mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
add option to use different flux modules and add one for ECL-transmissibilities to ebos
the ebos module implemenents what Eclipse calls 'NEWTRAN' transmissibilities. Also, this commit required a few cleanups in the velocity module infrastructure.
This commit is contained in:
parent
602909c16d
commit
f95f0cc407
102
applications/ebos/ecldummygradientcalculator.hh
Normal file
102
applications/ebos/ecldummygradientcalculator.hh
Normal file
@ -0,0 +1,102 @@
|
||||
/*
|
||||
Copyright (C) 2015 by Andreas Lauser
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Ewoms::EclDummyGradientCalculator
|
||||
*/
|
||||
#ifndef EWOMS_ECL_DUMMY_GRADIENT_CALCULATOR_HH
|
||||
#define EWOMS_ECL_DUMMY_GRADIENT_CALCULATOR_HH
|
||||
|
||||
#include <ewoms/disc/common/fvbaseproperties.hh>
|
||||
|
||||
#include <dune/common/fvector.hh>
|
||||
|
||||
namespace Ewoms {
|
||||
/*!
|
||||
* \ingroup EclBlackOilSimulator
|
||||
*
|
||||
* \brief This is a "dummy" gradient calculator which does not do anything.
|
||||
*
|
||||
* The ECL blackoil simulator does not need any gradients: Volume fluxes are calculated
|
||||
* via pressure differences instead of pressure gradients (i.e., transmissibilities
|
||||
* instead of permeabilities), and an energy equation and molecular diffusion are not
|
||||
* supported.
|
||||
*/
|
||||
template<class TypeTag>
|
||||
class EclDummyGradientCalculator
|
||||
{
|
||||
|
||||
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
||||
|
||||
enum { dimWorld = GridView::dimensionworld };
|
||||
|
||||
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
|
||||
|
||||
public:
|
||||
static void registerParameters()
|
||||
{ }
|
||||
|
||||
template <bool prepareValues = true, bool prepareGradients = true>
|
||||
void prepare(const ElementContext &elemCtx, int timeIdx)
|
||||
{ }
|
||||
|
||||
template <class QuantityCallback, class QuantityType = Scalar>
|
||||
QuantityType calculateValue(const ElementContext &elemCtx,
|
||||
int fapIdx,
|
||||
const QuantityCallback &quantityCallback) const
|
||||
{
|
||||
OPM_THROW(std::logic_error,
|
||||
"Generic values are not supported by the ECL black-oil simulator");
|
||||
}
|
||||
|
||||
template <class QuantityCallback>
|
||||
void calculateGradient(DimVector &quantityGrad,
|
||||
const ElementContext &elemCtx,
|
||||
int fapIdx,
|
||||
const QuantityCallback &quantityCallback) const
|
||||
{
|
||||
OPM_THROW(std::logic_error,
|
||||
"Generic gradients are not supported by the ECL black-oil simulator");
|
||||
}
|
||||
|
||||
template <class QuantityCallback>
|
||||
Scalar calculateBoundaryValue(const ElementContext &elemCtx,
|
||||
int fapIdx,
|
||||
const QuantityCallback &quantityCallback)
|
||||
{
|
||||
OPM_THROW(std::logic_error,
|
||||
"Generic boundary values are not supported by the ECL black-oil simulator");
|
||||
}
|
||||
|
||||
template <class QuantityCallback>
|
||||
void calculateBoundaryGradient(DimVector &quantityGrad,
|
||||
const ElementContext &elemCtx,
|
||||
int fapIdx,
|
||||
const QuantityCallback &quantityCallback) const
|
||||
{
|
||||
OPM_THROW(std::logic_error,
|
||||
"Generic boundary gradients are not supported by the ECL black-oil simulator");
|
||||
}
|
||||
};
|
||||
} // namespace Ewoms
|
||||
|
||||
#endif
|
265
applications/ebos/eclfluxmodule.hh
Normal file
265
applications/ebos/eclfluxmodule.hh
Normal file
@ -0,0 +1,265 @@
|
||||
/*
|
||||
Copyright (C) 2014 by Andreas Lauser
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \brief This file contains the flux module which is used for ECL problems
|
||||
* two-point flux approximation
|
||||
*
|
||||
* This is used by the ECL blackoil simulator
|
||||
*/
|
||||
#ifndef EWOMS_ECL_FLUX_MODULE_HH
|
||||
#define EWOMS_ECL_FLUX_MODULE_HH
|
||||
|
||||
#include <ewoms/disc/common/fvbaseproperties.hh>
|
||||
|
||||
#include <dune/common/fvector.hh>
|
||||
#include <dune/common/fmatrix.hh>
|
||||
|
||||
namespace Opm {
|
||||
namespace Properties {
|
||||
NEW_PROP_TAG(MaterialLaw);
|
||||
}}
|
||||
|
||||
namespace Ewoms {
|
||||
template <class TypeTag>
|
||||
class EclTransIntensiveQuantities;
|
||||
|
||||
template <class TypeTag>
|
||||
class EclTransExtensiveQuantities;
|
||||
|
||||
template <class TypeTag>
|
||||
class EclTransBaseProblem;
|
||||
|
||||
/*!
