Merge branch 'master' into reorder_tof

This commit is contained in:
Atgeirr Flø Rasmussen
2012-09-05 12:32:38 +02:00
29 changed files with 1030 additions and 595 deletions

View File

@@ -26,20 +26,20 @@ namespace Opm
{
BlackoilPropertiesBasic::BlackoilPropertiesBasic(const parameter::ParameterGroup& param,
const int dim,
const int num_cells)
const int dim,
const int num_cells)
{
double poro = param.getDefault("porosity", 1.0);
using namespace Opm::unit;
using namespace Opm::prefix;
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
double poro = param.getDefault("porosity", 1.0);
using namespace Opm::unit;
using namespace Opm::prefix;
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
rock_.init(dim, num_cells, poro, perm);
pvt_.init(param);
pvt_.init(param);
satprops_.init(param);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
}
BlackoilPropertiesBasic::~BlackoilPropertiesBasic()
@@ -90,11 +90,11 @@ namespace Opm
/// \param[out] dmudp If non-null: array of nP viscosity derivative values,
/// array must be valid before calling.
void BlackoilPropertiesBasic::viscosity(const int n,
const double* p,
const double* z,
const int* /*cells*/,
double* mu,
double* dmudp) const
const double* p,
const double* z,
const int* /*cells*/,
double* mu,
double* dmudp) const
{
if (dmudp) {
THROW("BlackoilPropertiesBasic::viscosity() -- derivatives of viscosity not yet implemented.");
@@ -114,16 +114,16 @@ namespace Opm
/// array must be valid before calling. The matrices are output
/// in Fortran order.
void BlackoilPropertiesBasic::matrix(const int n,
const double* /*p*/,
const double* /*z*/,
const int* /*cells*/,
double* A,
double* dAdp) const
const double* /*p*/,
const double* /*z*/,
const int* /*cells*/,
double* A,
double* dAdp) const
{
const int np = numPhases();
ASSERT(np <= 2);
double B[2]; // Must be enough since component classes do not handle more than 2.
pvt_.B(1, 0, 0, B);
const int np = numPhases();
ASSERT(np <= 2);
double B[2]; // Must be enough since component classes do not handle more than 2.
pvt_.B(1, 0, 0, B);
// Compute A matrix
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
@@ -152,8 +152,8 @@ namespace Opm
/// of a call to the method matrix().
/// \param[out] rho Array of nP density values, array must be valid before calling.
void BlackoilPropertiesBasic::density(const int n,
const double* A,
double* rho) const
const double* A,
double* rho) const
{
const int np = numPhases();
const double* sdens = pvt_.surfaceDensities();
@@ -186,10 +186,10 @@ namespace Opm
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void BlackoilPropertiesBasic::relperm(const int n,
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const
{
satprops_.relperm(n, s, kr, dkrds);
}
@@ -205,10 +205,10 @@ namespace Opm
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void BlackoilPropertiesBasic::capPress(const int n,
const double* s,
const int* /*cells*/,
double* pc,
double* dpcds) const
const double* s,
const int* /*cells*/,
double* pc,
double* dpcds) const
{
satprops_.capPress(n, s, pc, dpcds);
}
@@ -226,7 +226,7 @@ namespace Opm
double* smin,
double* smax) const
{
satprops_.satRange(n, smin, smax);
satprops_.satRange(n, smin, smax);
}

View File

@@ -35,16 +35,16 @@ namespace Opm
{
public:
/// Construct from parameters.
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
/// porosity (1.0) Porosity
/// permeability (100.0) Permeability in mD
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
/// porosity (1.0) Porosity
/// permeability (100.0) Permeability in mD
BlackoilPropertiesBasic(const parameter::ParameterGroup& param,
const int dim,
const int num_cells);
const int dim,
const int num_cells);
/// Destructor.
virtual ~BlackoilPropertiesBasic();
@@ -151,7 +151,7 @@ namespace Opm
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.

View File

@@ -18,6 +18,7 @@
*/
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
namespace Opm
{
@@ -26,12 +27,60 @@ namespace Opm
const UnstructuredGrid& grid)
{
rock_.init(deck, grid);
pvt_.init(deck);
satprops_.init(deck, grid);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
pvt_.init(deck, 200);
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, 200);
if (pvt_.numPhases() != satprops_->numPhases()) {
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param)
{
rock_.init(deck, grid);
const int pvt_samples = param.getDefault("pvt_tab_size", 200);
pvt_.init(deck, pvt_samples);
// Unfortunate lack of pointer smartness here...
const int sat_samples = param.getDefault("sat_tab_size", 200);
std::string threephase_model = param.getDefault<std::string>("threephase_model", "simple");
bool use_stone2 = (threephase_model == "stone2");
if (sat_samples > 1) {
if (use_stone2) {
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else {
SaturationPropsFromDeck<SatFuncSimpleUniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleUniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
}
} else {
if (use_stone2) {
SaturationPropsFromDeck<SatFuncStone2Nonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncStone2Nonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
} else {
SaturationPropsFromDeck<SatFuncSimpleNonuniform>* ptr
= new SaturationPropsFromDeck<SatFuncSimpleNonuniform>();
satprops_.reset(ptr);
ptr->init(deck, grid, sat_samples);
}
}
if (pvt_.numPhases() != satprops_->numPhases()) {
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
}
BlackoilPropertiesFromDeck::~BlackoilPropertiesFromDeck()
@@ -235,7 +284,7 @@ namespace Opm
double* kr,
double* dkrds) const
{
satprops_.relperm(n, s, cells, kr, dkrds);
satprops_->relperm(n, s, cells, kr, dkrds);
}
@@ -254,7 +303,7 @@ namespace Opm
double* pc,
double* dpcds) const
{
satprops_.capPress(n, s, cells, pc, dpcds);
satprops_->capPress(n, s, cells, pc, dpcds);
}
@@ -270,7 +319,7 @@ namespace Opm
double* smin,
double* smax) const
{
satprops_.satRange(n, cells, smin, smax);
satprops_->satRange(n, cells, smin, smax);
}

View File

@@ -26,6 +26,8 @@
#include <opm/core/fluid/blackoil/BlackoilPvtProperties.hpp>
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <boost/scoped_ptr.hpp>
struct UnstructuredGrid;
@@ -38,13 +40,28 @@ namespace Opm
{
public:
/// Initialize from deck and grid.
/// \param deck Deck input parser
/// \param grid Grid to which property object applies, needed for the
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid);
/// Initialize from deck, grid and parameters.
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
/// \param[in] param Parameters. Accepted parameters include:
/// pvt_tab_size (200) number of uniform sample points for dead-oil pvt tables.
/// sat_tab_size (200) number of uniform sample points for saturation tables.
/// threephase_model("simple") three-phase relperm model (accepts "simple" and "stone2").
/// For both size parameters, a 0 or negative value indicates that no spline fitting is to
/// be done, and the input fluid data used directly for linear interpolation.
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const parameter::ParameterGroup& param);
/// Destructor.
virtual ~BlackoilPropertiesFromDeck();
@@ -150,9 +167,9 @@ namespace Opm
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
@@ -165,7 +182,7 @@ namespace Opm
private:
RockFromDeck rock_;
BlackoilPvtProperties pvt_;
SaturationPropsFromDeck satprops_;
boost::scoped_ptr<SaturationPropsInterface> satprops_;
mutable std::vector<double> B_;
mutable std::vector<double> dB_;
mutable std::vector<double> R_;

View File

@@ -138,9 +138,9 @@ namespace Opm
double* dpcds) const = 0;
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.

