Merge branch 'master' into reorder_tof

This commit is contained in:
Atgeirr Flø Rasmussen
2012-09-05 12:32:38 +02:00
29 changed files with 1030 additions and 595 deletions

View File

@@ -151,7 +151,7 @@ namespace Opm
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.

View File

@@ -18,6 +18,7 @@
*/
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
namespace Opm
{
@@ -26,11 +27,59 @@ namespace Opm
const UnstructuredGrid& grid)
{
rock_.init(deck, grid);
pvt_.init(deck);
satprops_.init(deck, grid);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
pvt_.init(deck, 200);
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, 200);
if (pvt_.numPhases() != satprops_->numPhases()) {
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param)
{
rock_.init(deck, grid);
const int pvt_samples = param.getDefault("pvt_tab_size", 200);
pvt_.init(deck, pvt_samples);
// Unfortunate lack of pointer smartness here...
const int sat_samples = param.getDefault("sat_tab_size", 200);
std::string threephase_model = param.getDefault<std::string>("threephase_model", "simple");
bool use_stone2 = (threephase_model == "stone2");
if (sat_samples > 1) {
if (use_stone2) {
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else {
SaturationPropsFromDeck<SatFuncSimpleUniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleUniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
}
} else {
if (use_stone2) {
SaturationPropsFromDeck<SatFuncStone2Nonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Nonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else {
SaturationPropsFromDeck<SatFuncSimpleNonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleNonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
}
}
if (pvt_.numPhases() != satprops_->numPhases()) {
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
@@ -235,7 +284,7 @@ namespace Opm
double* kr,
double* dkrds) const
{
satprops_.relperm(n, s, cells, kr, dkrds);
satprops_->relperm(n, s, cells, kr, dkrds);
}
@@ -254,7 +303,7 @@ namespace Opm
double* pc,
double* dpcds) const
{
satprops_.capPress(n, s, cells, pc, dpcds);
satprops_->capPress(n, s, cells, pc, dpcds);
}
@@ -270,7 +319,7 @@ namespace Opm
double* smin,
double* smax) const
{
satprops_.satRange(n, cells, smin, smax);
satprops_->satRange(n, cells, smin, smax);
}

View File

@@ -26,6 +26,8 @@
#include <opm/core/fluid/blackoil/BlackoilPvtProperties.hpp>
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <boost/scoped_ptr.hpp>
struct UnstructuredGrid;
@@ -38,13 +40,28 @@ namespace Opm
{
public:
/// Initialize from deck and grid.
/// \param deck Deck input parser
/// \param grid Grid to which property object applies, needed for the
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid);
/// Initialize from deck, grid and parameters.
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
/// \param[in] param Parameters. Accepted parameters include:
/// pvt_tab_size (200) number of uniform sample points for dead-oil pvt tables.
/// sat_tab_size (200) number of uniform sample points for saturation tables.
/// threephase_model("simple") three-phase relperm model (accepts "simple" and "stone2").
/// For both size parameters, a 0 or negative value indicates that no spline fitting is to
/// be done, and the input fluid data used directly for linear interpolation.
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param);
/// Destructor.
virtual ~BlackoilPropertiesFromDeck();
@@ -165,7 +182,7 @@ namespace Opm
private:
RockFromDeck rock_;
BlackoilPvtProperties pvt_;
SaturationPropsFromDeck satprops_;
boost::scoped_ptr<SaturationPropsInterface> satprops_;
mutable std::vector<double> B_;
mutable std::vector<double> dB_;
mutable std::vector<double> R_;

View File

@@ -31,7 +31,7 @@ namespace Opm
{
rock_.init(deck, grid);
pvt_.init(deck);
satprops_.init(deck, grid);
satprops_.init(deck, grid, 200);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesFromDeck::IncompPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");

View File

@@ -135,7 +135,7 @@ namespace Opm
private:
RockFromDeck rock_;
PvtPropertiesIncompFromDeck pvt_;
SaturationPropsFromDeck satprops_;
SaturationPropsFromDeck<SatFuncStone2Uniform> satprops_;
};

