Merge pull request #642 from akva2/import_files_from_opm_core

Import some files from opm core (with history)
This commit is contained in:
Atgeirr Flø Rasmussen 2016-04-11 10:54:13 +02:00
commit fc0943c4e8
8 changed files with 2237 additions and 0 deletions

View File

@ -63,6 +63,8 @@ list (APPEND MAIN_SOURCE_FILES
opm/polymer/TransportSolverTwophasePolymer.cpp
opm/polymer/fullyimplicit/FullyImplicitCompressiblePolymerSolver.cpp
opm/polymer/fullyimplicit/PolymerPropsAd.cpp
opm/simulators/SimulatorCompressibleTwophase.cpp
opm/simulators/SimulatorIncompTwophase.cpp
)
@ -82,6 +84,7 @@ list (APPEND TEST_SOURCE_FILES
tests/test_vfpproperties.cpp
tests/test_singlecellsolves.cpp
tests/test_solventprops_ad.cpp
# tests/test_thresholdpressure.cpp
)
list (APPEND TEST_DATA_FILES
@ -99,6 +102,7 @@ list (APPEND EXAMPLE_SOURCE_FILES
examples/flow_multisegment.cpp
examples/flow_solvent.cpp
examples/sim_2p_incomp_ad.cpp
examples/sim_2p_comp_reorder.cpp
examples/sim_simple.cpp
examples/opm_init_check.cpp
examples/sim_poly2p_comp_reorder.cpp

View File

@ -0,0 +1,300 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/grid/GridHelpers.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/core/simulator/initState.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/props/BlackoilPropertiesBasic.hpp>
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/simulator/SimulatorCompressibleTwophase.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <memory>
#include <boost/filesystem.hpp>
#include <algorithm>
#include <iostream>
#include <vector>
#include <numeric>
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
std::cout << "\n================ Test program for weakly compressible two-phase flow ===============\n\n";
parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
EclipseStateConstPtr eclipseState;
std::unique_ptr<GridManager> grid;
std::unique_ptr<BlackoilPropertiesInterface> props;
std::unique_ptr<RockCompressibility> rock_comp;
std::unique_ptr<BlackoilState> state;
ParserPtr parser(new Opm::Parser());
Opm::DeckConstPtr deck;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
ParseContext parseContext;
std::string deck_filename = param.get<std::string>("deck_filename");
deck = parser->parseFile(deck_filename , parseContext);
eclipseState.reset(new EclipseState(deck, parseContext));
// Grid init
grid.reset(new GridManager(deck));
{
const UnstructuredGrid& ug_grid = *(grid->c_grid());
state.reset( new BlackoilState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ) ,2));
// Rock and fluid init
props.reset(new BlackoilPropertiesFromDeck(deck, eclipseState, ug_grid, param));
// check_well_controls = param.getDefault("check_well_controls", false);
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
// Rock compressibility.
rock_comp.reset(new RockCompressibility(deck, eclipseState));
// Gravity.
gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(ug_grid, *props, param, gravity[2], *state);
} else {
initStateFromDeck(ug_grid, *props, deck, gravity[2], *state);
}
initBlackoilSurfvol(ug_grid, *props, *state);
}
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
{
const UnstructuredGrid& ug_grid = *(grid->c_grid());
// Rock and fluid init.
props.reset(new BlackoilPropertiesBasic(param, ug_grid.dimensions, UgGridHelpers::numCells( ug_grid )));
// State init
state.reset( new BlackoilState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ), 3));
// Rock compressibility.
rock_comp.reset(new RockCompressibility(param));
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
// Init state variables (saturation and pressure).
initStateBasic(ug_grid, *props, param, gravity[2], *state);
initBlackoilSurfvol(ug_grid, *props, *state);