View File

@@ -28,22 +28,22 @@ namespace Opm
{
IncompPropertiesBasic::IncompPropertiesBasic(const parameter::ParameterGroup& param,
const int dim,
const int num_cells)
const int dim,
const int num_cells)
{
double poro = param.getDefault("porosity", 1.0);
using namespace Opm::unit;
using namespace Opm::prefix;
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
double poro = param.getDefault("porosity", 1.0);
using namespace Opm::unit;
using namespace Opm::prefix;
double perm = param.getDefault("permeability", 100.0)*milli*darcy;
rock_.init(dim, num_cells, poro, perm);
pvt_.init(param);
pvt_.init(param);
satprops_.init(param);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
viscosity_.resize(pvt_.numPhases());
pvt_.mu(1, 0, 0, &viscosity_[0]);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
viscosity_.resize(pvt_.numPhases());
pvt_.mu(1, 0, 0, &viscosity_[0]);
}
IncompPropertiesBasic::IncompPropertiesBasic(const int num_phases,
@@ -56,14 +56,14 @@ namespace Opm
const int num_cells)
{
rock_.init(dim, num_cells, por, perm);
pvt_.init(num_phases, rho, mu);
pvt_.init(num_phases, rho, mu);
satprops_.init(num_phases, relpermfunc);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
viscosity_.resize(pvt_.numPhases());
pvt_.mu(1, 0, 0, &viscosity_[0]);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesBasic::IncompPropertiesBasic() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
viscosity_.resize(pvt_.numPhases());
pvt_.mu(1, 0, 0, &viscosity_[0]);
}
IncompPropertiesBasic::~IncompPropertiesBasic()
@@ -109,7 +109,7 @@ namespace Opm
/// \return Array of P viscosity values.
const double* IncompPropertiesBasic::viscosity() const
{
return &viscosity_[0];
return &viscosity_[0];
}
/// \return Array of P density values.
@@ -117,7 +117,7 @@ namespace Opm
{
// No difference between reservoir and surface densities
// modelled by this class.
return pvt_.surfaceDensities();
return pvt_.surfaceDensities();
}
/// \return Array of P density values.
@@ -125,7 +125,7 @@ namespace Opm
{
// No difference between reservoir and surface densities
// modelled by this class.
return pvt_.surfaceDensities();
return pvt_.surfaceDensities();
}
/// \param[in] n Number of data points.
@@ -138,10 +138,10 @@ namespace Opm
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
void IncompPropertiesBasic::relperm(const int n,
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const
const double* s,
const int* /*cells*/,
double* kr,
double* dkrds) const
{
satprops_.relperm(n, s, kr, dkrds);
}
@@ -157,10 +157,10 @@ namespace Opm
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
void IncompPropertiesBasic::capPress(const int n,
const double* s,
const int* /*cells*/,
double* pc,
double* dpcds) const
const double* s,
const int* /*cells*/,
double* pc,
double* dpcds) const
{
satprops_.capPress(n, s, pc, dpcds);
}
@@ -174,11 +174,11 @@ namespace Opm
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void IncompPropertiesBasic::satRange(const int n,
const int* /*cells*/,
double* smin,
double* smax) const
const int* /*cells*/,
double* smin,
double* smax) const
{
satprops_.satRange(n, smin, smax);
satprops_.satRange(n, smin, smax);
}
} // namespace Opm

View File

@@ -42,29 +42,29 @@ namespace Opm
{
public:
/// Construct from parameters.
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
/// porosity (1.0) Porosity
/// permeability (100.0) Permeability in mD
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
/// porosity (1.0) Porosity
/// permeability (100.0) Permeability in mD
IncompPropertiesBasic(const parameter::ParameterGroup& param,
const int dim,
const int num_cells);
const int dim,
const int num_cells);
/// Construct from arguments a basic two phase fluid.
IncompPropertiesBasic(const int num_phases,
const SaturationPropsBasic::RelPermFunc& relpermfunc,
const std::vector<double>& rho,
const std::vector<double>& mu,
const std::vector<double>& mu,
const double porosity,
const double permeability,
const int dim,
const int num_cells);
const int num_cells);
/// Destructor.
/// Destructor.
virtual ~IncompPropertiesBasic();
// ---- Rock interface ----
@@ -132,9 +132,9 @@ namespace Opm
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
@@ -145,9 +145,9 @@ namespace Opm
double* smax) const;
private:
RockBasic rock_;
PvtPropertiesBasic pvt_;
PvtPropertiesBasic pvt_;
SaturationPropsBasic satprops_;
std::vector<double> viscosity_;
std::vector<double> viscosity_;
};

View File

@@ -27,15 +27,15 @@ namespace Opm
{
IncompPropertiesFromDeck::IncompPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid)
const UnstructuredGrid& grid)
{
rock_.init(deck, grid);
pvt_.init(deck);
satprops_.init(deck, grid);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesFromDeck::IncompPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
pvt_.init(deck);
satprops_.init(deck, grid, 200);
if (pvt_.numPhases() != satprops_.numPhases()) {
THROW("IncompPropertiesFromDeck::IncompPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
}
}
IncompPropertiesFromDeck::~IncompPropertiesFromDeck()
@@ -81,19 +81,19 @@ namespace Opm
/// \return Array of P viscosity values.
const double* IncompPropertiesFromDeck::viscosity() const
{
return pvt_.viscosity();
return pvt_.viscosity();
}
/// \return Array of P density values.
const double* IncompPropertiesFromDeck::density() const
{
return pvt_.reservoirDensities();
return pvt_.reservoirDensities();
}
/// \return Array of P density values.
const double* IncompPropertiesFromDeck::surfaceDensity() const
{
return pvt_.surfaceDensities();
return pvt_.surfaceDensities();
}
/// \param[in] n Number of data points.
@@ -106,10 +106,10 @@ namespace Opm
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
void IncompPropertiesFromDeck::relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const
const double* s,
const int* cells,
double* kr,
double* dkrds) const
{
satprops_.relperm(n, s, cells, kr, dkrds);
}
@@ -125,10 +125,10 @@ namespace Opm
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m_01 ...)
void IncompPropertiesFromDeck::capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const
const double* s,
const int* cells,
double* pc,
double* dpcds) const
{
satprops_.capPress(n, s, cells, pc, dpcds);
}
@@ -142,11 +142,11 @@ namespace Opm
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void IncompPropertiesFromDeck::satRange(const int n,
const int* cells,
double* smin,
double* smax) const
const int* cells,
double* smin,
double* smax) const
{
satprops_.satRange(n, cells, smin, smax);
satprops_.satRange(n, cells, smin, smax);
}
} // namespace Opm

View File

@@ -47,13 +47,13 @@ namespace Opm
public:
/// Initialize from deck and grid.
/// \param deck Deck input parser
/// \param grid Grid to which property object applies, needed for the
/// \param grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
IncompPropertiesFromDeck(const EclipseGridParser& deck,
const UnstructuredGrid& grid);
const UnstructuredGrid& grid);
/// Destructor.
/// Destructor.
virtual ~IncompPropertiesFromDeck();
// ---- Rock interface ----
@@ -121,9 +121,9 @@ namespace Opm
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
@@ -134,8 +134,8 @@ namespace Opm
double* smax) const;
private:
RockFromDeck rock_;
PvtPropertiesIncompFromDeck pvt_;
SaturationPropsFromDeck satprops_;
PvtPropertiesIncompFromDeck pvt_;
SaturationPropsFromDeck<SatFuncStone2Uniform> satprops_;
};

View File

@@ -109,9 +109,9 @@ namespace Opm
double* pc,
double* dpcds) const = 0;
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// Obtain the range of allowable saturation values.
/// In cell cells[i], saturation of phase p is allowed to be
/// in the interval [smin[i*P + p], smax[i*P + p]].
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.