|
||||
* \ingroup EclTransmissibility
|
||||
* \brief Specifies a velocity module which uses the transmissibilities.
|
||||
*/
|
||||
template <class TypeTag>
|
||||
struct EclTransVelocityModule
|
||||
{
|
||||
typedef EclTransIntensiveQuantities<TypeTag> VelocityIntensiveQuantities;
|
||||
typedef EclTransExtensiveQuantities<TypeTag> VelocityExtensiveQuantities;
|
||||
typedef EclTransBaseProblem<TypeTag> VelocityBaseProblem;
|
||||
|
||||
/*!
|
||||
* \brief Register all run-time parameters for the velocity module.
|
||||
*/
|
||||
static void registerParameters()
|
||||
{ }
|
||||
};
|
||||
|
||||
/*!
|
||||
* \ingroup EclTransmissibility
|
||||
* \brief Provides the defaults for the parameters required by the
|
||||
* transmissibility based volume flux calculation.
|
||||
*/
|
||||
template <class TypeTag>
|
||||
class EclTransBaseProblem
|
||||
{ };
|
||||
|
||||
/*!
|
||||
* \ingroup EclTransmissibility
|
||||
* \brief Provides the intensive quantities for the Darcy velocity module
|
||||
*/
|
||||
template <class TypeTag>
|
||||
class EclTransIntensiveQuantities
|
||||
{
|
||||
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
||||
protected:
|
||||
void update_(const ElementContext &elemCtx, int dofIdx, int timeIdx)
|
||||
{ }
|
||||
};
|
||||
|
||||
/*!
|
||||
* \ingroup EclTransmissibility
|
||||
* \brief Provides the ECL "velocity module"
|
||||
*/
|
||||
template <class TypeTag>
|
||||
class EclTransExtensiveQuantities
|
||||
{
|
||||
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
||||
|
||||
enum { dimWorld = GridView::dimensionworld };
|
||||
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
|
||||
|
||||
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
|
||||
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief Returns transmissibility for a given sub-control volume face.
|
||||
*/
|
||||
Scalar transmissibility() const
|
||||
{ return trans_; }
|
||||
|
||||
/*!
|
||||
* \brief Return the intrinsic permeability tensor at a face [m^2]
|
||||
*/
|
||||
const DimMatrix& intrinsicPermeability() const
|
||||
{
|
||||
OPM_THROW(Opm::NotImplemented,
|
||||
"The ECL transmissibility module does not provide an explicit intrinsic permeability");
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Return the pressure potential gradient of a fluid phase at the
|
||||
* face's integration point [Pa/m]
|
||||
*
|
||||
* \param phaseIdx The index of the fluid phase
|
||||
*/
|
||||
const DimVector& potentialGrad(int phaseIdx) const
|
||||
{
|
||||
OPM_THROW(Opm::NotImplemented,
|
||||
"The ECL transmissibility module does not provide explicit potential gradients");
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Return the filter velocity of a fluid phase at the
|
||||
* face's integration point [m/s]
|
||||
*
|
||||
* \param phaseIdx The index of the fluid phase
|
||||
*/
|
||||
const DimVector& filterVelocity(int phaseIdx) const
|
||||
{
|
||||
OPM_THROW(Opm::NotImplemented,
|
||||
"The ECL transmissibility module does not provide explicit filter velocities");
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Return the volume flux of a fluid phase at the face's integration point
|
||||
* \f$[m^3/s / m^2]\f$
|
||||
*
|
||||
* This is the fluid volume of a phase per second and per square meter of face
|
||||
* area.
|
||||
*
|
||||
* \param phaseIdx The index of the fluid phase
|
||||
*/
|
||||
Scalar volumeFlux(int phaseIdx) const
|
||||
{ return - pressureDifferential_[phaseIdx]*mobility_[phaseIdx] * trans_/faceArea_; }
|
||||
|
||||
protected:
|
||||
/*!
|
||||
* \brief Returns the local index of the degree of freedom in which is
|
||||
* in upstream direction.
|
||||
*
|
||||
* i.e., the DOF which exhibits a higher effective pressure for
|
||||
* the given phase.
|
||||
*/
|
||||
int upstreamIndex_(int phaseIdx) const
|
||||
{
|
||||
assert(0 <= phaseIdx && phaseIdx < numPhases);
|
||||
return (pressureDifferential_[phaseIdx] >= 0)?exteriorDofIdx_:interiorDofIdx_;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Returns the local index of the degree of freedom in which is
|
||||
* in downstream direction.
|
||||
*
|
||||
* i.e., the DOF which exhibits a lower effective pressure for the
|
||||
* given phase.