}
}
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
const double *grav = use_gravity ? &gravity[0] : 0;
// Initialising src
int num_cells = grid->c_grid()->number_of_cells;
std::vector<double> src(num_cells, 0.0);
if (use_deck) {
// Do nothing, wells will be the driving force, not source terms.
} else {
// Compute pore volumes, in order to enable specifying injection rate
// terms of total pore volume.
std::vector<double> porevol;
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state->pressure(), porevol);
} else {
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
*tot_porevol_init/unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
// Boundary conditions.
FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get<int>("pside");
double pside_pressure = param.get<double>("pside_pressure");
bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
}
// Linear solver.
LinearSolverFactory linsolver(param);
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
std::ofstream epoch_os;
std::string output_dir;
if (output) {
output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
std::string filename = output_dir + "/epoch_timing.param";
epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
// open file to clean it. The file is appended to in SimulatorTwophase
filename = output_dir + "/step_timing.param";
std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
step_os.close();
param.writeParam(output_dir + "/simulation.param");
}
std::cout << "\n\n================ Starting main simulation loop ===============\n";
SimulatorReport rep;
if (!use_deck) {
// Simple simulation without a deck.
WellsManager wells; // no wells.
SimulatorCompressibleTwophase simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells,
src,
bcs.c_bcs(),
linsolver,
grav);
SimulatorTimer simtimer;
simtimer.init(param);
warnIfUnusedParams(param);
WellState well_state;
well_state.init(0, *state);
rep = simulator.run(simtimer, *state, well_state);
} else {
// With a deck, we may have more epochs etc.
WellState well_state;
int step = 0;
SimulatorTimer simtimer;
// Use timer for last epoch to obtain total time.
Opm::TimeMapPtr timeMap(new Opm::TimeMap(deck));
simtimer.init(timeMap);
const double total_time = simtimer.totalTime();
for (size_t reportStepIdx = 0; reportStepIdx < timeMap->numTimesteps(); ++reportStepIdx) {
simtimer.setCurrentStepNum(step);
simtimer.setTotalTime(total_time);
// Report on start of report step.
std::cout << "\n\n-------------- Starting report step " << reportStepIdx << " --------------"
<< "\n (number of steps: "
<< simtimer.numSteps() - step << ")\n\n" << std::flush;
// Create new wells, well_state
WellsManager wells(eclipseState , reportStepIdx , *grid->c_grid(), props->permeability());
// @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every report step,
// since number of wells may change etc.
if (reportStepIdx == 0) {
well_state.init(wells.c_wells(), *state);
}
// Create and run simulator.
SimulatorCompressibleTwophase simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells,
src,
bcs.c_bcs(),
linsolver,
grav);
if (reportStepIdx == 0) {
warnIfUnusedParams(param);
}
SimulatorReport epoch_rep = simulator.run(simtimer, *state, well_state);
if (output) {
epoch_rep.reportParam(epoch_os);
}
// Update total timing report and remember step number.
rep += epoch_rep;
step = simtimer.currentStepNum();
}
}
std::cout << "\n\n================ End of simulation ===============\n\n";
rep.report(std::cout);
if (output) {
std::string filename = output_dir + "/walltime.param";
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
rep.reportParam(tot_os);
}
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}