View File

@@ -34,41 +34,41 @@ namespace Opm
void PvtPropertiesBasic::init(const parameter::ParameterGroup& param)
{
int num_phases = param.getDefault("num_phases", 2);
if (num_phases > 3 || num_phases < 1) {
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
}
density_.resize(num_phases);
viscosity_.resize(num_phases);
// We currently do not allow the user to set B.
formation_volume_factor_.clear();
formation_volume_factor_.resize(num_phases, 1.0);
int num_phases = param.getDefault("num_phases", 2);
if (num_phases > 3 || num_phases < 1) {
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
}
density_.resize(num_phases);
viscosity_.resize(num_phases);
// We currently do not allow the user to set B.
formation_volume_factor_.clear();
formation_volume_factor_.resize(num_phases, 1.0);
// Setting mu and rho from parameters
using namespace Opm::prefix;
using namespace Opm::unit;
const double kgpm3 = kilogram/cubic(meter);
const double cP = centi*Poise;
std::string rname[3] = { "rho1", "rho2", "rho3" };
double rdefault[3] = { 1.0e3, 1.0e3, 1.0e3 };
std::string vname[3] = { "mu1", "mu2", "mu3" };
double vdefault[3] = { 1.0, 1.0, 1.0 };
for (int phase = 0; phase < num_phases; ++phase) {
density_[phase] = kgpm3*param.getDefault(rname[phase], rdefault[phase]);
viscosity_[phase] = cP*param.getDefault(vname[phase], vdefault[phase]);
}
// Setting mu and rho from parameters
using namespace Opm::prefix;
using namespace Opm::unit;
const double kgpm3 = kilogram/cubic(meter);
const double cP = centi*Poise;
std::string rname[3] = { "rho1", "rho2", "rho3" };
double rdefault[3] = { 1.0e3, 1.0e3, 1.0e3 };
std::string vname[3] = { "mu1", "mu2", "mu3" };
double vdefault[3] = { 1.0, 1.0, 1.0 };
for (int phase = 0; phase < num_phases; ++phase) {
density_[phase] = kgpm3*param.getDefault(rname[phase], rdefault[phase]);
viscosity_[phase] = cP*param.getDefault(vname[phase], vdefault[phase]);
}
}
void PvtPropertiesBasic::init(const int num_phases,
const std::vector<double>& rho,
const std::vector<double>& visc)
{
if (num_phases > 3 || num_phases < 1) {
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
}
// We currently do not allow the user to set B.
formation_volume_factor_.clear();
formation_volume_factor_.resize(num_phases, 1.0);
if (num_phases > 3 || num_phases < 1) {
THROW("PvtPropertiesBasic::init() illegal num_phases: " << num_phases);
}
// We currently do not allow the user to set B.
formation_volume_factor_.clear();
formation_volume_factor_.resize(num_phases, 1.0);
density_ = rho;
viscosity_ = visc;
}
@@ -87,69 +87,69 @@ namespace Opm
void PvtPropertiesBasic::mu(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_mu) const
const double* /*p*/,
const double* /*z*/,
double* output_mu) const
{
const int np = numPhases();
const int np = numPhases();
for (int phase = 0; phase < np; ++phase) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_mu[np*i + phase] = viscosity_[phase];
}
}
}
}
void PvtPropertiesBasic::B(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_B) const
const double* /*p*/,
const double* /*z*/,
double* output_B) const
{
const int np = numPhases();
const int np = numPhases();
for (int phase = 0; phase < np; ++phase) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_B[np*i + phase] = formation_volume_factor_[phase];
}
}
}
}
void PvtPropertiesBasic::dBdp(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_B,
double* output_dBdp) const
const double* /*p*/,
const double* /*z*/,
double* output_B,
double* output_dBdp) const
{
const int np = numPhases();
const int np = numPhases();
for (int phase = 0; phase < np; ++phase) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
output_B[np*i + phase] = formation_volume_factor_[phase];
output_dBdp[np*i + phase] = 0.0;
}
}
}
}
void PvtPropertiesBasic::R(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_R) const
const double* /*p*/,
const double* /*z*/,
double* output_R) const
{
const int np = numPhases();
std::fill(output_R, output_R + n*np, 0.0);
const int np = numPhases();
std::fill(output_R, output_R + n*np, 0.0);
}
void PvtPropertiesBasic::dRdp(const int n,
const double* /*p*/,
const double* /*z*/,
double* output_R,
double* output_dRdp) const
const double* /*p*/,
const double* /*z*/,
double* output_R,
double* output_dRdp) const
{
const int np = numPhases();
std::fill(output_R, output_R + n*np, 0.0);
std::fill(output_dRdp, output_dRdp + n*np, 0.0);
const int np = numPhases();
std::fill(output_R, output_R + n*np, 0.0);
std::fill(output_dRdp, output_dRdp + n*np, 0.0);
}
} // namespace Opm

View File

@@ -38,11 +38,11 @@ namespace Opm
PvtPropertiesBasic();
/// Initialize from parameters.
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1, 2 or 3.
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
void init(const parameter::ParameterGroup& param);
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1, 2 or 3.
/// rho1 [rho2, rho3] (1.0e3) Density in kg/m^3
/// mu1 [mu2, mu3] (1.0) Viscosity in cP
void init(const parameter::ParameterGroup& param);
/// Initialize from arguments.
/// Basic multi phase fluid pvt properties.
@@ -55,7 +55,7 @@ namespace Opm
/// Densities of stock components at surface conditions.
/// \return Array of size numPhases().
const double* surfaceDensities() const;
const double* surfaceDensities() const;
/// Viscosity as a function of p and z.
void mu(const int n,
@@ -90,9 +90,9 @@ namespace Opm
double* output_dRdp) const;
private:
std::vector<double> density_;
std::vector<double> viscosity_;
std::vector<double> formation_volume_factor_;
std::vector<double> density_;
std::vector<double> viscosity_;
std::vector<double> formation_volume_factor_;
};
}

View File

@@ -38,54 +38,54 @@ namespace Opm
{
typedef std::vector<std::vector<std::vector<double> > > table_t;
// If we need multiple regions, this class and the SinglePvt* classes must change.
int region_number = 0;
int region_number = 0;
PhaseUsage phase_usage = phaseUsageFromDeck(deck);
if (phase_usage.phase_used[PhaseUsage::Vapour] ||
!phase_usage.phase_used[PhaseUsage::Aqua] ||
!phase_usage.phase_used[PhaseUsage::Liquid]) {
THROW("PvtPropertiesIncompFromDeck::init() -- must have gas and oil phases (only) in deck input.\n");
}
if (phase_usage.phase_used[PhaseUsage::Vapour] ||
!phase_usage.phase_used[PhaseUsage::Aqua] ||
!phase_usage.phase_used[PhaseUsage::Liquid]) {
THROW("PvtPropertiesIncompFromDeck::init() -- must have gas and oil phases (only) in deck input.\n");
}
// Surface densities. Accounting for different orders in eclipse and our code.
if (deck.hasField("DENSITY")) {
const std::vector<double>& d = deck.getDENSITY().densities_[region_number];
enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 };
surface_density_[phase_usage.phase_pos[PhaseUsage::Aqua]] = d[ECL_water];
surface_density_[phase_usage.phase_pos[PhaseUsage::Liquid]] = d[ECL_oil];
} else {
THROW("Input is missing DENSITY\n");
}
// Surface densities. Accounting for different orders in eclipse and our code.
if (deck.hasField("DENSITY")) {
const std::vector<double>& d = deck.getDENSITY().densities_[region_number];
enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 };
surface_density_[phase_usage.phase_pos[PhaseUsage::Aqua]] = d[ECL_water];
surface_density_[phase_usage.phase_pos[PhaseUsage::Liquid]] = d[ECL_oil];
} else {
THROW("Input is missing DENSITY\n");
}
// Make reservoir densities the same as surface densities initially.
// We will modify them with formation volume factors if found.
reservoir_density_ = surface_density_;
// Water viscosity.
if (deck.hasField("PVTW")) {
const std::vector<double>& pvtw = deck.getPVTW().pvtw_[region_number];
if (pvtw[2] != 0.0 || pvtw[4] != 0.0) {
MESSAGE("Compressibility effects in PVTW are ignored.");
}
if (deck.hasField("PVTW")) {
const std::vector<double>& pvtw = deck.getPVTW().pvtw_[region_number];
if (pvtw[2] != 0.0 || pvtw[4] != 0.0) {
MESSAGE("Compressibility effects in PVTW are ignored.");
}
reservoir_density_[phase_usage.phase_pos[PhaseUsage::Aqua]] /= pvtw[1];
viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = pvtw[3];
} else {
// Eclipse 100 default.
// viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = 0.5*Opm::prefix::centi*Opm::unit::Poise;
THROW("Input is missing PVTW\n");
}
viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = pvtw[3];
} else {
// Eclipse 100 default.
// viscosity_[phase_usage.phase_pos[PhaseUsage::Aqua]] = 0.5*Opm::prefix::centi*Opm::unit::Poise;
THROW("Input is missing PVTW\n");
}
// Oil viscosity.
if (deck.hasField("PVCDO")) {
const std::vector<double>& pvcdo = deck.getPVCDO().pvcdo_[region_number];
if (pvcdo[2] != 0.0 || pvcdo[4] != 0.0) {
MESSAGE("Compressibility effects in PVCDO are ignored.");
}
if (deck.hasField("PVCDO")) {
const std::vector<double>& pvcdo = deck.getPVCDO().pvcdo_[region_number];
if (pvcdo[2] != 0.0 || pvcdo[4] != 0.0) {
MESSAGE("Compressibility effects in PVCDO are ignored.");
}
reservoir_density_[phase_usage.phase_pos[PhaseUsage::Liquid]] /= pvcdo[1];
viscosity_[phase_usage.phase_pos[PhaseUsage::Liquid]] = pvcdo[3];
} else {
THROW("Input is missing PVCDO\n");
}
viscosity_[phase_usage.phase_pos[PhaseUsage::Liquid]] = pvcdo[3];
} else {
THROW("Input is missing PVCDO\n");
}
}
const double* PvtPropertiesIncompFromDeck::surfaceDensities() const

