add option to use different flux modules and add one for ECL-transmissibilities to ebos

the ebos module implemenents what Eclipse calls 'NEWTRAN'
transmissibilities. Also, this commit required a few cleanups in the
velocity module infrastructure.
This commit is contained in:
Andreas Lauser 2014-12-27 15:19:15 +01:00
parent 602909c16d
commit f95f0cc407
4 changed files with 725 additions and 166 deletions

View File

@ -0,0 +1,102 @@
/*
Copyright (C) 2015 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::EclDummyGradientCalculator
*/
#ifndef EWOMS_ECL_DUMMY_GRADIENT_CALCULATOR_HH
#define EWOMS_ECL_DUMMY_GRADIENT_CALCULATOR_HH
#include <ewoms/disc/common/fvbaseproperties.hh>
#include <dune/common/fvector.hh>
namespace Ewoms {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This is a "dummy" gradient calculator which does not do anything.
*
* The ECL blackoil simulator does not need any gradients: Volume fluxes are calculated
* via pressure differences instead of pressure gradients (i.e., transmissibilities
* instead of permeabilities), and an energy equation and molecular diffusion are not
* supported.
*/
template<class TypeTag>
class EclDummyGradientCalculator
{
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
enum { dimWorld = GridView::dimensionworld };
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
public:
static void registerParameters()
{ }
template <bool prepareValues = true, bool prepareGradients = true>
void prepare(const ElementContext &elemCtx, int timeIdx)
{ }
template <class QuantityCallback, class QuantityType = Scalar>
QuantityType calculateValue(const ElementContext &elemCtx,
int fapIdx,
const QuantityCallback &quantityCallback) const
{
OPM_THROW(std::logic_error,
"Generic values are not supported by the ECL black-oil simulator");
}
template <class QuantityCallback>
void calculateGradient(DimVector &quantityGrad,
const ElementContext &elemCtx,
int fapIdx,
const QuantityCallback &quantityCallback) const
{
OPM_THROW(std::logic_error,
"Generic gradients are not supported by the ECL black-oil simulator");
}
template <class QuantityCallback>
Scalar calculateBoundaryValue(const ElementContext &elemCtx,
int fapIdx,
const QuantityCallback &quantityCallback)
{
OPM_THROW(std::logic_error,
"Generic boundary values are not supported by the ECL black-oil simulator");
}
template <class QuantityCallback>
void calculateBoundaryGradient(DimVector &quantityGrad,
const ElementContext &elemCtx,
int fapIdx,
const QuantityCallback &quantityCallback) const
{
OPM_THROW(std::logic_error,
"Generic boundary gradients are not supported by the ECL black-oil simulator");
}
};
} // namespace Ewoms
#endif

View File

@ -0,0 +1,265 @@
/*
Copyright (C) 2014 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \brief This file contains the flux module which is used for ECL problems
* two-point flux approximation
*
* This is used by the ECL blackoil simulator
*/
#ifndef EWOMS_ECL_FLUX_MODULE_HH
#define EWOMS_ECL_FLUX_MODULE_HH
#include <ewoms/disc/common/fvbaseproperties.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Opm {
namespace Properties {
NEW_PROP_TAG(MaterialLaw);
}}
namespace Ewoms {
template <class TypeTag>
class EclTransIntensiveQuantities;
template <class TypeTag>
class EclTransExtensiveQuantities;
template <class TypeTag>
class EclTransBaseProblem;
/*!
* \ingroup EclTransmissibility
* \brief Specifies a velocity module which uses the transmissibilities.
*/
template <class TypeTag>
struct EclTransVelocityModule
{
typedef EclTransIntensiveQuantities<TypeTag> VelocityIntensiveQuantities;
typedef EclTransExtensiveQuantities<TypeTag> VelocityExtensiveQuantities;
typedef EclTransBaseProblem<TypeTag> VelocityBaseProblem;
/*!
* \brief Register all run-time parameters for the velocity module.
*/
static void registerParameters()
{ }
};
/*!
* \ingroup EclTransmissibility
* \brief Provides the defaults for the parameters required by the
* transmissibility based volume flux calculation.