View File

@@ -20,9 +20,12 @@
#ifndef OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
#define OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
#include <opm/core/fluid/SaturationPropsInterface.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/UniformTableLinear.hpp>
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
#include <opm/core/fluid/SatFuncStone2.hpp>
#include <opm/core/fluid/SatFuncSimple.hpp>
#include <vector>
struct UnstructuredGrid;
@@ -30,19 +33,31 @@ struct UnstructuredGrid;
namespace Opm
{
class SaturationPropsFromDeck : public BlackoilPhases
/// Interface to saturation functions from deck.
/// Possible values for template argument (for now):
/// SatFuncSetStone2Nonuniform,
/// SatFuncSetStone2Uniform.
/// SatFuncSetSimpleNonuniform,
/// SatFuncSetSimpleUniform.
template <class SatFuncSet>
class SaturationPropsFromDeck : public SaturationPropsInterface
{
public:
/// Default constructor.
SaturationPropsFromDeck();
/// Initialize from deck and grid.
/// \param deck Deck input parser
/// \param grid Grid to which property object applies, needed for the
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
/// \param[in] samples Number of uniform sample points for saturation tables.
/// NOTE: samples will only be used with the SatFuncSetUniform template argument.
void init(const EclipseGridParser& deck,
const UnstructuredGrid& grid);
const UnstructuredGrid& grid,
const int samples);
/// \return P, the number of phases.
int numPhases() const;
@@ -88,30 +103,12 @@ namespace Opm
private:
PhaseUsage phase_usage_;
class SatFuncSet
{
public:
void init(const EclipseGridParser& deck, const int table_num, PhaseUsage phase_usg);
void evalKr(const double* s, double* kr) const;
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
void evalPc(const double* s, double* pc) const;
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
double smin_[PhaseUsage::MaxNumPhases];
double smax_[PhaseUsage::MaxNumPhases];
private:
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
UniformTableLinear<double> krw_;
UniformTableLinear<double> krow_;
UniformTableLinear<double> pcow_;
UniformTableLinear<double> krg_;
UniformTableLinear<double> krog_;
UniformTableLinear<double> pcog_;
double krocw_; // = krow_(s_wc)
};
std::vector<SatFuncSet> satfuncset_;
std::vector<int> cell_to_func_; // = SATNUM - 1
const SatFuncSet& funcForCell(const int cell) const;
typedef SatFuncSet Funcs;
const Funcs& funcForCell(const int cell) const;
};
@@ -119,6 +116,7 @@ namespace Opm
} // namespace Opm
#include <opm/core/fluid/SaturationPropsFromDeck_impl.hpp>
#endif // OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED

View File

@@ -0,0 +1,221 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
#define OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
#include <opm/core/utility/UniformTableLinear.hpp>
#include <opm/core/utility/NonuniformTableLinear.hpp>
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
#include <opm/core/grid.h>
namespace Opm
{
// ----------- Methods of SaturationPropsFromDeck ---------
/// Default constructor.
template <class SatFuncSet>
SaturationPropsFromDeck<SatFuncSet>::SaturationPropsFromDeck()
{
}
/// Initialize from deck.
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::init(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const int samples)
{
phase_usage_ = phaseUsageFromDeck(deck);
// Extract input data.
// Oil phase should be active.
if (!phase_usage_.phase_used[Liquid]) {
THROW("SaturationPropsFromDeck::init() -- oil phase must be active.");
}
// Obtain SATNUM, if it exists, and create cell_to_func_.
// Otherwise, let the cell_to_func_ mapping be just empty.
int satfuncs_expected = 1;
if (deck.hasField("SATNUM")) {
const std::vector<int>& satnum = deck.getIntegerValue("SATNUM");
satfuncs_expected = *std::max_element(satnum.begin(), satnum.end());
const int num_cells = grid.number_of_cells;
cell_to_func_.resize(num_cells);
const int* gc = grid.global_cell;
for (int cell = 0; cell < num_cells; ++cell) {
const int deck_pos = (gc == NULL) ? cell : gc[cell];
cell_to_func_[cell] = satnum[deck_pos] - 1;
}
}
// Find number of tables, check for consistency.
enum { Uninitialized = -1 };
int num_tables = Uninitialized;
if (phase_usage_.phase_used[Aqua]) {
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
num_tables = swof_table.size();
if (num_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SWOF tables, SATNUM specifies at least " << satfuncs_expected);
}
}
if (phase_usage_.phase_used[Vapour]) {
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
int num_sgof_tables = sgof_table.size();
if (num_sgof_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SGOF tables, SATNUM specifies at least " << satfuncs_expected);
}
if (num_tables == Uninitialized) {
num_tables = num_sgof_tables;
} else if (num_tables != num_sgof_tables) {
THROW("Inconsistent number of tables in SWOF and SGOF.");
}
}
// Initialize tables.
satfuncset_.resize(num_tables);
for (int table = 0; table < num_tables; ++table) {
satfuncset_[table].init(deck, table, phase_usage_, samples);
}
}
/// \return P, the number of phases.
template <class SatFuncSet>
int SaturationPropsFromDeck<SatFuncSet>::numPhases() const
{
return phase_usage_.num_phases;
}
/// Relative permeability.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
if (dkrds) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalKrDeriv(s + np*i, kr + np*i, dkrds + np*np*i);
}
} else {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalKr(s + np*i, kr + np*i);
}
}
}
/// Capillary pressure.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
if (dpcds) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalPcDeriv(s + np*i, pc + np*i, dpcds + np*np*i);
}
} else {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalPc(s + np*i, pc + np*i);
}
}
}
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::satRange(const int n,
const int* cells,
double* smin,
double* smax) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
for (int i = 0; i < n; ++i) {
for (int p = 0; p < np; ++p) {
smin[np*i + p] = funcForCell(cells[i]).smin_[p];
smax[np*i + p] = funcForCell(cells[i]).smax_[p];
}
}
}
// Map the cell number to the correct function set.
template <class SatFuncSet>
const typename SaturationPropsFromDeck<SatFuncSet>::Funcs&
SaturationPropsFromDeck<SatFuncSet>::funcForCell(const int cell) const
{
return cell_to_func_.empty() ? satfuncset_[0] : satfuncset_[cell_to_func_[cell]];
}
} // namespace Opm
#endif // OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED

View File

@@ -0,0 +1,85 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED
#define OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
namespace Opm
{
class SaturationPropsInterface : public BlackoilPhases
{
public:
/// Virtual destructor.
virtual ~SaturationPropsInterface() {};
/// \return P, the number of phases.
virtual int numPhases() const = 0;
/// Relative permeability.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
virtual void relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const = 0;
/// Capillary pressure.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
virtual void capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const = 0;
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
virtual void satRange(const int n,
const int* cells,
double* smin,
double* smax) const = 0;
};
} // namespace Opm
#endif // OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED

View File

@@ -47,7 +47,13 @@ namespace Opm
BlackoilPvtProperties();
/// Initialize from deck.
void init(const EclipseGridParser& deck);
/// \param deck An input deck.
/// \param samples If greater than zero, indicates the number of
/// uniform samples to be taken from monotone spline
/// curves interpolating the fluid data.
/// Otherwise, interpolate linearly in the original
/// data without fitting a spline.
void init(const EclipseGridParser& deck, const int samples);
/// Number of active phases.
int numPhases() const;

View File

@@ -90,14 +90,13 @@ namespace Opm
bool singularPressure() const;
private:
void computePerSolveDynamicData(const double dt,
virtual void computePerSolveDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeWellPotentials(const BlackoilState& state);
void computePerIterationDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeCellDynamicData(const double dt,
virtual void computeCellDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeFaceDynamicData(const double dt,
@@ -114,6 +113,8 @@ namespace Opm
double incrementNorm() const;
void computeResults(BlackoilState& state,
WellState& well_state) const;
protected:
void computeWellPotentials(const BlackoilState& state);
// ------ Data that will remain unmodified after construction. ------
const UnstructuredGrid& grid_;

View File

@@ -124,7 +124,7 @@ namespace Opm
//
// [[ incompressible was: r(s) = s - s0 + dt/pv*( influx + outflux*f(s) ) ]]
//
// r(s) = s - B*z0 + dt/pv*( influx + outflux*f(s) )
// r(s) = s - B*z0 + s*(poro - poro0)/poro0 + dt/pv*( influx + outflux*f(s) )
//
// @@@ What about the source term
//

View File

@@ -512,11 +512,11 @@ namespace Opm
State& state)
{
const int num_phases = props.numPhases();
if (num_phases != 2) {
THROW("initStateFromDeck(): currently handling only two-phase scenarios.");
}
state.init(grid, num_phases);
if (deck.hasField("EQUIL")) {
if (num_phases != 2) {
THROW("initStateFromDeck(): EQUIL-based init currently handling only two-phase scenarios.");
}
// Set saturations depending on oil-water contact.
const EQUIL& equil= deck.getEQUIL();
if (equil.equil.size() != 1) {
@@ -535,12 +535,28 @@ namespace Opm
const std::vector<double>& sw_deck = deck.getFloatingPointValue("SWAT");
const std::vector<double>& p_deck = deck.getFloatingPointValue("PRESSURE");
const int num_cells = grid.number_of_cells;
if (num_phases == 2) {
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
s[2*c] = sw_deck[c_deck];
s[2*c + 1] = 1.0 - s[2*c];
p[c] = p_deck[c_deck];
}
} else if (num_phases == 3) {
if (!deck.hasField("SGAS")) {
THROW("initStateFromDeck(): missing SGAS keyword in 3-phase init (only SWAT and PRESSURE found).");
}
const std::vector<double>& sg_deck = deck.getFloatingPointValue("SGAS");
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
s[3*c] = sw_deck[c_deck];
s[3*c + 1] = 1.0 - (sw_deck[c_deck] + sg_deck[c_deck]);
s[3*c + 2] = sg_deck[c_deck];
p[c] = p_deck[c_deck];
}
} else {
THROW("initStateFromDeck(): init with SWAT etc. only available with 2 or 3 phases.");
}
} else {
THROW("initStateFromDeck(): we must either have EQUIL, or both SWAT and PRESSURE.");
}