View File

@@ -39,14 +39,14 @@ namespace Opm
PvtPropertiesIncompFromDeck();
/// Initialize from deck.
void init(const EclipseGridParser& deck);
void init(const EclipseGridParser& deck);
/// Number of active phases.
int numPhases() const;
/// Densities of stock components at surface conditions.
/// \return Array of size numPhases().
const double* surfaceDensities() const;
const double* surfaceDensities() const;
/// Densities of stock components at reservoir conditions.
/// Note: a reasonable question to ask is why there can be
@@ -58,15 +58,15 @@ namespace Opm
/// reporting and using data given in terms of surface values,
/// we need to handle this difference.
/// \return Array of size numPhases().
const double* reservoirDensities() const;
const double* reservoirDensities() const;
/// Viscosities.
const double* viscosity() const;
private:
std::tr1::array<double, 2> surface_density_;
std::tr1::array<double, 2> reservoir_density_;
std::tr1::array<double, 2> viscosity_;
std::tr1::array<double, 2> surface_density_;
std::tr1::array<double, 2> reservoir_density_;
std::tr1::array<double, 2> viscosity_;
};
}

View File

@@ -35,9 +35,9 @@ namespace Opm
/// Initialize with homogenous porosity and permeability.
void init(const int dimensions,
const int num_cells,
const double poro,
const double perm);
const int num_cells,
const double poro,
const double perm);
/// \return D, the number of spatial dimensions.
int numDimensions() const
@@ -66,7 +66,7 @@ namespace Opm
}
private:
int dimensions_;
int dimensions_;
std::vector<double> porosity_;
std::vector<double> permeability_;
};

View File

@@ -69,8 +69,8 @@ namespace Opm
const double cpnorm = rock_comp_*(pressure - pref_);
return (1.0 + cpnorm + 0.5*cpnorm*cpnorm);
} else {
// return Opm::linearInterpolation(p_, poromult_, pressure);
return Opm::linearInterpolationExtrap(p_, poromult_, pressure);
// return Opm::linearInterpolation(p_, poromult_, pressure);
return Opm::linearInterpolationExtrap(p_, poromult_, pressure);
}
}
@@ -81,7 +81,7 @@ namespace Opm
} else {
//const double poromult = Opm::linearInterpolation(p_, poromult_, pressure);
//const double dporomultdp = Opm::linearInterpolationDerivative(p_, poromult_, pressure);
const double poromult = Opm::linearInterpolationExtrap(p_, poromult_, pressure);
const double poromult = Opm::linearInterpolationExtrap(p_, poromult_, pressure);
const double dporomultdp = Opm::linearInterpolationDerivativeExtrap(p_, poromult_, pressure);
return dporomultdp/poromult;

View File

@@ -51,7 +51,7 @@ namespace Opm
/// Initialize from deck and cell mapping.
/// \param deck Deck input parser
/// \param grid grid to which property object applies, needed for the
/// \param grid grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
void RockFromDeck::init(const EclipseGridParser& deck,

View File

@@ -37,7 +37,7 @@ namespace Opm
/// Initialize from deck and grid.
/// \param deck Deck input parser
/// \param grid Grid to which property object applies, needed for the
/// \param grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
void init(const EclipseGridParser& deck,

View File

@@ -29,64 +29,64 @@ namespace Opm
namespace {
struct KrFunConstant
{
double kr(double)
{
return 1.0;
}
double dkrds(double)
{
return 0.0;
}
};
struct KrFunConstant
{
double kr(double)
{
return 1.0;
}
double dkrds(double)
{
return 0.0;
}
};
struct KrFunLinear
{
double kr(double s)
{
return s;
}
double dkrds(double)
{
return 1.0;
}
};
struct KrFunLinear
{
double kr(double s)
{
return s;
}
double dkrds(double)
{
return 1.0;
}
};
struct KrFunQuadratic
{
double kr(double s)
{
return s*s;
}
double dkrds(double s)
{
return 2.0*s;
}
};
struct KrFunQuadratic
{
double kr(double s)
{
return s*s;
}
double dkrds(double s)
{
return 2.0*s;
}
};
template <class Fun>
static inline void evalAllKrDeriv(const int n, const int np,
const double* s, double* kr, double* dkrds, Fun fun)
{
if (dkrds == 0) {
template <class Fun>
static inline void evalAllKrDeriv(const int n, const int np,
const double* s, double* kr, double* dkrds, Fun fun)
{
if (dkrds == 0) {
// #pragma omp parallel for
for (int i = 0; i < n*np; ++i) {
kr[i] = fun.kr(s[i]);
}
return;
}
for (int i = 0; i < n*np; ++i) {
kr[i] = fun.kr(s[i]);
}
return;
}
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
std::fill(dkrds + i*np*np, dkrds + (i+1)*np*np, 0.0);
for (int phase = 0; phase < np; ++phase) {
kr[i*np + phase] = fun.kr(s[i*np + phase]);
// Only diagonal elements in derivative.
dkrds[i*np*np + phase*np + phase] = fun.dkrds(s[i*np + phase]);
}
}
}
for (int i = 0; i < n; ++i) {
std::fill(dkrds + i*np*np, dkrds + (i+1)*np*np, 0.0);
for (int phase = 0; phase < np; ++phase) {
kr[i*np + phase] = fun.kr(s[i*np + phase]);
// Only diagonal elements in derivative.
dkrds[i*np*np + phase*np + phase] = fun.dkrds(s[i*np + phase]);
}
}
}
} // anon namespace
@@ -109,25 +109,25 @@ namespace Opm
/// Initialize from parameters.
void SaturationPropsBasic::init(const parameter::ParameterGroup& param)
{
int num_phases = param.getDefault("num_phases", 2);
if (num_phases > 2 || num_phases < 1) {
THROW("SaturationPropsBasic::init() illegal num_phases: " << num_phases);
}
int num_phases = param.getDefault("num_phases", 2);
if (num_phases > 2 || num_phases < 1) {
THROW("SaturationPropsBasic::init() illegal num_phases: " << num_phases);
}
num_phases_ = num_phases;
//std::string rpf = param.getDefault("relperm_func", std::string("Unset"));
std::string rpf = param.getDefault("relperm_func", std::string("Linear"));
if (rpf == "Constant") {
relperm_func_ = Constant;
if(num_phases!=1){
THROW("Constant relperm with more than one phase???");
}
} else if (rpf == "Linear") {
relperm_func_ = Linear;
} else if (rpf == "Quadratic") {
relperm_func_ = Quadratic;
} else {
THROW("SaturationPropsBasic::init() illegal relperm_func: " << rpf);
}
//std::string rpf = param.getDefault("relperm_func", std::string("Unset"));
std::string rpf = param.getDefault("relperm_func", std::string("Linear"));
if (rpf == "Constant") {
relperm_func_ = Constant;
if(num_phases!=1){
THROW("Constant relperm with more than one phase???");
}
} else if (rpf == "Linear") {
relperm_func_ = Linear;
} else if (rpf == "Quadratic") {
relperm_func_ = Quadratic;
} else {
THROW("SaturationPropsBasic::init() illegal relperm_func: " << rpf);
}
}
@@ -136,7 +136,7 @@ namespace Opm
/// \return P, the number of phases.
int SaturationPropsBasic::numPhases() const
{
return num_phases_;
return num_phases_;
}
@@ -152,29 +152,29 @@ namespace Opm
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void SaturationPropsBasic::relperm(const int n,
const double* s,
double* kr,
double* dkrds) const
const double* s,
double* kr,
double* dkrds) const
{
switch (relperm_func_) {
case Constant:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunConstant());
break;
}
case Linear:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunLinear());
break;
}
case Quadratic:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunQuadratic());
break;
}
default:
THROW("SaturationPropsBasic::relperm() unhandled relperm func type: " << relperm_func_);
}
switch (relperm_func_) {
case Constant:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunConstant());
break;
}
case Linear:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunLinear());
break;
}
case Quadratic:
{
evalAllKrDeriv(n, num_phases_, s, kr, dkrds, KrFunQuadratic());
break;
}
default:
THROW("SaturationPropsBasic::relperm() unhandled relperm func type: " << relperm_func_);
}
}
@@ -190,13 +190,13 @@ namespace Opm
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
void SaturationPropsBasic::capPress(const int n,
const double* /*s*/,
double* pc,
double* dpcds) const
const double* /*s*/,
double* pc,
double* dpcds) const
{
std::fill(pc, pc + num_phases_*n, 0.0);
std::fill(pc, pc + num_phases_*n, 0.0);
if (dpcds) {
std::fill(dpcds, dpcds + num_phases_*num_phases_*n, 0.0);
std::fill(dpcds, dpcds + num_phases_*num_phases_*n, 0.0);
}
}
@@ -207,11 +207,11 @@ namespace Opm
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void SaturationPropsBasic::satRange(const int n,
double* smin,
double* smax) const
double* smin,
double* smax) const
{
std::fill(smin, smin + num_phases_*n, 0.0);
std::fill(smax, smax + num_phases_*n, 1.0);
std::fill(smin, smin + num_phases_*n, 0.0);
std::fill(smax, smax + num_phases_*n, 1.0);
}