View File

@ -0,0 +1,555 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/simulator/SimulatorCompressibleTwophase.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/core/pressure/CompressibleTpfa.hpp>
#include <opm/core/grid.h>
#include <opm/core/wells.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/StopWatch.hpp>
// 17.03.2016 Temporarily removed while moving functionality to opm-output
#ifdef DISABLE_OUTPUT
#include <opm/core/io/vtk/writeVtkData.hpp>
#endif
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/grid/ColumnExtract.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/transport/reorder/TransportSolverCompressibleTwophaseReorder.hpp>
#include <boost/filesystem.hpp>
#include <memory>
#include <boost/lexical_cast.hpp>
#include <numeric>
#include <fstream>
#include <iostream>
namespace Opm
{
class SimulatorCompressibleTwophase::Impl
{
public:
Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity);
SimulatorReport run(SimulatorTimer& timer,
BlackoilState& state,
WellState& well_state);
private:
// Data.
// Parameters for output.
bool output_;
bool output_vtk_;
std::string output_dir_;
int output_interval_;
// Parameters for well control
bool check_well_controls_;
int max_well_control_iterations_;
// Parameters for transport solver.
int num_transport_substeps_;
bool use_segregation_split_;
// Observed objects.
const UnstructuredGrid& grid_;
const BlackoilPropertiesInterface& props_;
const RockCompressibility* rock_comp_props_;
WellsManager& wells_manager_;
const Wells* wells_;
//const std::vector<double>& src_;
//const FlowBoundaryConditions* bcs_;
const double* gravity_;
// Solvers
CompressibleTpfa psolver_;
TransportSolverCompressibleTwophaseReorder tsolver_;
// Needed by column-based gravity segregation solver.
std::vector< std::vector<int> > columns_;
// Misc. data
std::vector<int> allcells_;
};
SimulatorCompressibleTwophase::SimulatorCompressibleTwophase(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity)
{
pimpl_.reset(new Impl(param, grid, props, rock_comp_props, wells_manager, src, bcs, linsolver, gravity));
}
SimulatorReport SimulatorCompressibleTwophase::run(SimulatorTimer& timer,
BlackoilState& state,
WellState& well_state)
{
return pimpl_->run(timer, state, well_state);
}
// 17.03.2016 Temporarily removed while moving functionality to opm-output
#ifdef DISABLE_OUTPUT
static void outputStateVtk(const UnstructuredGrid& grid,
const Opm::BlackoilState& state,
const int step,
const std::string& output_dir)
{
// Write data in VTK format.
std::ostringstream vtkfilename;
vtkfilename << output_dir << "/vtk_files";
boost::filesystem::path fpath(vtkfilename.str());
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
vtkfilename << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
if (!vtkfile) {
OPM_THROW(std::runtime_error, "Failed to open " << vtkfilename.str());
}
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
Opm::writeVtkData(grid, dm, vtkfile);
}
#endif
// 17.03.2016 Temporarily removed while moving functionality to opm-output
#ifdef DISABLE_OUTPUT
static void outputStateMatlab(const UnstructuredGrid& grid,
const Opm::BlackoilState& state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
dm["surfvolume"] = &state.surfacevol();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
}
file.precision(15);
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
#endif
static void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
watercut.write(os);
}
static void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
wellreport.write(os);
}
// \TODO: make CompressibleTpfa take src and bcs.
SimulatorCompressibleTwophase::Impl::Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>&,
const FlowBoundaryConditions*,
LinearSolverInterface& linsolver,
const double* gravity)
: grid_(grid),
props_(props),
rock_comp_props_(rock_comp_props),
wells_manager_(wells_manager),
wells_(wells_manager.c_wells()),
//src_(src),
//bcs_(bcs),
gravity_(gravity),
psolver_(grid, props, rock_comp_props, linsolver,
param.getDefault("nl_pressure_residual_tolerance", 0.0),
param.getDefault("nl_pressure_change_tolerance", 1.0),
param.getDefault("nl_pressure_maxiter", 10),
gravity, wells_manager.c_wells() /*, src, bcs*/),
tsolver_(grid, props,
param.getDefault("nl_tolerance", 1e-9),
param.getDefault("nl_maxiter", 30))
{
// For output.
output_ = param.getDefault("output", true);
if (output_) {
output_vtk_ = param.getDefault("output_vtk", true);
output_dir_ = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
boost::filesystem::path fpath(output_dir_);
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
output_interval_ = param.getDefault("output_interval", 1);
}
// Well control related init.
check_well_controls_ = param.getDefault("check_well_controls", false);
max_well_control_iterations_ = param.getDefault("max_well_control_iterations", 10);
// Transport related init.
num_transport_substeps_ = param.getDefault("num_transport_substeps", 1);