|
||||
*/
|
||||
int downstreamIndex_(int phaseIdx) const
|
||||
{
|
||||
assert(0 <= phaseIdx && phaseIdx < numPhases);
|
||||
return (pressureDifferential_[phaseIdx] >= 0)?interiorDofIdx_:exteriorDofIdx_;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Update the required gradients for interior faces
|
||||
*/
|
||||
void calculateGradients_(const ElementContext &elemCtx, int scvfIdx, int timeIdx)
|
||||
{
|
||||
Valgrind::SetUndefined(*this);
|
||||
|
||||
const auto& problem = elemCtx.problem();
|
||||
const auto& stencil = elemCtx.stencil(timeIdx);
|
||||
const auto& scvf = stencil.interiorFace(scvfIdx);
|
||||
|
||||
interiorDofIdx_ = scvf.interiorIndex();
|
||||
exteriorDofIdx_ = scvf.exteriorIndex();
|
||||
assert(interiorDofIdx_ != exteriorDofIdx_);
|
||||
|
||||
trans_ = problem.transmissibility(stencil.globalSpaceIndex(interiorDofIdx_),
|
||||
stencil.globalSpaceIndex(exteriorDofIdx_));
|
||||
faceArea_ = scvf.area();
|
||||
|
||||
// estimate the gravity correction: for performance reasons we use a simplified
|
||||
// approach for this flux module that assumes that gravity is constant and always
|
||||
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
||||
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
|
||||
|
||||
const auto &intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx);
|
||||
const auto &intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx_, timeIdx);
|
||||
|
||||
Scalar zIn = elemCtx.pos(interiorDofIdx_, timeIdx)[dimWorld - 1];
|
||||
Scalar zEx = elemCtx.pos(exteriorDofIdx_, timeIdx)[dimWorld - 1];
|
||||
Scalar zFace = scvf.integrationPos()[dimWorld - 1];
|
||||
|
||||
Scalar distZIn = zIn - zFace;
|
||||
Scalar distZEx = zEx - zFace;
|
||||
|
||||
for (int phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
|
||||
// calculate the hydrostatic pressures at the face's integration point
|
||||
Scalar rhoIn = intQuantsIn.fluidState().density(phaseIdx);
|
||||
Scalar rhoEx = intQuantsEx.fluidState().density(phaseIdx);
|
||||
|
||||
Scalar pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
|
||||
Scalar pressureExterior = intQuantsEx.fluidState().pressure(phaseIdx);
|
||||
|
||||
pressureInterior += - rhoIn*(g*distZIn);
|
||||
pressureExterior += - rhoEx*(g*distZEx);
|
||||
|
||||
pressureDifferential_[phaseIdx] = pressureExterior - pressureInterior;
|
||||
|
||||
const auto& up = elemCtx.intensiveQuantities(upstreamIndex_(phaseIdx), timeIdx);
|
||||
mobility_[phaseIdx] = up.mobility(phaseIdx);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Update the velocities for all fluid phases on the interior faces of the context
|
||||
*/
|
||||
void calculateVelocities_(const ElementContext &elemCtx, int scvfIdx, int timeIdx)
|
||||
{ }
|
||||
|
||||
// the local indices of the interior and exterior degrees of freedom
|
||||
int interiorDofIdx_;
|
||||
int exteriorDofIdx_;
|
||||
|
||||
// transmissibility [m^3 s]
|
||||
Scalar trans_;
|
||||
|
||||
// the area of the face between the DOFs [m^2]
|
||||
Scalar faceArea_;
|
||||
|
||||
// the mobility of all phases [1 / (Pa s)]
|
||||
Scalar mobility_[numPhases];
|
||||
|
||||
// the difference in effective pressure between the two degrees of
|
||||
// freedom [Pa]
|
||||
Scalar pressureDifferential_[numPhases];
|
||||
};
|
||||
|
||||
} // namespace Ewoms
|
||||
|
||||
#endif
|
@ -29,6 +29,9 @@
|
||||
#include "eclwriter.hh"
|
||||
#include "eclsummarywriter.hh"
|
||||
#include "ecloutputblackoilmodule.hh"
|
||||
#include "ecltransmissibility.hh"
|
||||
#include "ecldummygradientcalculator.hh"
|
||||
#include "eclfluxmodule.hh"
|
||||
|
||||
#include <ewoms/models/blackoil/blackoilmodel.hh>
|
||||
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
|
||||
@ -154,6 +157,12 @@ SET_BOOL_PROP(EclBaseProblem, EnableEclSummaryOutput, true);
|
||||
// decent speedup...
|
||||
SET_BOOL_PROP(EclBaseProblem, EnableIntensiveQuantityCache, true);
|
||||
|
||||
// Use the "velocity module" which uses the Eclipse "NEWTRAN" transmissibilities
|
||||
SET_TYPE_PROP(EclBaseProblem, VelocityModule, Ewoms::EclTransVelocityModule<TypeTag>);
|
||||
|
||||
// Use the dummy gradient calculator in order not to do unnecessary work.
