];
|
||||
f11 += tr*((pmob[Oil] + pmob[Gas])*dpmob[Water][Water]*pot[Water]
|
||||
- pmob[Water]*dpmob[Oil][Water]*pot[Oil])/tmob;
|
||||
f12 += -tr*(pmob[Water]*dpmob[Oil][Gas]*pot[Oil]
|
||||
+ pmob[Water]*dpmob[Gas][Gas]*pot[Gas]
|
||||
- (pmob[Oil] + pmob[Gas])*dpmob[Water][Gas]*pot[Water])/tmob;
|
||||
f21 += -tr*(pmob[Gas]*dpmob[Water][Water]*pot[Water]
|
||||
+ pmob[Gas]*dpmob[Oil][Water]*pot[Oil])/tmob;
|
||||
f22 += tr*(-pmob[Gas]*dpmob[Oil][Gas]*pot[Oil]
|
||||
+ (pmob[Water] + pmob[Oil])*dpmob[Gas][Gas]*pot[Gas]
|
||||
- pmob[Gas]*dpmob[Water][Gas]*pot[Water])/tmob;
|
||||
}
|
||||
}
|
||||
|
||||
/* (from eq. 3, 4a-e, 5a-c)
|
||||
F_i = 1/2 |f11_i + f22_i + \sqrt{G}|
|
||||
G = (f11_i + f22_i)^2 - 4 det(F_i)
|
||||
fXX_i = \sum_j fXX_ij (j runs over the neighbours)
|
||||
det(F_i) = f11_i f22_i - f12_i f21_i
|
||||
*/
|
||||
detF = f11*f22 - f12*f21;
|
||||
eqv_flux = 0.5*fabs(f11 + f22 + sqrt((f11 + f22)*(f11 + f22) - 4*detF));
|
||||
/* delta_t < porevol/eqv_flux */
|
||||
return porevol[c]/eqv_flux;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
double
|
||||
cfs_tpfa_impes_maxtime(grid_t *G,
|
||||
struct compr_quantities *cq,
|
||||
const double *trans,
|
||||
const double *porevol,
|
||||
struct cfs_tpfa_data *h,
|
||||
const double *dpmobf,
|
||||
const double *surf_dens)
|
||||
/* ---------------------------------------------------------------------- */
|
||||
{
|
||||
int c;
|
||||
double max_dt, cell_dt;
|
||||
max_dt = 1e100;
|
||||
for (c = 0; c < G->number_of_cells; ++c) {
|
||||
cell_dt = cfs_tpfa_impes_maxtime_cell(c, G, cq, trans, porevol, h, dpmobf, surf_dens);
|
||||
if (cell_dt < max_dt) {
|
||||
max_dt = cell_dt;
|
||||
}
|
||||
}
|
||||
return max_dt;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
void
|
||||
cfs_tpfa_expl_mass_transport(grid_t *G,
|
||||
|
@ -97,6 +97,15 @@ cfs_tpfa_retrieve_gravtrans(grid_t *G,
|
||||
struct cfs_tpfa_data *h,
|
||||
double *gravtrans_f);
|
||||
|
||||
double
|
||||
cfs_tpfa_impes_maxtime(grid_t *G,
|
||||
struct compr_quantities *cq,
|
||||
const double *trans,
|
||||
const double *porevol,
|
||||
struct cfs_tpfa_data *h,
|
||||
const double *dpmobf,
|
||||
const double *surf_dens);
|
||||
|
||||
void
|
||||
cfs_tpfa_expl_mass_transport(grid_t *G,
|
||||
well_t *W,
|
||||
|
Loading…
Reference in New Issue
Block a user