*/
template <class TypeTag>
class EclTransBaseProblem
{ };
/*!
* \ingroup EclTransmissibility
* \brief Provides the intensive quantities for the Darcy velocity module
*/
template <class TypeTag>
class EclTransIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
protected:
void update_(const ElementContext &elemCtx, int dofIdx, int timeIdx)
{ }
};
/*!
* \ingroup EclTransmissibility
* \brief Provides the ECL "velocity module"
*/
template <class TypeTag>
class EclTransExtensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \brief Returns transmissibility for a given sub-control volume face.
*/
Scalar transmissibility() const
{ return trans_; }
/*!
* \brief Return the intrinsic permeability tensor at a face [m^2]
*/
const DimMatrix& intrinsicPermeability() const
{
OPM_THROW(Opm::NotImplemented,
"The ECL transmissibility module does not provide an explicit intrinsic permeability");
}
/*!
* \brief Return the pressure potential gradient of a fluid phase at the
* face's integration point [Pa/m]
*
* \param phaseIdx The index of the fluid phase
*/
const DimVector& potentialGrad(int phaseIdx) const
{
OPM_THROW(Opm::NotImplemented,
"The ECL transmissibility module does not provide explicit potential gradients");
}
/*!
* \brief Return the filter velocity of a fluid phase at the
* face's integration point [m/s]
*
* \param phaseIdx The index of the fluid phase
*/
const DimVector& filterVelocity(int phaseIdx) const
{
OPM_THROW(Opm::NotImplemented,
"The ECL transmissibility module does not provide explicit filter velocities");
}
/*!
* \brief Return the volume flux of a fluid phase at the face's integration point
* \f$[m^3/s / m^2]\f$
*
* This is the fluid volume of a phase per second and per square meter of face
* area.
*
* \param phaseIdx The index of the fluid phase
*/
Scalar volumeFlux(int phaseIdx) const
{ return - pressureDifferential_[phaseIdx]*mobility_[phaseIdx] * trans_/faceArea_; }
protected:
/*!
* \brief Returns the local index of the degree of freedom in which is
* in upstream direction.
*
* i.e., the DOF which exhibits a higher effective pressure for
* the given phase.
*/
int upstreamIndex_(int phaseIdx) const
{
assert(0 <= phaseIdx && phaseIdx < numPhases);
return (pressureDifferential_[phaseIdx] >= 0)?exteriorDofIdx_:interiorDofIdx_;
}
/*!
* \brief Returns the local index of the degree of freedom in which is
* in downstream direction.
*
* i.e., the DOF which exhibits a lower effective pressure for the
* given phase.
*/
int downstreamIndex_(int phaseIdx) const
{
assert(0 <= phaseIdx && phaseIdx < numPhases);
return (pressureDifferential_[phaseIdx] >= 0)?interiorDofIdx_:exteriorDofIdx_;
}
/*!
* \brief Update the required gradients for interior faces
*/
void calculateGradients_(const ElementContext &elemCtx, int scvfIdx, int timeIdx)
{
Valgrind::SetUndefined(*this);
const auto& problem = elemCtx.problem();
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
interiorDofIdx_ = scvf.interiorIndex();
exteriorDofIdx_ = scvf.exteriorIndex();
assert(interiorDofIdx_ != exteriorDofIdx_);
trans_ = problem.transmissibility(stencil.globalSpaceIndex(interiorDofIdx_),
stencil.globalSpaceIndex(exteriorDofIdx_));
faceArea_ = scvf.area();
// estimate the gravity correction: for performance reasons we use a simplified
// approach for this flux module that assumes that gravity is constant and always
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
const auto &intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx);
const auto &intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx_, timeIdx);
Scalar zIn = elemCtx.pos(interiorDofIdx_, timeIdx)[dimWorld - 1];
Scalar zEx = elemCtx.pos(exteriorDofIdx_, timeIdx)[dimWorld - 1];
Scalar zFace = scvf.integrationPos()[dimWorld - 1];
Scalar distZIn = zIn - zFace;
Scalar distZEx = zEx - zFace;
for (int phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
// calculate the hydrostatic pressures at the face's integration point
Scalar rhoIn = intQuantsIn.fluidState().density(phaseIdx);
Scalar rhoEx = intQuantsEx.fluidState().density(phaseIdx);
Scalar pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
Scalar pressureExterior = intQuantsEx.fluidState().pressure(phaseIdx);
pressureInterior += - rhoIn*(g*distZIn);
pressureExterior += - rhoEx*(g*distZEx);
pressureDifferential_[phaseIdx] = pressureExterior - pressureInterior;
const auto& up = elemCtx.intensiveQuantities(upstreamIndex_(phaseIdx), timeIdx);
mobility_[phaseIdx] = up.mobility(phaseIdx);
}
}
/*!