View File

@@ -40,16 +40,16 @@ namespace Opm
SaturationPropsBasic();
/// Initialize from parameters.
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
/// The following parameters are accepted (defaults):
/// num_phases (2) Must be 1 or 2.
/// relperm_func ("Linear") Must be "Constant", "Linear" or "Quadratic".
void init(const parameter::ParameterGroup& param);
enum RelPermFunc { Constant, Linear, Quadratic };
enum RelPermFunc { Constant, Linear, Quadratic };
/// Initialize from arguments a basic Saturation property.
void init(const int num_phases,
const RelPermFunc& relperm_func)
const RelPermFunc& relperm_func)
{
num_phases_ = num_phases;
relperm_func_ = relperm_func;
@@ -86,18 +86,18 @@ namespace Opm
double* pc,
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void satRange(const int n,
double* smin,
double* smax) const;
void satRange(const int n,
double* smin,
double* smax) const;
private:
int num_phases_;
RelPermFunc relperm_func_;
int num_phases_;
RelPermFunc relperm_func_;
};

View File

@@ -20,9 +20,12 @@
#ifndef OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
#define OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
#include <opm/core/fluid/SaturationPropsInterface.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/eclipse/EclipseGridParser.hpp>
#include <opm/core/utility/UniformTableLinear.hpp>
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
#include <opm/core/fluid/SatFuncStone2.hpp>
#include <opm/core/fluid/SatFuncSimple.hpp>
#include <vector>
struct UnstructuredGrid;
@@ -30,19 +33,31 @@ struct UnstructuredGrid;
namespace Opm
{
class SaturationPropsFromDeck : public BlackoilPhases
/// Interface to saturation functions from deck.
/// Possible values for template argument (for now):
/// SatFuncSetStone2Nonuniform,
/// SatFuncSetStone2Uniform.
/// SatFuncSetSimpleNonuniform,
/// SatFuncSetSimpleUniform.
template <class SatFuncSet>
class SaturationPropsFromDeck : public SaturationPropsInterface
{
public:
/// Default constructor.
SaturationPropsFromDeck();
/// Initialize from deck and grid.
/// \param deck Deck input parser
/// \param grid Grid to which property object applies, needed for the
/// \param[in] deck Deck input parser
/// \param[in] grid Grid to which property object applies, needed for the
/// mapping from cell indices (typically from a processed grid)
/// to logical cartesian indices consistent with the deck.
/// \param[in] samples Number of uniform sample points for saturation tables.
/// NOTE: samples will only be used with the SatFuncSetUniform template argument.
void init(const EclipseGridParser& deck,
const UnstructuredGrid& grid);
const UnstructuredGrid& grid,
const int samples);
/// \return P, the number of phases.
int numPhases() const;
@@ -77,41 +92,23 @@ namespace Opm
double* pc,
double* dpcds) const;
/// Obtain the range of allowable saturation values.
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
void satRange(const int n,
void satRange(const int n,
const int* cells,
double* smin,
double* smax) const;
double* smin,
double* smax) const;
private:
PhaseUsage phase_usage_;
class SatFuncSet
{
public:
void init(const EclipseGridParser& deck, const int table_num, PhaseUsage phase_usg);
void evalKr(const double* s, double* kr) const;
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
void evalPc(const double* s, double* pc) const;
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
double smin_[PhaseUsage::MaxNumPhases];
double smax_[PhaseUsage::MaxNumPhases];
private:
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
UniformTableLinear<double> krw_;
UniformTableLinear<double> krow_;
UniformTableLinear<double> pcow_;
UniformTableLinear<double> krg_;
UniformTableLinear<double> krog_;
UniformTableLinear<double> pcog_;
double krocw_; // = krow_(s_wc)
};
std::vector<SatFuncSet> satfuncset_;
std::vector<int> cell_to_func_; // = SATNUM - 1
const SatFuncSet& funcForCell(const int cell) const;
typedef SatFuncSet Funcs;
const Funcs& funcForCell(const int cell) const;
};
@@ -119,6 +116,7 @@ namespace Opm
} // namespace Opm
#include <opm/core/fluid/SaturationPropsFromDeck_impl.hpp>
#endif // OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED

View File

@@ -0,0 +1,221 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
#define OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED
#include <opm/core/utility/UniformTableLinear.hpp>
#include <opm/core/utility/NonuniformTableLinear.hpp>
#include <opm/core/fluid/blackoil/phaseUsageFromDeck.hpp>
#include <opm/core/grid.h>
namespace Opm
{
// ----------- Methods of SaturationPropsFromDeck ---------
/// Default constructor.
template <class SatFuncSet>
SaturationPropsFromDeck<SatFuncSet>::SaturationPropsFromDeck()
{
}
/// Initialize from deck.
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::init(const EclipseGridParser& deck,
const UnstructuredGrid& grid,
const int samples)
{
phase_usage_ = phaseUsageFromDeck(deck);
// Extract input data.
// Oil phase should be active.
if (!phase_usage_.phase_used[Liquid]) {
THROW("SaturationPropsFromDeck::init() -- oil phase must be active.");
}
// Obtain SATNUM, if it exists, and create cell_to_func_.
// Otherwise, let the cell_to_func_ mapping be just empty.
int satfuncs_expected = 1;
if (deck.hasField("SATNUM")) {
const std::vector<int>& satnum = deck.getIntegerValue("SATNUM");
satfuncs_expected = *std::max_element(satnum.begin(), satnum.end());
const int num_cells = grid.number_of_cells;
cell_to_func_.resize(num_cells);
const int* gc = grid.global_cell;
for (int cell = 0; cell < num_cells; ++cell) {
const int deck_pos = (gc == NULL) ? cell : gc[cell];
cell_to_func_[cell] = satnum[deck_pos] - 1;
}
}
// Find number of tables, check for consistency.
enum { Uninitialized = -1 };
int num_tables = Uninitialized;
if (phase_usage_.phase_used[Aqua]) {
const SWOF::table_t& swof_table = deck.getSWOF().swof_;
num_tables = swof_table.size();
if (num_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SWOF tables, SATNUM specifies at least " << satfuncs_expected);
}
}
if (phase_usage_.phase_used[Vapour]) {
const SGOF::table_t& sgof_table = deck.getSGOF().sgof_;
int num_sgof_tables = sgof_table.size();
if (num_sgof_tables < satfuncs_expected) {
THROW("Found " << num_tables << " SGOF tables, SATNUM specifies at least " << satfuncs_expected);
}
if (num_tables == Uninitialized) {
num_tables = num_sgof_tables;
} else if (num_tables != num_sgof_tables) {
THROW("Inconsistent number of tables in SWOF and SGOF.");
}
}
// Initialize tables.
satfuncset_.resize(num_tables);
for (int table = 0; table < num_tables; ++table) {
satfuncset_[table].init(deck, table, phase_usage_, samples);
}
}
/// \return P, the number of phases.
template <class SatFuncSet>
int SaturationPropsFromDeck<SatFuncSet>::numPhases() const
{
return phase_usage_.num_phases;
}
/// Relative permeability.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
if (dkrds) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalKrDeriv(s + np*i, kr + np*i, dkrds + np*np*i);
}
} else {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalKr(s + np*i, kr + np*i);
}
}
}
/// Capillary pressure.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[in] cells Array of n cell indices to be associated with the s values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
if (dpcds) {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalPcDeriv(s + np*i, pc + np*i, dpcds + np*np*i);
}
} else {
// #pragma omp parallel for
for (int i = 0; i < n; ++i) {
funcForCell(cells[i]).evalPc(s + np*i, pc + np*i);
}
}
}
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[in] cells Array of n cell indices.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
template <class SatFuncSet>
void SaturationPropsFromDeck<SatFuncSet>::satRange(const int n,
const int* cells,
double* smin,
double* smax) const
{
ASSERT (cells != 0);
const int np = phase_usage_.num_phases;
for (int i = 0; i < n; ++i) {
for (int p = 0; p < np; ++p) {
smin[np*i + p] = funcForCell(cells[i]).smin_[p];
smax[np*i + p] = funcForCell(cells[i]).smax_[p];
}
}
}
// Map the cell number to the correct function set.
template <class SatFuncSet>
const typename SaturationPropsFromDeck<SatFuncSet>::Funcs&
SaturationPropsFromDeck<SatFuncSet>::funcForCell(const int cell) const
{
return cell_to_func_.empty() ? satfuncset_[0] : satfuncset_[cell_to_func_[cell]];
}
} // namespace Opm
#endif // OPM_SATURATIONPROPSFROMDECK_IMPL_HEADER_INCLUDED