use_segregation_split_ = param.getDefault("use_segregation_split", false);
if (gravity != 0 && use_segregation_split_){
tsolver_.initGravity(gravity);
extractColumn(grid_, columns_);
}
// Misc init.
const int num_cells = grid.number_of_cells;
allcells_.resize(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells_[cell] = cell;
}
}
SimulatorReport SimulatorCompressibleTwophase::Impl::run(SimulatorTimer& timer,
BlackoilState& state,
WellState& well_state)
{
std::vector<double> transport_src;
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_surfvol[2] = { 0.0 };
double inplace_surfvol[2] = { 0.0 };
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_,
state.pressure(), state.surfacevol(), state.saturation(),
0.0, well_state.bhp(), well_state.perfRates());
}
std::fstream tstep_os;
if (output_) {
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
#ifdef DISABLE_OUTPUT
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
#endif
}
#ifdef DISABLE_OUTPUT
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
#endif
}
SimulatorReport sreport;
// Solve pressure equation.
if (check_well_controls_) {
computeFractionalFlow(props_, allcells_,
state.pressure(), state.temperature(), state.surfacevol(), state.saturation(),
fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
pressure_timer.start();
std::vector<double> initial_pressure = state.pressure();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if both fluids and rock are
// incompressible, and there are no pressure
// conditions (bcs or wells). It is deemed sufficient
// for now to renormalize using geometric volume
// instead of pore volume.
if (psolver_.singularPressure()) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
}
// Stop timer and report.
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
sreport.pressure_time = pt;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Process transport sources from well flows.
Opm::computeTransportSource(props_, wells_, well_state, transport_src);
// Solve transport.
transport_timer.start();
double stepsize = timer.currentStepLength();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], &state.pressure()[0], &state.temperature()[0],
&initial_porevol[0], &porevol[0], &transport_src[0], stepsize,
state.saturation(), state.surfacevol());
double substep_injected[2] = { 0.0 };
double substep_produced[2] = { 0.0 };
Opm::computeInjectedProduced(props_, state, transport_src, stepsize,
substep_injected, substep_produced);
injected[0] += substep_injected[0];
injected[1] += substep_injected[1];
produced[0] += substep_produced[0];
produced[1] += substep_produced[1];
if (gravity_ != 0 && use_segregation_split_) {
tsolver_.solveGravity(columns_, stepsize, state.saturation(), state.surfacevol());
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
sreport.transport_time = tt;
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.surfacevol(), inplace_surfvol);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
std::cout.precision(5);
const int width = 18;
std::cout << "\nMass balance report.\n";
std::cout << " Injected surface volumes: "
<< std::setw(width) << injected[0]
<< std::setw(width) << injected[1] << std::endl;
std::cout << " Produced surface volumes: "
<< std::setw(width) << produced[0]
<< std::setw(width) << produced[1] << std::endl;
std::cout << " Total inj surface volumes: "
<< std::setw(width) << tot_injected[0]
<< std::setw(width) << tot_injected[1] << std::endl;
std::cout << " Total prod surface volumes: "
<< std::setw(width) << tot_produced[0]
<< std::setw(width) << tot_produced[1] << std::endl;
const double balance[2] = { init_surfvol[0] - inplace_surfvol[0] - tot_produced[0] + tot_injected[0],
init_surfvol[1] - inplace_surfvol[1] - tot_produced[1] + tot_injected[1] };
std::cout << " Initial - inplace + inj - prod: "
<< std::setw(width) << balance[0]
<< std::setw(width) << balance[1]
<< std::endl;
std::cout << " Relative mass error: "
<< std::setw(width) << balance[0]/(init_surfvol[0] + tot_injected[0])
<< std::setw(width) << balance[1]/(init_surfvol[1] + tot_injected[1])
<< std::endl;
std::cout.precision(8);
watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_,
state.pressure(), state.surfacevol(), state.saturation(),
timer.simulationTimeElapsed() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
sreport.total_time = step_timer.secsSinceStart();
if (output_) {
sreport.reportParam(tstep_os);
}
}
if (output_) {
if (output_vtk_) {
#ifdef DISABLE_OUTPUT
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
#endif
}
#ifdef DISABLE_OUTPUT
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
#endif
outputWaterCut(watercut, output_dir_);
if (wells_) {
outputWellReport(wellreport, output_dir_);
}
tstep_os.close();
}
total_timer.stop();
SimulatorReport report;
report.pressure_time = ptime;
report.transport_time = ttime;
report.total_time = total_timer.secsSinceStart();
return report;
}
} // namespace Opm