* \brief Update the velocities for all fluid phases on the interior faces of the context
*/
void calculateVelocities_(const ElementContext &elemCtx, int scvfIdx, int timeIdx)
{ }
// the local indices of the interior and exterior degrees of freedom
int interiorDofIdx_;
int exteriorDofIdx_;
// transmissibility [m^3 s]
Scalar trans_;
// the area of the face between the DOFs [m^2]
Scalar faceArea_;
// the mobility of all phases [1 / (Pa s)]
Scalar mobility_[numPhases];
// the difference in effective pressure between the two degrees of
// freedom [Pa]
Scalar pressureDifferential_[numPhases];
};
} // namespace Ewoms
#endif

View File

@ -29,6 +29,9 @@
#include "eclwriter.hh"
#include "eclsummarywriter.hh"
#include "ecloutputblackoilmodule.hh"
#include "ecltransmissibility.hh"
#include "ecldummygradientcalculator.hh"
#include "eclfluxmodule.hh"
#include <ewoms/models/blackoil/blackoilmodel.hh>
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
@ -154,6 +157,12 @@ SET_BOOL_PROP(EclBaseProblem, EnableEclSummaryOutput, true);
// decent speedup...
SET_BOOL_PROP(EclBaseProblem, EnableIntensiveQuantityCache, true);
// Use the "velocity module" which uses the Eclipse "NEWTRAN" transmissibilities
SET_TYPE_PROP(EclBaseProblem, VelocityModule, Ewoms::EclTransVelocityModule<TypeTag>);
// Use the dummy gradient calculator in order not to do unnecessary work.
SET_TYPE_PROP(EclBaseProblem, GradientCalculator, Ewoms::EclDummyGradientCalculator<TypeTag>);
// The default name of the data file to load
SET_STRING_PROP(EclBaseProblem, GridFile, "data/ecl.DATA");
}} // namespace Properties, Opm
@ -230,6 +239,7 @@ public:
*/
EclProblem(Simulator &simulator)
: ParentType(simulator)
, transmissibilities_(simulator)
, wellManager_(simulator)
, eclWriter_(simulator)
, summaryWriter_(simulator)
@ -253,9 +263,15 @@ public:
// (z coodinates represent depth, not height.)
this->gravity_[dim - 1] *= -1;
// the "NOGRAV" keyword from Frontsim disables gravity...
const auto& deck = simulator.gridManager().deck();
if (deck->hasKeyword("NOGRAV"))
this->gravity_ = 0.0;
initFluidSystem_();
readRockParameters_();
readMaterialParameters_();
transmissibilities_.finishInit();
readInitialCondition_();
// initialize the wells. Note that this needs to be done after initializing the
@ -401,27 +417,19 @@ public:
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intersectionIntrinsicPermeability
* \brief This method returns the intrinsic permeability tensor
* given a global element index.
*
* Its main (only?) usage is the ECL transmissibility calculation code...