View File

@@ -0,0 +1,85 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED
#define OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
namespace Opm
{
class SaturationPropsInterface : public BlackoilPhases
{
public:
/// Virtual destructor.
virtual ~SaturationPropsInterface() {};
/// \return P, the number of phases.
virtual int numPhases() const = 0;
/// Relative permeability.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[out] kr Array of nP relperm values, array must be valid before calling.
/// \param[out] dkrds If non-null: array of nP^2 relperm derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dkr_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
virtual void relperm(const int n,
const double* s,
const int* cells,
double* kr,
double* dkrds) const = 0;
/// Capillary pressure.
/// \param[in] n Number of data points.
/// \param[in] s Array of nP saturation values.
/// \param[out] pc Array of nP capillary pressure values, array must be valid before calling.
/// \param[out] dpcds If non-null: array of nP^2 derivative values,
/// array must be valid before calling.
/// The P^2 derivative matrix is
/// m_{ij} = \frac{dpc_i}{ds^j},
/// and is output in Fortran order (m_00 m_10 m_20 m01 ...)
virtual void capPress(const int n,
const double* s,
const int* cells,
double* pc,
double* dpcds) const = 0;
/// Obtain the range of allowable saturation values.
/// \param[in] n Number of data points.
/// \param[out] smin Array of nP minimum s values, array must be valid before calling.
/// \param[out] smax Array of nP maximum s values, array must be valid before calling.
virtual void satRange(const int n,
const int* cells,
double* smin,
double* smax) const = 0;
};
} // namespace Opm
#endif // OPM_SATURATIONPROPSINTERFACE_HEADER_INCLUDED

View File

@@ -47,7 +47,13 @@ namespace Opm
BlackoilPvtProperties();
/// Initialize from deck.
void init(const EclipseGridParser& deck);
/// \param deck An input deck.
/// \param samples If greater than zero, indicates the number of
/// uniform samples to be taken from monotone spline
/// curves interpolating the fluid data.
/// Otherwise, interpolate linearly in the original
/// data without fitting a spline.
void init(const EclipseGridParser& deck, const int samples);
/// Number of active phases.
int numPhases() const;
@@ -64,7 +70,7 @@ namespace Opm
/// Densities of stock components at surface conditions.
/// \return Array of size numPhases().
const double* surfaceDensities() const;
const double* surfaceDensities() const;
/// Viscosity as a function of p and z.
void mu(const int n,
@@ -105,11 +111,11 @@ namespace Opm
PhaseUsage phase_usage_;
int region_number_;
int region_number_;
std::vector<std::tr1::shared_ptr<SinglePvtInterface> > props_;
double densities_[MaxNumPhases];
double densities_[MaxNumPhases];
mutable std::vector<double> data1_;
mutable std::vector<double> data2_;
};

View File

@@ -90,16 +90,15 @@ namespace Opm
bool singularPressure() const;
private:
void computePerSolveDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeWellPotentials(const BlackoilState& state);
virtual void computePerSolveDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computePerIterationDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeCellDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
virtual void computeCellDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
void computeFaceDynamicData(const double dt,
const BlackoilState& state,
const WellState& well_state);
@@ -114,6 +113,8 @@ namespace Opm
double incrementNorm() const;
void computeResults(BlackoilState& state,
WellState& well_state) const;
protected:
void computeWellPotentials(const BlackoilState& state);
// ------ Data that will remain unmodified after construction. ------
const UnstructuredGrid& grid_;

View File

@@ -124,7 +124,7 @@ namespace Opm
//
// [[ incompressible was: r(s) = s - s0 + dt/pv*( influx + outflux*f(s) ) ]]
//
// r(s) = s - B*z0 + dt/pv*( influx + outflux*f(s) )
// r(s) = s - B*z0 + s*(poro - poro0)/poro0 + dt/pv*( influx + outflux*f(s) )
//
// @@@ What about the source term
//

View File

@@ -512,11 +512,11 @@ namespace Opm
State& state)
{
const int num_phases = props.numPhases();
if (num_phases != 2) {
THROW("initStateFromDeck(): currently handling only two-phase scenarios.");
}
state.init(grid, num_phases);
if (deck.hasField("EQUIL")) {
if (num_phases != 2) {
THROW("initStateFromDeck(): EQUIL-based init currently handling only two-phase scenarios.");
}
// Set saturations depending on oil-water contact.
const EQUIL& equil= deck.getEQUIL();
if (equil.equil.size() != 1) {
@@ -535,11 +535,27 @@ namespace Opm
const std::vector<double>& sw_deck = deck.getFloatingPointValue("SWAT");
const std::vector<double>& p_deck = deck.getFloatingPointValue("PRESSURE");
const int num_cells = grid.number_of_cells;
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
s[2*c] = sw_deck[c_deck];
s[2*c + 1] = 1.0 - s[2*c];
p[c] = p_deck[c_deck];
if (num_phases == 2) {
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
s[2*c] = sw_deck[c_deck];
s[2*c + 1] = 1.0 - s[2*c];
p[c] = p_deck[c_deck];
}
} else if (num_phases == 3) {
if (!deck.hasField("SGAS")) {
THROW("initStateFromDeck(): missing SGAS keyword in 3-phase init (only SWAT and PRESSURE found).");
}
const std::vector<double>& sg_deck = deck.getFloatingPointValue("SGAS");
for (int c = 0; c < num_cells; ++c) {
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
s[3*c] = sw_deck[c_deck];
s[3*c + 1] = 1.0 - (sw_deck[c_deck] + sg_deck[c_deck]);
s[3*c + 2] = sg_deck[c_deck];
p[c] = p_deck[c_deck];
}
} else {
THROW("initStateFromDeck(): init with SWAT etc. only available with 2 or 3 phases.");
}
} else {
THROW("initStateFromDeck(): we must either have EQUIL, or both SWAT and PRESSURE.");