|
||||
SET_TYPE_PROP(EclBaseProblem, GradientCalculator, Ewoms::EclDummyGradientCalculator<TypeTag>);
|
||||
|
||||
// The default name of the data file to load
|
||||
SET_STRING_PROP(EclBaseProblem, GridFile, "data/ecl.DATA");
|
||||
}} // namespace Properties, Opm
|
||||
@ -230,6 +239,7 @@ public:
|
||||
*/
|
||||
EclProblem(Simulator &simulator)
|
||||
: ParentType(simulator)
|
||||
, transmissibilities_(simulator)
|
||||
, wellManager_(simulator)
|
||||
, eclWriter_(simulator)
|
||||
, summaryWriter_(simulator)
|
||||
@ -253,9 +263,15 @@ public:
|
||||
// (z coodinates represent depth, not height.)
|
||||
this->gravity_[dim - 1] *= -1;
|
||||
|
||||
// the "NOGRAV" keyword from Frontsim disables gravity...
|
||||
const auto& deck = simulator.gridManager().deck();
|
||||
if (deck->hasKeyword("NOGRAV"))
|
||||
this->gravity_ = 0.0;
|
||||
|
||||
initFluidSystem_();
|
||||
readRockParameters_();
|
||||
readMaterialParameters_();
|
||||
transmissibilities_.finishInit();
|
||||
readInitialCondition_();
|
||||
|
||||
// initialize the wells. Note that this needs to be done after initializing the
|
||||
@ -401,27 +417,19 @@ public:
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseMultiPhaseProblem::intersectionIntrinsicPermeability
|
||||
* \brief This method returns the intrinsic permeability tensor
|
||||
* given a global element index.
|
||||
*
|
||||
* Its main (only?) usage is the ECL transmissibility calculation code...
|
||||
*/
|
||||
template <class Context>
|
||||
void intersectionIntrinsicPermeability(DimMatrix &result,
|
||||
const Context &context,
|
||||
int localIntersectionIdx, int timeIdx) const
|
||||
{
|
||||
// calculate the intersection index
|
||||
const auto &scvf = context.stencil(timeIdx).interiorFace(localIntersectionIdx);
|
||||
const DimMatrix &intrinsicPermeability(int globalElemIdx) const
|
||||
{ return intrinsicPermeability_[globalElemIdx]; }
|
||||
|
||||
int numElements = this->model().numGridDof();
|
||||
|
||||
size_t interiorElemIdx = context.globalSpaceIndex(scvf.interiorIndex(), timeIdx);
|
||||
size_t exteriorElemIdx = context.globalSpaceIndex(scvf.exteriorIndex(), timeIdx);
|
||||
|
||||
size_t elem1Idx = std::min(interiorElemIdx, exteriorElemIdx);
|
||||
size_t elem2Idx = std::max(interiorElemIdx, exteriorElemIdx);
|
||||
|
||||
size_t globalIntersectionIdx = elem1Idx*numElements + elem2Idx;
|
||||
result = intersectionIntrinsicPermeability_.at(globalIntersectionIdx);
|
||||
}
|
||||
/*!
|
||||
* \copydoc FvBaseMultiPhaseProblem::transmissibility
|
||||
*/
|
||||
Scalar transmissibility(int elem1Idx, int elem2Idx) const
|
||||
{ return transmissibilities_.transmissibility(elem1Idx, elem2Idx); }
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseMultiPhaseProblem::porosity
|
||||
@ -668,20 +676,6 @@ private:
|
||||
OPM_THROW(std::logic_error,
|
||||
"Can't read the intrinsic permeability from the ecl state. "
|
||||
"(The PERM{X,Y,Z} keywords are missing)");
|
||||
|
||||
// apply the NTG keyword to the X and Y permeabilities
|
||||
if (eclState->hasDoubleGridProperty("NTG")) {
|
||||
const std::vector<double> &ntgData =
|
||||
eclState->getDoubleGridProperty("NTG")->getData();
|
||||
|
||||
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
|
||||
int cartesianElemIdx = grid.globalCell()[dofIdx];
|
||||
intrinsicPermeability_[dofIdx][0][0] *= ntgData[cartesianElemIdx];
|
||||
intrinsicPermeability_[dofIdx][1][1] *= ntgData[cartesianElemIdx];
|
||||
}
|
||||
}
|
||||
|
||||
computeFaceIntrinsicPermeabilities_();
|
||||
////////////////////////////////
|
||||
|
||||
|
||||
@ -963,141 +957,9 @@ private:
|
||||
}
|
||||
}
|
||||
|
||||
void computeFaceIntrinsicPermeabilities_()
|
||||
{
|
||||
auto eclState = this->simulator().gridManager().eclState();
|
||||
const auto &grid = this->simulator().gridManager().grid();
|
||||
|
||||
int numElements = this->gridView().size(/*codim=*/0);
|
||||
|
||||
std::vector<double> multx(numElements, 1.0);
|
||||
std::vector<double> multy(numElements, 1.0);
|
||||
std::vector<double> multz(numElements, 1.0);
|
||||
std::vector<double> multxMinus(numElements, 1.0);
|
||||
std::vector<double> multyMinus(numElements, 1.0);
|
||||
std::vector<double> multzMinus(numElements, 1.0);
|
||||
|
||||
// retrieve the transmissibility multiplier keywords. Note that we use them as
|
||||
// permeability multipliers...