*/
template <class Context>
void intersectionIntrinsicPermeability(DimMatrix &result,
const Context &context,
int localIntersectionIdx, int timeIdx) const
{
// calculate the intersection index
const auto &scvf = context.stencil(timeIdx).interiorFace(localIntersectionIdx);
const DimMatrix &intrinsicPermeability(int globalElemIdx) const
{ return intrinsicPermeability_[globalElemIdx]; }
int numElements = this->model().numGridDof();
size_t interiorElemIdx = context.globalSpaceIndex(scvf.interiorIndex(), timeIdx);
size_t exteriorElemIdx = context.globalSpaceIndex(scvf.exteriorIndex(), timeIdx);
size_t elem1Idx = std::min(interiorElemIdx, exteriorElemIdx);
size_t elem2Idx = std::max(interiorElemIdx, exteriorElemIdx);
size_t globalIntersectionIdx = elem1Idx*numElements + elem2Idx;
result = intersectionIntrinsicPermeability_.at(globalIntersectionIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::transmissibility
*/
Scalar transmissibility(int elem1Idx, int elem2Idx) const
{ return transmissibilities_.transmissibility(elem1Idx, elem2Idx); }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
@ -668,20 +676,6 @@ private:
OPM_THROW(std::logic_error,
"Can't read the intrinsic permeability from the ecl state. "
"(The PERM{X,Y,Z} keywords are missing)");
// apply the NTG keyword to the X and Y permeabilities
if (eclState->hasDoubleGridProperty("NTG")) {
const std::vector<double> &ntgData =
eclState->getDoubleGridProperty("NTG")->getData();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
int cartesianElemIdx = grid.globalCell()[dofIdx];
intrinsicPermeability_[dofIdx][0][0] *= ntgData[cartesianElemIdx];
intrinsicPermeability_[dofIdx][1][1] *= ntgData[cartesianElemIdx];
}
}
computeFaceIntrinsicPermeabilities_();
////////////////////////////////
@ -963,141 +957,9 @@ private:
}
}
void computeFaceIntrinsicPermeabilities_()
{
auto eclState = this->simulator().gridManager().eclState();
const auto &grid = this->simulator().gridManager().grid();
int numElements = this->gridView().size(/*codim=*/0);
std::vector<double> multx(numElements, 1.0);
std::vector<double> multy(numElements, 1.0);
std::vector<double> multz(numElements, 1.0);
std::vector<double> multxMinus(numElements, 1.0);
std::vector<double> multyMinus(numElements, 1.0);
std::vector<double> multzMinus(numElements, 1.0);
// retrieve the transmissibility multiplier keywords. Note that we use them as
// permeability multipliers...
if (eclState->hasDoubleGridProperty("MULTX"))
multx = eclState->getDoubleGridProperty("MULTX")->getData();
if (eclState->hasDoubleGridProperty("MULTX-"))
multxMinus = eclState->getDoubleGridProperty("MULTX-")->getData();
if (eclState->hasDoubleGridProperty("MULTY"))
multy = eclState->getDoubleGridProperty("MULTY")->getData();
if (eclState->hasDoubleGridProperty("MULTY-"))
multyMinus = eclState->getDoubleGridProperty("MULTY-")->getData();
if (eclState->hasDoubleGridProperty("MULTZ"))
multz = eclState->getDoubleGridProperty("MULTZ")->getData();
if (eclState->hasDoubleGridProperty("MULTZ-"))
multzMinus = eclState->getDoubleGridProperty("MULTZ-")->getData();
// making this specific to clang or gcc > 4.7 is slightly hacky, but this call is
// only an optimization anyway...
#if defined __clang__ || (__GNUC__ > 4 && __GNUC_MINOR__ >= 7)
// resize the hash map to a appropriate size for a conforming 3D grid
float maxLoadFactor = intersectionIntrinsicPermeability_.max_load_factor();
intersectionIntrinsicPermeability_.reserve(numElements * 6 / maxLoadFactor * 1.05 );
#endif
auto elemIt = this->gridView().template begin</*codim=*/0>();
const auto& elemEndIt = this->gridView().template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
auto intersectIt = elemIt->ileafbegin();
const auto &intersectEndIt = elemIt->ileafend();
for (; intersectIt != intersectEndIt; ++intersectIt) {
if (!intersectIt->neighbor())
// skip boundary intersections...