View File

@@ -40,14 +40,14 @@ namespace Opm
/// @param[out] porevol the pore volume by cell.
void computePorevolume(const UnstructuredGrid& grid,
const double* porosity,
std::vector<double>& porevol)
std::vector<double>& porevol)
{
int num_cells = grid.number_of_cells;
porevol.resize(num_cells);
std::transform(porosity, porosity + num_cells,
grid.cell_volumes,
porevol.begin(),
std::multiplies<double>());
int num_cells = grid.number_of_cells;
porevol.resize(num_cells);
std::transform(porosity, porosity + num_cells,
grid.cell_volumes,
porevol.begin(),
std::multiplies<double>());
}
@@ -70,6 +70,25 @@ namespace Opm
}
}
/// @brief Computes porosity of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity_standard array of grid.number_of_cells porosity values (at standard conditions)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porosity porosity (at reservoir condition)
void computePorosity(const UnstructuredGrid& grid,
const double* porosity_standard,
const RockCompressibility& rock_comp,
const std::vector<double>& pressure,
std::vector<double>& porosity)
{
int num_cells = grid.number_of_cells;
porosity.resize(num_cells);
for (int i = 0; i < num_cells; ++i) {
porosity[i] = porosity_standard[i]*rock_comp.poroMult(pressure[i]);
}
}
/// @brief Computes total saturated volumes over all grid cells.
/// @param[in] pv the pore volume by cell.
@@ -79,20 +98,20 @@ namespace Opm
/// For each phase p, we compute
/// sat_vol_p = sum_i s_p_i pv_i
void computeSaturatedVol(const std::vector<double>& pv,
const std::vector<double>& s,
double* sat_vol)
const std::vector<double>& s,
double* sat_vol)
{
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
std::fill(sat_vol, sat_vol + np, 0.0);
for (int c = 0; c < num_cells; ++c) {
for (int p = 0; p < np; ++p) {
sat_vol[p] += pv[c]*s[np*c + p];
}
}
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
std::fill(sat_vol, sat_vol + np, 0.0);
for (int c = 0; c < num_cells; ++c) {
for (int p = 0; p < np; ++p) {
sat_vol[p] += pv[c]*s[np*c + p];
}
}
}
@@ -104,28 +123,28 @@ namespace Opm
/// For each phase p, we compute
/// aver_sat_p = (sum_i s_p_i pv_i) / (sum_i pv_i).
void computeAverageSat(const std::vector<double>& pv,
const std::vector<double>& s,
double* aver_sat)
const std::vector<double>& s,
double* aver_sat)
{
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
double tot_pv = 0.0;
// Note that we abuse the output array to accumulate the
// saturated pore volumes.
std::fill(aver_sat, aver_sat + np, 0.0);
for (int c = 0; c < num_cells; ++c) {
tot_pv += pv[c];
for (int p = 0; p < np; ++p) {
aver_sat[p] += pv[c]*s[np*c + p];
}
}
// Must divide by pore volumes to get saturations.
for (int p = 0; p < np; ++p) {
aver_sat[p] /= tot_pv;
}
const int num_cells = pv.size();
const int np = s.size()/pv.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and pv vectors do not match.");
}
double tot_pv = 0.0;
// Note that we abuse the output array to accumulate the
// saturated pore volumes.
std::fill(aver_sat, aver_sat + np, 0.0);
for (int c = 0; c < num_cells; ++c) {
tot_pv += pv[c];
for (int p = 0; p < np; ++p) {
aver_sat[p] += pv[c]*s[np*c + p];
}
}
// Must divide by pore volumes to get saturations.
for (int p = 0; p < np; ++p) {
aver_sat[p] /= tot_pv;
}
}
@@ -142,38 +161,38 @@ namespace Opm
/// where P = s.size()/src.size().
/// @param[out] produced must also point to a valid array with P elements.
void computeInjectedProduced(const IncompPropertiesInterface& props,
const std::vector<double>& s,
const std::vector<double>& src,
const double dt,
double* injected,
double* produced)
const std::vector<double>& s,
const std::vector<double>& src,
const double dt,
double* injected,
double* produced)
{
const int num_cells = src.size();
const int np = s.size()/src.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and src vectors do not match.");
}
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
const double* visc = props.viscosity();
std::vector<double> mob(np);
for (int c = 0; c < num_cells; ++c) {
if (src[c] > 0.0) {
injected[0] += src[c]*dt;
} else if (src[c] < 0.0) {
const double flux = -src[c]*dt;
const double* sat = &s[np*c];
props.relperm(1, sat, &c, &mob[0], 0);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] /= visc[p];
totmob += mob[p];
}
for (int p = 0; p < np; ++p) {
produced[p] += (mob[p]/totmob)*flux;
}
}
}
const int num_cells = src.size();
const int np = s.size()/src.size();
if (int(s.size()) != num_cells*np) {
THROW("Sizes of s and src vectors do not match.");
}
std::fill(injected, injected + np, 0.0);
std::fill(produced, produced + np, 0.0);
const double* visc = props.viscosity();
std::vector<double> mob(np);
for (int c = 0; c < num_cells; ++c) {
if (src[c] > 0.0) {
injected[0] += src[c]*dt;
} else if (src[c] < 0.0) {
const double flux = -src[c]*dt;
const double* sat = &s[np*c];
props.relperm(1, sat, &c, &mob[0], 0);
double totmob = 0.0;
for (int p = 0; p < np; ++p) {
mob[p] /= visc[p];
totmob += mob[p];
}
for (int p = 0; p < np; ++p) {
produced[p] += (mob[p]/totmob)*flux;
}
}
}
}
@@ -184,9 +203,9 @@ namespace Opm
/// @param[in] s saturation values (for all phases)
/// @param[out] totmob total mobilities.
void computeTotalMobility(const Opm::IncompPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<double>& s,
std::vector<double>& totmob)
const std::vector<int>& cells,
const std::vector<double>& s,
std::vector<double>& totmob)
{
std::vector<double> pmobc;
@@ -212,10 +231,10 @@ namespace Opm
/// @param[out] totmob total mobility
/// @param[out] omega fractional-flow weighted fluid densities.
void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props,
const std::vector<int>& cells,
const std::vector<double>& s,
std::vector<double>& totmob,
std::vector<double>& omega)
const std::vector<int>& cells,
const std::vector<double>& s,
std::vector<double>& totmob,
std::vector<double>& omega)
{
std::vector<double> pmobc;
@@ -312,33 +331,33 @@ namespace Opm
/// (+) positive inflow of first phase (water)
/// (-) negative total outflow of both phases
void computeTransportSource(const UnstructuredGrid& grid,
const std::vector<double>& src,
const std::vector<double>& faceflux,
const double inflow_frac,
const std::vector<double>& src,
const std::vector<double>& faceflux,
const double inflow_frac,
const Wells* wells,
const std::vector<double>& well_perfrates,
std::vector<double>& transport_src)
std::vector<double>& transport_src)
{
int nc = grid.number_of_cells;
transport_src.resize(nc);
int nc = grid.number_of_cells;
transport_src.resize(nc);
// Source term and boundary contributions.
for (int c = 0; c < nc; ++c) {
transport_src[c] = 0.0;
transport_src[c] += src[c] > 0.0 ? inflow_frac*src[c] : src[c];
for (int hf = grid.cell_facepos[c]; hf < grid.cell_facepos[c + 1]; ++hf) {
int f = grid.cell_faces[hf];
const int* f2c = &grid.face_cells[2*f];
double bdy_influx = 0.0;
if (f2c[0] == c && f2c[1] == -1) {
bdy_influx = -faceflux[f];
} else if (f2c[0] == -1 && f2c[1] == c) {
bdy_influx = faceflux[f];
}
if (bdy_influx != 0.0) {
transport_src[c] += bdy_influx > 0.0 ? inflow_frac*bdy_influx : bdy_influx;
}
}
}
for (int c = 0; c < nc; ++c) {
transport_src[c] = 0.0;
transport_src[c] += src[c] > 0.0 ? inflow_frac*src[c] : src[c];
for (int hf = grid.cell_facepos[c]; hf < grid.cell_facepos[c + 1]; ++hf) {
int f = grid.cell_faces[hf];
const int* f2c = &grid.face_cells[2*f];
double bdy_influx = 0.0;
if (f2c[0] == c && f2c[1] == -1) {
bdy_influx = -faceflux[f];
} else if (f2c[0] == -1 && f2c[1] == c) {
bdy_influx = faceflux[f];
}
if (bdy_influx != 0.0) {
transport_src[c] += bdy_influx > 0.0 ? inflow_frac*bdy_influx : bdy_influx;
}
}
}
// Well contributions.
if (wells) {
@@ -373,52 +392,52 @@ namespace Opm
/// @param[in] face_flux signed per-face fluxes