|
||||
if (eclState->hasDoubleGridProperty("MULTX"))
|
||||
multx = eclState->getDoubleGridProperty("MULTX")->getData();
|
||||
if (eclState->hasDoubleGridProperty("MULTX-"))
|
||||
multxMinus = eclState->getDoubleGridProperty("MULTX-")->getData();
|
||||
if (eclState->hasDoubleGridProperty("MULTY"))
|
||||
multy = eclState->getDoubleGridProperty("MULTY")->getData();
|
||||
if (eclState->hasDoubleGridProperty("MULTY-"))
|
||||
multyMinus = eclState->getDoubleGridProperty("MULTY-")->getData();
|
||||
if (eclState->hasDoubleGridProperty("MULTZ"))
|
||||
multz = eclState->getDoubleGridProperty("MULTZ")->getData();
|
||||
if (eclState->hasDoubleGridProperty("MULTZ-"))
|
||||
multzMinus = eclState->getDoubleGridProperty("MULTZ-")->getData();
|
||||
|
||||
// making this specific to clang or gcc > 4.7 is slightly hacky, but this call is
|
||||
// only an optimization anyway...
|
||||
#if defined __clang__ || (__GNUC__ > 4 && __GNUC_MINOR__ >= 7)
|
||||
// resize the hash map to a appropriate size for a conforming 3D grid
|
||||
float maxLoadFactor = intersectionIntrinsicPermeability_.max_load_factor();
|
||||
|
||||
intersectionIntrinsicPermeability_.reserve(numElements * 6 / maxLoadFactor * 1.05 );
|
||||
#endif
|
||||
|
||||
auto elemIt = this->gridView().template begin</*codim=*/0>();
|
||||
const auto& elemEndIt = this->gridView().template end</*codim=*/0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
auto intersectIt = elemIt->ileafbegin();
|
||||
const auto &intersectEndIt = elemIt->ileafend();
|
||||
for (; intersectIt != intersectEndIt; ++intersectIt) {
|
||||
if (!intersectIt->neighbor())
|
||||
// skip boundary intersections...
|
||||
continue;
|
||||
|
||||
// calculate the "intersection index"
|
||||
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 4)
|
||||
size_t interiorElemIdx = this->elementMapper().index(intersectIt->inside());
|
||||
size_t exteriorElemIdx = this->elementMapper().index(intersectIt->outside());
|
||||
#else
|
||||
size_t interiorElemIdx = this->elementMapper().map(intersectIt->inside());
|
||||
size_t exteriorElemIdx = this->elementMapper().map(intersectIt->outside());
|
||||
#endif
|
||||
|
||||
size_t elem1Idx = std::min(interiorElemIdx, exteriorElemIdx);
|
||||
size_t elem2Idx = std::max(interiorElemIdx, exteriorElemIdx);
|
||||
|
||||
size_t intersectIdx = elem1Idx*numElements + elem2Idx;
|
||||
|
||||
// do nothing if this intersection was already seen "from the other side"
|
||||
if (intersectionIntrinsicPermeability_.count(intersectIdx) > 0)
|
||||
continue;
|
||||
|
||||
auto K1 = intrinsicPermeability_[interiorElemIdx];
|
||||
auto K2 = intrinsicPermeability_[exteriorElemIdx];
|
||||
|
||||
int interiorElemCartIdx = grid.globalCell()[interiorElemIdx];
|
||||
int exteriorElemCartIdx = grid.globalCell()[exteriorElemIdx];
|
||||
|
||||
// local index of the face of the interior element which contains the
|
||||
// intersection
|
||||
int insideFaceIdx = intersectIt->indexInInside();
|
||||
|
||||
// take the transmissibility multipliers into account (i.e., the
|
||||
// MULT[XYZ]-? keywords)
|
||||
if (insideFaceIdx == 1) { // right
|
||||
K1 *= multx[interiorElemCartIdx];
|
||||
K2 *= multxMinus[exteriorElemCartIdx];
|
||||
}
|
||||
else if (insideFaceIdx == 0) { // left
|
||||
K1 *= multxMinus[interiorElemCartIdx];
|
||||
K2 *= multx[exteriorElemCartIdx];
|
||||
}
|
||||
|
||||
else if (insideFaceIdx == 3) { // back
|
||||
K1 *= multy[interiorElemCartIdx];
|
||||
K2 *= multyMinus[exteriorElemCartIdx];
|
||||
}
|
||||
else if (insideFaceIdx == 2) { // front
|
||||
K1 *= multyMinus[interiorElemCartIdx];
|
||||
K2 *= multy[exteriorElemCartIdx];
|
||||
}
|
||||
|
||||
else if (insideFaceIdx == 5) { // top
|
||||
K1 *= multz[interiorElemCartIdx];
|
||||
K2 *= multzMinus[exteriorElemCartIdx];
|
||||
}
|
||||
else if (insideFaceIdx == 4) { // bottom
|
||||
K1 *= multzMinus[interiorElemCartIdx];
|
||||
K2 *= multz[exteriorElemCartIdx];
|
||||
}
|
||||
|
||||
// element-wise harmonic average
|
||||
auto &K = intersectionIntrinsicPermeability_[intersectIdx];