continue;
// calculate the "intersection index"
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
size_t interiorElemIdx = this->elementMapper().index(intersectIt->inside());
size_t exteriorElemIdx = this->elementMapper().index(intersectIt->outside());
#else
size_t interiorElemIdx = this->elementMapper().map(intersectIt->inside());
size_t exteriorElemIdx = this->elementMapper().map(intersectIt->outside());
#endif
size_t elem1Idx = std::min(interiorElemIdx, exteriorElemIdx);
size_t elem2Idx = std::max(interiorElemIdx, exteriorElemIdx);
size_t intersectIdx = elem1Idx*numElements + elem2Idx;
// do nothing if this intersection was already seen "from the other side"
if (intersectionIntrinsicPermeability_.count(intersectIdx) > 0)
continue;
auto K1 = intrinsicPermeability_[interiorElemIdx];
auto K2 = intrinsicPermeability_[exteriorElemIdx];
int interiorElemCartIdx = grid.globalCell()[interiorElemIdx];
int exteriorElemCartIdx = grid.globalCell()[exteriorElemIdx];
// local index of the face of the interior element which contains the
// intersection
int insideFaceIdx = intersectIt->indexInInside();
// take the transmissibility multipliers into account (i.e., the
// MULT[XYZ]-? keywords)
if (insideFaceIdx == 1) { // right
K1 *= multx[interiorElemCartIdx];
K2 *= multxMinus[exteriorElemCartIdx];
}
else if (insideFaceIdx == 0) { // left
K1 *= multxMinus[interiorElemCartIdx];
K2 *= multx[exteriorElemCartIdx];
}
else if (insideFaceIdx == 3) { // back
K1 *= multy[interiorElemCartIdx];
K2 *= multyMinus[exteriorElemCartIdx];
}
else if (insideFaceIdx == 2) { // front
K1 *= multyMinus[interiorElemCartIdx];
K2 *= multy[exteriorElemCartIdx];
}
else if (insideFaceIdx == 5) { // top
K1 *= multz[interiorElemCartIdx];
K2 *= multzMinus[exteriorElemCartIdx];
}
else if (insideFaceIdx == 4) { // bottom
K1 *= multzMinus[interiorElemCartIdx];
K2 *= multz[exteriorElemCartIdx];
}
// element-wise harmonic average
auto &K = intersectionIntrinsicPermeability_[intersectIdx];
K = 0.0;
for (int i = 0; i < dimWorld; ++i)
for (int j = 0; j < dimWorld; ++j)
K[i][j] = Opm::utils::harmonicAverage(K1[i][j], K2[i][j]);
}
}
}
std::vector<Scalar> porosity_;
std::vector<DimMatrix> intrinsicPermeability_;
// the intrinsic permeabilities for interior faces. since grids may be
// non-conforming, and there does not seem to be a mapper for interfaces in DUNE,
// these transmissibilities are accessed via the (elementIndex1, elementIndex2) pairs
// of the interfaces where
//
// elementIndex1 = min(interiorElementIndex, exteriorElementIndex)
//
// and
//
// elementIndex2 = max(interiorElementIndex, exteriorElementIndex)
//
// To make this perform better, this is first mingled into a single index using
//
// intersectionIndex = elementIndex1*numElements + elementIndex2
//
// as the index for the hash map.
std::unordered_map<size_t, DimMatrix> intersectionIntrinsicPermeability_;
EclTransmissibility<TypeTag> transmissibilities_;
std::vector<unsigned short> materialParamTableIdx_;
std::vector<MaterialLawParams> materialParams_;

View File

@ -0,0 +1,330 @@
/*
Copyright (C) 2014 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::EclTransmissibility
*/
#ifndef EWOMS_ECL_TRANSMISSIBILITY_HH
#define EWOMS_ECL_TRANSMISSIBILITY_HH
#include "eclgridmanager.hh"
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <array>
#include <vector>
#include <unordered_map>
namespace Ewoms {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This class calculates the transmissibilites for grid faces according to the
* Eclipse Technical Description.
*/
template <class TypeTag>
class EclTransmissibility
{
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GridView::Intersection Intersection;
// Grid and world dimension
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
public:
EclTransmissibility(const Simulator& simulator)
: simulator_(simulator)
{}
/*!
* \brief Actually compute the transmissibilty over a face as a pre-compute step.