/// @param[out] cell_velocity the estimated velocities.
void estimateCellVelocity(const UnstructuredGrid& grid,
const std::vector<double>& face_flux,
std::vector<double>& cell_velocity)
const std::vector<double>& face_flux,
std::vector<double>& cell_velocity)
{
const int dim = grid.dimensions;
cell_velocity.clear();
cell_velocity.resize(grid.number_of_cells*dim, 0.0);
for (int face = 0; face < grid.number_of_faces; ++face) {
int c[2] = { grid.face_cells[2*face], grid.face_cells[2*face + 1] };
const double* fc = &grid.face_centroids[face*dim];
double flux = face_flux[face];
for (int i = 0; i < 2; ++i) {
if (c[i] >= 0) {
const double* cc = &grid.cell_centroids[c[i]*dim];
for (int d = 0; d < dim; ++d) {
double v_contrib = fc[d] - cc[d];
v_contrib *= flux/grid.cell_volumes[c[i]];
cell_velocity[c[i]*dim + d] += (i == 0) ? v_contrib : -v_contrib;
}
}
}
}
const int dim = grid.dimensions;
cell_velocity.clear();
cell_velocity.resize(grid.number_of_cells*dim, 0.0);
for (int face = 0; face < grid.number_of_faces; ++face) {
int c[2] = { grid.face_cells[2*face], grid.face_cells[2*face + 1] };
const double* fc = &grid.face_centroids[face*dim];
double flux = face_flux[face];
for (int i = 0; i < 2; ++i) {
if (c[i] >= 0) {
const double* cc = &grid.cell_centroids[c[i]*dim];
for (int d = 0; d < dim; ++d) {
double v_contrib = fc[d] - cc[d];
v_contrib *= flux/grid.cell_volumes[c[i]];
cell_velocity[c[i]*dim + d] += (i == 0) ? v_contrib : -v_contrib;
}
}
}
}
}
/// Extract a vector of water saturations from a vector of
/// interleaved water and oil saturations.
void toWaterSat(const std::vector<double>& sboth,
std::vector<double>& sw)
std::vector<double>& sw)
{
int num = sboth.size()/2;
sw.resize(num);
for (int i = 0; i < num; ++i) {
sw[i] = sboth[2*i];
}
int num = sboth.size()/2;
sw.resize(num);
for (int i = 0; i < num; ++i) {
sw[i] = sboth[2*i];
}
}
/// Make a a vector of interleaved water and oil saturations from
/// a vector of water saturations.
void toBothSat(const std::vector<double>& sw,
std::vector<double>& sboth)
std::vector<double>& sboth)
{
int num = sw.size();
sboth.resize(2*num);
for (int i = 0; i < num; ++i) {
sboth[2*i] = sw[i];
sboth[2*i + 1] = 1.0 - sw[i];
}
int num = sw.size();
sboth.resize(2*num);
for (int i = 0; i < num; ++i) {
sboth[2*i] = sw[i];
sboth[2*i + 1] = 1.0 - sw[i];
}
}
@@ -431,30 +450,30 @@ namespace Opm
if (np != 2) {
THROW("wellsToSrc() requires a 2 phase case.");
}
src.resize(num_cells);
for (int w = 0; w < wells.number_of_wells; ++w) {
src.resize(num_cells);
for (int w = 0; w < wells.number_of_wells; ++w) {
const int cur = wells.ctrls[w]->current;
if (wells.ctrls[w]->num != 1) {
MESSAGE("In wellsToSrc(): well has more than one control, all but current control will be ignored.");
}
if (wells.ctrls[w]->type[cur] != RESERVOIR_RATE) {
THROW("In wellsToSrc(): well is something other than RESERVOIR_RATE.");
}
if (wells.well_connpos[w+1] - wells.well_connpos[w] != 1) {
THROW("In wellsToSrc(): well has multiple perforations.");
}
if (wells.ctrls[w]->num != 1) {
MESSAGE("In wellsToSrc(): well has more than one control, all but current control will be ignored.");
}
if (wells.ctrls[w]->type[cur] != RESERVOIR_RATE) {
THROW("In wellsToSrc(): well is something other than RESERVOIR_RATE.");
}
if (wells.well_connpos[w+1] - wells.well_connpos[w] != 1) {
THROW("In wellsToSrc(): well has multiple perforations.");
}
for (int p = 0; p < np; ++p) {
if (wells.ctrls[w]->distr[np*cur + p] != 1.0) {
THROW("In wellsToSrc(): well not controlled on total rate.");
}
}
double flow = wells.ctrls[w]->target[cur];
double flow = wells.ctrls[w]->target[cur];
if (wells.type[w] == INJECTOR) {
flow *= wells.comp_frac[np*w + 0]; // Obtaining water rate for inflow source.
}
const double cell = wells.well_cells[wells.well_connpos[w]];
src[cell] = flow;
}
const double cell = wells.well_cells[wells.well_connpos[w]];
src[cell] = flow;
}
}
@@ -574,8 +593,10 @@ namespace Opm
{
int nw = well_bhp.size();
ASSERT(nw == wells.number_of_wells);
if (props.numPhases() != 2) {
THROW("WellReport for now assumes two phase flow.");
int np = props.numPhases();
const int max_np = 3;
if (np > max_np) {
THROW("WellReport for now assumes #phases <= " << max_np);
}
const double* visc = props.viscosity();
std::vector<double> data_now;
@@ -586,7 +607,8 @@ namespace Opm
double well_rate_total = 0.0;
double well_rate_water = 0.0;
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w + 1]; ++perf) {
const double perf_rate = well_perfrates[perf]*(unit::day/unit::second);
const double perf_rate = unit::convert::to(well_perfrates[perf],
unit::cubic(unit::meter)/unit::day);
well_rate_total += perf_rate;
if (perf_rate > 0.0) {
// Injection.
@@ -594,11 +616,14 @@ namespace Opm
} else {
// Production.
const int cell = wells.well_cells[perf];
double mob[2];
double mob[max_np];
props.relperm(1, &saturation[2*cell], &cell, mob, 0);
mob[0] /= visc[0];
mob[1] /= visc[1];
const double fracflow = mob[0]/(mob[0] + mob[1]);
double tmob = 0;
for(int i = 0; i < np; ++i) {
mob[i] /= visc[i];
tmob += mob[i];
}
const double fracflow = mob[0]/tmob;
well_rate_water += perf_rate*fracflow;
}
}
@@ -627,8 +652,10 @@ namespace Opm
// TODO: refactor, since this is almost identical to the other push().
int nw = well_bhp.size();
ASSERT(nw == wells.number_of_wells);
if (props.numPhases() != 2) {
THROW("WellReport for now assumes two phase flow.");
int np = props.numPhases();
const int max_np = 3;
if (np > max_np) {
THROW("WellReport for now assumes #phases <= " << max_np);
}
std::vector<double> data_now;
data_now.reserve(1 + 3*nw);
@@ -638,7 +665,8 @@ namespace Opm
double well_rate_total = 0.0;
double well_rate_water = 0.0;
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w + 1]; ++perf) {
const double perf_rate = well_perfrates[perf]*(unit::day/unit::second);
const double perf_rate = unit::convert::to(well_perfrates[perf],
unit::cubic(unit::meter)/unit::day);
well_rate_total += perf_rate;
if (perf_rate > 0.0) {
// Injection.
@@ -646,13 +674,16 @@ namespace Opm
} else {
// Production.
const int cell = wells.well_cells[perf];
double mob[2];
props.relperm(1, &s[2*cell], &cell, mob, 0);
double visc[2];
props.viscosity(1, &p[cell], &z[2*cell], &cell, visc, 0);
mob[0] /= visc[0];
mob[1] /= visc[1];
const double fracflow = mob[0]/(mob[0] + mob[1]);
double mob[max_np];
props.relperm(1, &s[np*cell], &cell, mob, 0);
double visc[max_np];
props.viscosity(1, &p[cell], &z[np*cell], &cell, visc, 0);
double tmob = 0;
for(int i = 0; i < np; ++i) {
mob[i] /= visc[i];
tmob += mob[i];
}
const double fracflow = mob[0]/(tmob);
well_rate_water += perf_rate*fracflow;
}
}

View File

@@ -44,7 +44,7 @@ namespace Opm
/// @brief Computes pore volume of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity array of grid.number_of_cells porosity values
/// @param[in] porosity array of grid.number_of_cells porosity values (at reference pressure)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porevol the pore volume by cell.
@@ -54,6 +54,17 @@ namespace Opm
const std::vector<double>& pressure,
std::vector<double>& porevol);
/// @brief Computes porosity of all cells in a grid, with rock compressibility effects.
/// @param[in] grid a grid
/// @param[in] porosity_standard array of grid.number_of_cells porosity values (at reference presure)
/// @param[in] rock_comp rock compressibility properties
/// @param[in] pressure pressure by cell
/// @param[out] porosity porosity (at reservoir condition)
void computePorosity(const UnstructuredGrid& grid,
const double* porosity_standard,
const RockCompressibility& rock_comp,
const std::vector<double>& pressure,
std::vector<double>& porosity);
/// @brief Computes total saturated volumes over all grid cells.
/// @param[in] pv the pore volume by cell.