|
||||
K = 0.0;
|
||||
for (int i = 0; i < dimWorld; ++i)
|
||||
for (int j = 0; j < dimWorld; ++j)
|
||||
K[i][j] = Opm::utils::harmonicAverage(K1[i][j], K2[i][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<Scalar> porosity_;
|
||||
std::vector<DimMatrix> intrinsicPermeability_;
|
||||
|
||||
// the intrinsic permeabilities for interior faces. since grids may be
|
||||
// non-conforming, and there does not seem to be a mapper for interfaces in DUNE,
|
||||
// these transmissibilities are accessed via the (elementIndex1, elementIndex2) pairs
|
||||
// of the interfaces where
|
||||
//
|
||||
// elementIndex1 = min(interiorElementIndex, exteriorElementIndex)
|
||||
//
|
||||
// and
|
||||
//
|
||||
// elementIndex2 = max(interiorElementIndex, exteriorElementIndex)
|
||||
//
|
||||
// To make this perform better, this is first mingled into a single index using
|
||||
//
|
||||
// intersectionIndex = elementIndex1*numElements + elementIndex2
|
||||
//
|
||||
// as the index for the hash map.
|
||||
std::unordered_map<size_t, DimMatrix> intersectionIntrinsicPermeability_;
|
||||
EclTransmissibility<TypeTag> transmissibilities_;
|
||||
|
||||
std::vector<unsigned short> materialParamTableIdx_;
|
||||
std::vector<MaterialLawParams> materialParams_;
|
||||
|
330
applications/ebos/ecltransmissibility.hh
Normal file
330
applications/ebos/ecltransmissibility.hh
Normal file
@ -0,0 +1,330 @@
|
||||
/*
|
||||
Copyright (C) 2014 by Andreas Lauser
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Ewoms::EclTransmissibility
|
||||
*/
|
||||
#ifndef EWOMS_ECL_TRANSMISSIBILITY_HH
|
||||
#define EWOMS_ECL_TRANSMISSIBILITY_HH
|
||||
|
||||
#include "eclgridmanager.hh"
|
||||
|
||||
#include <dune/common/version.hh>
|
||||
#include <dune/common/fvector.hh>
|
||||
#include <dune/common/fmatrix.hh>
|
||||
|
||||
#include <array>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
namespace Ewoms {
|
||||
/*!
|
||||
* \ingroup EclBlackOilSimulator
|
||||
*
|
||||
* \brief This class calculates the transmissibilites for grid faces according to the
|
||||
* Eclipse Technical Description.
|
||||
*/
|
||||
template <class TypeTag>
|
||||
class EclTransmissibility
|
||||
{
|
||||
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
||||
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
||||
typedef typename GridView::Intersection Intersection;
|
||||
|
||||
// Grid and world dimension
|
||||
enum { dim = GridView::dimension };
|
||||
enum { dimWorld = GridView::dimensionworld };
|
||||
|
||||
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
||||
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
|
||||
|
||||
public:
|
||||
EclTransmissibility(const Simulator& simulator)
|
||||
: simulator_(simulator)
|
||||
{}
|
||||
|
||||
/*!
|
||||
* \brief Actually compute the transmissibilty over a face as a pre-compute step.
|
||||
*
|
||||
* This code actually uses the direction specific "centroids" of
|
||||
* each element. These "centroids" are _not_ the identical
|
||||
* barycenter of the element, but the middle of the centers of the
|
||||
* faces of the logical Cartesian cells, i.e., the centers of the
|
||||
* faces of the reference elements. We do things this way because
|
||||
* the barycenter of the element can be located outside of the
|
||||
* element for sufficiently "ugly" (i.e., thin and "non-flat")
|
||||
* elements which in turn leads to quite wrong
|
||||
* permeabilities. This approach is probably not always correct
|
||||
* either but at least it seems to be much better.
|
||||
*/
|
||||
void finishInit()
|
||||
{
|
||||
const auto& elementMapper = simulator_.model().elementMapper();
|
||||
const auto& gridView = simulator_.gridView();
|
||||
const auto& problem = simulator_.problem();
|
||||
|
||||
int numElements = elementMapper.size();
|
||||
|
||||
// this code assumes that the DOFs are the elements. (i.e., an
|
||||
// ECFV spatial discretization with TPFA). if you try to use
|
||||
// it with something else, you're currently out of luck,
|
||||
// sorry!