*
* This code actually uses the direction specific "centroids" of
* each element. These "centroids" are _not_ the identical
* barycenter of the element, but the middle of the centers of the
* faces of the logical Cartesian cells, i.e., the centers of the
* faces of the reference elements. We do things this way because
* the barycenter of the element can be located outside of the
* element for sufficiently "ugly" (i.e., thin and "non-flat")
* elements which in turn leads to quite wrong
* permeabilities. This approach is probably not always correct
* either but at least it seems to be much better.
*/
void finishInit()
{
const auto& elementMapper = simulator_.model().elementMapper();
const auto& gridView = simulator_.gridView();
const auto& problem = simulator_.problem();
int numElements = elementMapper.size();
// this code assumes that the DOFs are the elements. (i.e., an
// ECFV spatial discretization with TPFA). if you try to use
// it with something else, you're currently out of luck,
// sorry!
assert(simulator_.model().numGridDof() == numElements);
// calculate the axis specific centroids of all elements
std::array<std::vector<DimVector>, dimWorld> axisCentroids;
for (int dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
axisCentroids[dimIdx].resize(numElements);
auto elemIt = gridView.template begin</*codim=*/ 0>();
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
int elemIdx = elementMapper.index(elemIt);
#else
int elemIdx = elementMapper.map(elemIt);
#endif
// get the geometry of the current element
const auto& geom = elemIt->geometry();
// compute the axis specific "centroids" used for the
// transmissibilities
for (int dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
DimVector x0Local(0.5);
DimVector x1Local(0.5);
x0Local[dimIdx] = 0.0;
x1Local[dimIdx] = 1.0;
DimVector x = geom.global(x0Local);
x += geom.global(x1Local);
x /= 2;
axisCentroids[dimIdx][elemIdx] = x;
}
}
Opm::EclipseStateConstPtr eclState = simulator_.gridManager().eclState();
const std::vector<double>& multx =
eclState->getDoubleGridProperty("MULTX")->getData();
const std::vector<double>& multy =
eclState->getDoubleGridProperty("MULTY")->getData();
const std::vector<double>& multz =
eclState->getDoubleGridProperty("MULTZ")->getData();
const std::vector<double>& multxMinus =
eclState->getDoubleGridProperty("MULTX-")->getData();
const std::vector<double>& multyMinus =
eclState->getDoubleGridProperty("MULTY-")->getData();
const std::vector<double>& multzMinus =
eclState->getDoubleGridProperty("MULTZ-")->getData();
const std::vector<double>& ntg =
eclState->getDoubleGridProperty("NTG")->getData();
// reserving some space in the hashmap upfront saves quite a
// bit of time because resizes are costly for hashmaps and
// there would be quite a few of them if we would not have a
// rough idea of how large the final map will be (the rough
// idea is a conforming Cartesian grid)
trans_.reserve(numElements*3*1.05);
// compute the transmissibilities for all intersections
elemIt = gridView.template begin</*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
auto isIt = elemIt->ileafbegin();
const auto& isEndIt = elemIt->ileafend();
for (; isIt != isEndIt; ++ isIt) {
// ignore boundary intersections for now (TODO?)
if (isIt->boundary())
continue;
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
int insideElemIdx = elementMapper.index(*isIt->inside());
int outsideElemIdx = elementMapper.index(*isIt->outside());
#else
int insideElemIdx = elementMapper.map(*isIt->inside());
int outsideElemIdx = elementMapper.map(*isIt->outside());
#endif
// we only need to calculate a face's transmissibility
// once...