View File

@@ -70,6 +70,25 @@ namespace Opm
}
}
/// @brief Computes porosity of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity_standard array of grid.number_of_cells porosity values (at standard conditions)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porosity porosity (at reservoir condition)
void computePorosity(const UnstructuredGrid& grid,
const double* porosity_standard,
const RockCompressibility& rock_comp,
const std::vector<double>& pressure,
std::vector<double>& porosity)
{
int num_cells = grid.number_of_cells;
porosity.resize(num_cells);
for (int i = 0; i < num_cells; ++i) {
porosity[i] = porosity_standard[i]*rock_comp.poroMult(pressure[i]);
}
}
/// @brief Computes total saturated volumes over all grid cells.
/// @param[in] pv the pore volume by cell.
@@ -574,8 +593,10 @@ namespace Opm
{
int nw = well_bhp.size();
ASSERT(nw == wells.number_of_wells);
if (props.numPhases() != 2) {
THROW("WellReport for now assumes two phase flow.");
int np = props.numPhases();
const int max_np = 3;
if (np > max_np) {
THROW("WellReport for now assumes #phases <= " << max_np);
}
const double* visc = props.viscosity();
std::vector<double> data_now;
@@ -586,7 +607,8 @@ namespace Opm
double well_rate_total = 0.0;
double well_rate_water = 0.0;
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w + 1]; ++perf) {
const double perf_rate = well_perfrates[perf]*(unit::day/unit::second);
const double perf_rate = unit::convert::to(well_perfrates[perf],
unit::cubic(unit::meter)/unit::day);
well_rate_total += perf_rate;
if (perf_rate > 0.0) {
// Injection.
@@ -594,11 +616,14 @@ namespace Opm
} else {
// Production.
const int cell = wells.well_cells[perf];
double mob[2];
double mob[max_np];
props.relperm(1, &saturation[2*cell], &cell, mob, 0);
mob[0] /= visc[0];
mob[1] /= visc[1];
const double fracflow = mob[0]/(mob[0] + mob[1]);
double tmob = 0;
for(int i = 0; i < np; ++i) {
mob[i] /= visc[i];
tmob += mob[i];
}
const double fracflow = mob[0]/tmob;
well_rate_water += perf_rate*fracflow;
}
}
@@ -627,8 +652,10 @@ namespace Opm
// TODO: refactor, since this is almost identical to the other push().
int nw = well_bhp.size();
ASSERT(nw == wells.number_of_wells);
if (props.numPhases() != 2) {
THROW("WellReport for now assumes two phase flow.");
int np = props.numPhases();
const int max_np = 3;
if (np > max_np) {
THROW("WellReport for now assumes #phases <= " << max_np);
}
std::vector<double> data_now;
data_now.reserve(1 + 3*nw);
@@ -638,7 +665,8 @@ namespace Opm
double well_rate_total = 0.0;
double well_rate_water = 0.0;
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w + 1]; ++perf) {
const double perf_rate = well_perfrates[perf]*(unit::day/unit::second);
const double perf_rate = unit::convert::to(well_perfrates[perf],
unit::cubic(unit::meter)/unit::day);
well_rate_total += perf_rate;
if (perf_rate > 0.0) {
// Injection.
@@ -646,13 +674,16 @@ namespace Opm
} else {
// Production.
const int cell = wells.well_cells[perf];
double mob[2];
props.relperm(1, &s[2*cell], &cell, mob, 0);
double visc[2];
props.viscosity(1, &p[cell], &z[2*cell], &cell, visc, 0);
mob[0] /= visc[0];
mob[1] /= visc[1];
const double fracflow = mob[0]/(mob[0] + mob[1]);
double mob[max_np];
props.relperm(1, &s[np*cell], &cell, mob, 0);
double visc[max_np];
props.viscosity(1, &p[cell], &z[np*cell], &cell, visc, 0);
double tmob = 0;
for(int i = 0; i < np; ++i) {
mob[i] /= visc[i];
tmob += mob[i];
}
const double fracflow = mob[0]/(tmob);
well_rate_water += perf_rate*fracflow;
}
}

View File

@@ -44,7 +44,7 @@ namespace Opm
/// @brief Computes pore volume of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity array of grid.number_of_cells porosity values
/// @param[in] porosity array of grid.number_of_cells porosity values (at reference pressure)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porevol the pore volume by cell.
@@ -54,6 +54,17 @@ namespace Opm
const std::vector<double>& pressure,
std::vector<double>& porevol);
/// @brief Computes porosity of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity_standard array of grid.number_of_cells porosity values (at reference presure)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porosity porosity (at reservoir condition)
void computePorosity(const UnstructuredGrid& grid,
const double* porosity_standard,
const RockCompressibility& rock_comp,
const std::vector<double>& pressure,
std::vector<double>& porosity);
/// @brief Computes total saturated volumes over all grid cells.
/// @param[in] pv the pore volume by cell.