|
||||
assert(simulator_.model().numGridDof() == numElements);
|
||||
|
||||
// calculate the axis specific centroids of all elements
|
||||
std::array<std::vector<DimVector>, dimWorld> axisCentroids;
|
||||
|
||||
for (int dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
|
||||
axisCentroids[dimIdx].resize(numElements);
|
||||
|
||||
auto elemIt = gridView.template begin</*codim=*/ 0>();
|
||||
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
|
||||
int elemIdx = elementMapper.index(elemIt);
|
||||
#else
|
||||
int elemIdx = elementMapper.map(elemIt);
|
||||
#endif
|
||||
|
||||
// get the geometry of the current element
|
||||
const auto& geom = elemIt->geometry();
|
||||
|
||||
// compute the axis specific "centroids" used for the
|
||||
// transmissibilities
|
||||
for (int dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
|
||||
DimVector x0Local(0.5);
|
||||
DimVector x1Local(0.5);
|
||||
|
||||
x0Local[dimIdx] = 0.0;
|
||||
x1Local[dimIdx] = 1.0;
|
||||
|
||||
DimVector x = geom.global(x0Local);
|
||||
x += geom.global(x1Local);
|
||||
x /= 2;
|
||||
|
||||
axisCentroids[dimIdx][elemIdx] = x;
|
||||
}
|
||||
}
|
||||
|
||||
Opm::EclipseStateConstPtr eclState = simulator_.gridManager().eclState();
|
||||
const std::vector<double>& multx =
|
||||
eclState->getDoubleGridProperty("MULTX")->getData();
|
||||
const std::vector<double>& multy =
|
||||
eclState->getDoubleGridProperty("MULTY")->getData();
|
||||
const std::vector<double>& multz =
|
||||
eclState->getDoubleGridProperty("MULTZ")->getData();
|
||||
const std::vector<double>& multxMinus =
|
||||
eclState->getDoubleGridProperty("MULTX-")->getData();
|
||||
const std::vector<double>& multyMinus =
|
||||
eclState->getDoubleGridProperty("MULTY-")->getData();
|
||||
const std::vector<double>& multzMinus =
|
||||
eclState->getDoubleGridProperty("MULTZ-")->getData();
|
||||
|
||||
const std::vector<double>& ntg =
|
||||
eclState->getDoubleGridProperty("NTG")->getData();
|
||||
|
||||
// reserving some space in the hashmap upfront saves quite a
|
||||
// bit of time because resizes are costly for hashmaps and
|
||||
// there would be quite a few of them if we would not have a
|
||||
// rough idea of how large the final map will be (the rough
|
||||
// idea is a conforming Cartesian grid)
|
||||
trans_.reserve(numElements*3*1.05);
|
||||
|
||||
// compute the transmissibilities for all intersections
|
||||
elemIt = gridView.template begin</*codim=*/ 0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
auto isIt = elemIt->ileafbegin();
|
||||
const auto& isEndIt = elemIt->ileafend();
|
||||
for (; isIt != isEndIt; ++ isIt) {
|
||||
// ignore boundary intersections for now (TODO?)
|
||||
if (isIt->boundary())
|
||||
continue;
|
||||
|
||||
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
|
||||
int insideElemIdx = elementMapper.index(*isIt->inside());
|
||||
int outsideElemIdx = elementMapper.index(*isIt->outside());
|
||||
#else
|
||||
int insideElemIdx = elementMapper.map(*isIt->inside());
|
||||
int outsideElemIdx = elementMapper.map(*isIt->outside());
|
||||
#endif
|
||||
|
||||
// we only need to calculate a face's transmissibility
|
||||
// once...
|
||||
if (insideElemIdx > outsideElemIdx)
|
||||
continue;
|
||||
|
||||
// local indices of the faces of the inside and
|
||||
// outside elements which contain the intersection
|
||||
int insideFaceIdx = isIt->indexInInside();
|
||||
int outsideFaceIdx = isIt->indexInOutside();
|
||||
|
||||
Scalar halfTrans1;
|
||||
Scalar halfTrans2;
|
||||
|
||||
computeHalfTrans_(halfTrans1,
|
||||
*isIt,
|
||||
insideFaceIdx,
|
||||
distanceVector_(*isIt,
|
||||
isIt->indexInInside(),
|
||||
insideElemIdx,
|
||||
axisCentroids),
|
||||
problem.intrinsicPermeability(insideElemIdx));
|
||||
computeHalfTrans_(halfTrans2,
|
||||
*isIt,
|
||||
outsideFaceIdx,
|
||||
distanceVector_(*isIt,
|
||||
isIt->indexInOutside(),
|
||||
outsideElemIdx,
|
||||
axisCentroids),
|
||||
problem.intrinsicPermeability(outsideElemIdx));
|
||||
|
||||
applyNtg_(halfTrans1, insideFaceIdx, insideElemIdx, ntg);
|
||||
applyNtg_(halfTrans2, outsideFaceIdx, outsideElemIdx, ntg);
|
||||
|
||||
// convert half transmissibilities to full face
|
||||
// transmissibilities using the harmonic mean
|
||||
Scalar trans = 1.0 / (1.0/halfTrans1 + 1.0/halfTrans2);
|
||||
|
||||
// apply the full face transmissibility multipliers
|
||||
// for the inside ...