if (insideElemIdx > outsideElemIdx)
continue;
// local indices of the faces of the inside and
// outside elements which contain the intersection
int insideFaceIdx = isIt->indexInInside();
int outsideFaceIdx = isIt->indexInOutside();
Scalar halfTrans1;
Scalar halfTrans2;
computeHalfTrans_(halfTrans1,
*isIt,
insideFaceIdx,
distanceVector_(*isIt,
isIt->indexInInside(),
insideElemIdx,
axisCentroids),
problem.intrinsicPermeability(insideElemIdx));
computeHalfTrans_(halfTrans2,
*isIt,
outsideFaceIdx,
distanceVector_(*isIt,
isIt->indexInOutside(),
outsideElemIdx,
axisCentroids),
problem.intrinsicPermeability(outsideElemIdx));
applyNtg_(halfTrans1, insideFaceIdx, insideElemIdx, ntg);
applyNtg_(halfTrans2, outsideFaceIdx, outsideElemIdx, ntg);
// convert half transmissibilities to full face
// transmissibilities using the harmonic mean
Scalar trans = 1.0 / (1.0/halfTrans1 + 1.0/halfTrans2);
// apply the full face transmissibility multipliers
// for the inside ...
applyMultipliers_(trans, insideFaceIdx, insideElemIdx,
multx, multxMinus,
multy, multyMinus,
multz, multzMinus);
// ... and outside elements
applyMultipliers_(trans, outsideFaceIdx, outsideElemIdx,
multx, multxMinus,
multy, multyMinus,
multz, multzMinus);
trans_[isId_(insideElemIdx, outsideElemIdx)] = trans;
}
}
}
Scalar transmissibility(int elemIdx1, int elemIdx2) const
{ return trans_.at(isId_(elemIdx1, elemIdx2)); }
private:
std::uint64_t isId_(int elemIdx1, int elemIdx2) const
{
static const int elemIdxShift = 32; // bits
int elemAIdx = std::min(elemIdx1, elemIdx2);
std::uint64_t elemBIdx = std::max(elemIdx1, elemIdx2);
return (elemBIdx<<elemIdxShift) + elemAIdx;
}
void computeHalfTrans_(Scalar& halfTrans,
const Intersection& is,
int faceIdx, // in the reference element that contains the intersection
const DimVector& distance,
const DimMatrix& perm) const
{
int dimIdx = faceIdx/2;
assert(dimIdx < dimWorld);
halfTrans = perm[dimIdx][dimIdx];
halfTrans *= is.geometry().volume();
halfTrans *= std::abs<Scalar>(is.centerUnitOuterNormal()*distance);
halfTrans /= distance*distance;
}
DimVector distanceVector_(const Intersection& is,
int faceIdx, // in the reference element that contains the intersection
int elemIdx,
const std::array<std::vector<DimVector>, dimWorld>& axisCentroids) const
{
int dimIdx = faceIdx/2;
assert(dimIdx < dimWorld);
DimVector x = is.geometry().center();
x -= axisCentroids[dimIdx][elemIdx];
return x;
}
void applyMultipliers_(Scalar &trans, int faceIdx, int elemIdx,
const std::vector<Scalar>& multx,
const std::vector<Scalar>& multxMinus,
const std::vector<Scalar>& multy,
const std::vector<Scalar>& multyMinus,
const std::vector<Scalar>& multz,
const std::vector<Scalar>& multzMinus) const
{
// apply multiplyer for the transmissibility of the face. (the
// face index is the index of the reference-element face which
// contains the intersection of interest.)
switch (faceIdx) {
case 0: // left
trans *= multxMinus[elemIdx];
break;
case 1: // right
trans *= multx[elemIdx];
break;
case 2: // front
trans *= multyMinus[elemIdx];
break;
case 3: // back
trans *= multy[elemIdx];
break;
case 4: // bottom
trans *= multzMinus[elemIdx];
break;
case 5: // top
trans *= multz[elemIdx];
break;
}
}
void applyNtg_(Scalar &trans, int faceIdx, int elemIdx,
const std::vector<Scalar>& ntg) const
{
// apply multiplyer for the transmissibility of the face. (the
// face index is the index of the reference-element face which
// contains the intersection of interest.)
switch (faceIdx) {
case 0: // left
trans *= ntg[elemIdx];
break;
case 1: // right
trans *= ntg[elemIdx];
break;
case 2: // front
trans *= ntg[elemIdx];
break;
case 3: // back
trans *= ntg[elemIdx];
break;
// NTG does not apply to top and bottom faces
}
}
const Simulator& simulator_;
std::unordered_map<std::uint64_t, Scalar> trans_;
};
} // namespace Ewoms
#endif