|
||||
applyMultipliers_(trans, insideFaceIdx, insideElemIdx,
|
||||
multx, multxMinus,
|
||||
multy, multyMinus,
|
||||
multz, multzMinus);
|
||||
// ... and outside elements
|
||||
applyMultipliers_(trans, outsideFaceIdx, outsideElemIdx,
|
||||
multx, multxMinus,
|
||||
multy, multyMinus,
|
||||
multz, multzMinus);
|
||||
|
||||
trans_[isId_(insideElemIdx, outsideElemIdx)] = trans;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Scalar transmissibility(int elemIdx1, int elemIdx2) const
|
||||
{ return trans_.at(isId_(elemIdx1, elemIdx2)); }
|
||||
|
||||
private:
|
||||
std::uint64_t isId_(int elemIdx1, int elemIdx2) const
|
||||
{
|
||||
static const int elemIdxShift = 32; // bits
|
||||
|
||||
int elemAIdx = std::min(elemIdx1, elemIdx2);
|
||||
std::uint64_t elemBIdx = std::max(elemIdx1, elemIdx2);
|
||||
|
||||
return (elemBIdx<<elemIdxShift) + elemAIdx;
|
||||
}
|
||||
|
||||
void computeHalfTrans_(Scalar& halfTrans,
|
||||
const Intersection& is,
|
||||
int faceIdx, // in the reference element that contains the intersection
|
||||
const DimVector& distance,
|
||||
const DimMatrix& perm) const
|
||||
{
|
||||
int dimIdx = faceIdx/2;
|
||||
assert(dimIdx < dimWorld);
|
||||
halfTrans = perm[dimIdx][dimIdx];
|
||||
halfTrans *= is.geometry().volume();
|
||||
halfTrans *= std::abs<Scalar>(is.centerUnitOuterNormal()*distance);
|
||||
halfTrans /= distance*distance;
|
||||
}
|
||||
|
||||
DimVector distanceVector_(const Intersection& is,
|
||||
int faceIdx, // in the reference element that contains the intersection
|
||||
int elemIdx,
|
||||
const std::array<std::vector<DimVector>, dimWorld>& axisCentroids) const
|
||||
{
|
||||
int dimIdx = faceIdx/2;
|
||||
assert(dimIdx < dimWorld);
|
||||
DimVector x = is.geometry().center();
|
||||
x -= axisCentroids[dimIdx][elemIdx];
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
void applyMultipliers_(Scalar &trans, int faceIdx, int elemIdx,
|
||||
const std::vector<Scalar>& multx,
|
||||
const std::vector<Scalar>& multxMinus,
|
||||
const std::vector<Scalar>& multy,
|
||||
const std::vector<Scalar>& multyMinus,
|
||||
const std::vector<Scalar>& multz,
|
||||
const std::vector<Scalar>& multzMinus) const
|
||||
{
|
||||
// apply multiplyer for the transmissibility of the face. (the
|
||||
// face index is the index of the reference-element face which
|
||||
// contains the intersection of interest.)
|
||||
switch (faceIdx) {
|
||||
case 0: // left
|
||||
trans *= multxMinus[elemIdx];
|
||||
break;
|
||||
case 1: // right
|
||||
trans *= multx[elemIdx];
|
||||
break;
|
||||
|
||||
case 2: // front
|
||||
trans *= multyMinus[elemIdx];
|
||||
break;
|
||||
case 3: // back
|
||||
trans *= multy[elemIdx];
|
||||
break;
|
||||
|
||||
case 4: // bottom
|
||||
trans *= multzMinus[elemIdx];
|
||||
break;
|
||||
case 5: // top
|
||||
trans *= multz[elemIdx];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void applyNtg_(Scalar &trans, int faceIdx, int elemIdx,
|
||||
const std::vector<Scalar>& ntg) const
|
||||
{
|
||||
// apply multiplyer for the transmissibility of the face. (the
|
||||
// face index is the index of the reference-element face which
|
||||
// contains the intersection of interest.)
|
||||
switch (faceIdx) {
|
||||
case 0: // left
|
||||
trans *= ntg[elemIdx];
|
||||
break;
|
||||
case 1: // right
|
||||
trans *= ntg[elemIdx];
|
||||
break;
|
||||
|
||||
case 2: // front
|
||||
trans *= ntg[elemIdx];
|
||||
break;
|
||||
case 3: // back
|
||||
trans *= ntg[elemIdx];
|
||||
break;
|
||||
|
||||
// NTG does not apply to top and bottom faces
|
||||
}
|
||||
}
|
||||
|
||||
const Simulator& simulator_;
|
||||
std::unordered_map<std::uint64_t, Scalar> trans_;
|
||||
};
|
||||
|
||||
} // namespace Ewoms
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user