View File

@ -0,0 +1,99 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIMULATORCOMPRESSIBLETWOPHASE_HEADER_INCLUDED
#define OPM_SIMULATORCOMPRESSIBLETWOPHASE_HEADER_INCLUDED
#include <memory>
#include <vector>
struct UnstructuredGrid;
struct Wells;
struct FlowBoundaryConditions;
namespace Opm
{
namespace parameter { class ParameterGroup; }
class BlackoilPropertiesInterface;
class RockCompressibility;
class WellsManager;
class LinearSolverInterface;
class SimulatorTimer;
class BlackoilState;
class WellState;
struct SimulatorReport;
/// Class collecting all necessary components for a two-phase simulation.
class SimulatorCompressibleTwophase
{
public:
/// Initialise from parameters and objects to observe.
/// \param[in] param parameters, this class accepts the following:
/// parameter (default) effect
/// -----------------------------------------------------------
/// output (true) write output to files?
/// output_dir ("output") output directoty
/// output_interval (1) output every nth step
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
/// nl_maxiter (30) max nonlinear iterations in transport
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
/// num_transport_substeps (1) number of transport steps per pressure step
/// use_segregation_split (false) solve for gravity segregation (if false,
/// segregation is ignored).
///
/// \param[in] grid grid data structure
/// \param[in] props fluid and rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] well_manager well manager, may manage no (null) wells
/// \param[in] src source terms
/// \param[in] bcs boundary conditions, treat as all noflow if null
/// \param[in] linsolver linear solver
/// \param[in] gravity if non-null, gravity vector
SimulatorCompressibleTwophase(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity);
/// Run the simulation.
/// This will run succesive timesteps until timer.done() is true. It will
/// modify the reservoir and well states.
/// \param[in,out] timer governs the requested reporting timesteps
/// \param[in,out] state state of reservoir: pressure, fluxes
/// \param[in,out] well_state state of wells: bhp, perforation rates
/// \return simulation report, with timing data
SimulatorReport run(SimulatorTimer& timer,
BlackoilState& state,
WellState& well_state);
private:
class Impl;
// Using shared_ptr instead of unique_ptr since unique_ptr requires complete type for Impl.
std::shared_ptr<Impl> pimpl_;
};
} // namespace Opm
#endif // OPM_SIMULATORCOMPRESSIBLETWOPHASE_HEADER_INCLUDED

View File

@ -0,0 +1,666 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <opm/core/simulator/SimulatorIncompTwophase.hpp>
#include <opm/core/utility/NullStream.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/core/pressure/IncompTpfa.hpp>
#include <opm/core/grid.h>
#include <opm/core/wells.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/StopWatch.hpp>
// 17.03.2016 Temporarily removed while moving functionality to opm-output
#ifdef DISABLE_OUTPUT
#include <opm/core/io/vtk/writeVtkData.hpp>
#endif
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/Event.hpp>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/well_controls.h>
#include <opm/core/wells.h>
#include <opm/core/props/IncompPropertiesInterface.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/simulator/TwophaseState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/transport/reorder/TransportSolverTwophaseReorder.hpp>
#include <opm/core/transport/implicit/TransportSolverTwophaseImplicit.hpp>
#include <boost/filesystem.hpp>
#include <memory>
#include <iostream>
#include <numeric>
#include <fstream>
namespace Opm
{
struct SimulatorIncompTwophase::Impl
{
Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity);
SimulatorReport run(SimulatorTimer& timer,
TwophaseState& state,
WellState& well_state);
// Data.
// Parameters for output.
std::ostream* log_;
bool output_;
bool output_vtk_;
std::string output_dir_;
int output_interval_;
// Parameters for well control
bool check_well_controls_;
int max_well_control_iterations_;
// Parameters for transport solver.
int num_transport_substeps_;
bool use_reorder_;
bool use_segregation_split_;
// Observed objects.
const UnstructuredGrid& grid_;
const IncompPropertiesInterface& props_;
const RockCompressibility* rock_comp_props_;
WellsManager& wells_manager_;
const Wells* wells_;
const std::vector<double>& src_;
const FlowBoundaryConditions* bcs_;
// Solvers
IncompTpfa psolver_;
std::unique_ptr<TransportSolverTwophaseInterface> tsolver_;
// Misc. data
std::vector<int> allcells_;
// list of hooks that are notified when a timestep completes
EventSource timestep_completed_;
};
SimulatorIncompTwophase::SimulatorIncompTwophase(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity)
{
pimpl_.reset(new Impl(param, grid, props, rock_comp_props, wells_manager, src, bcs, linsolver, gravity));
}
SimulatorReport SimulatorIncompTwophase::run(SimulatorTimer& timer,
TwophaseState& state,
WellState& well_state)
{
return pimpl_->run(timer, state, well_state);
}
// connect the hook to the signal in the implementation class
Event& SimulatorIncompTwophase::timestep_completed () {
return pimpl_->timestep_completed_;
}
// empty default implementation, but provided in module; it is dangerous ta have
// this inlined in clients from the header, because then it can't be updated!
void SimulatorIncompTwophase::sync () {
}
static void reportVolumes(std::ostream &os, double satvol[2], double tot_porevol_init,
double tot_injected[2], double tot_produced[2],
double injected[2], double produced[2],
double init_satvol[2])
{
os.precision(5);
const int width = 18;
os << "\nVolume balance report (all numbers relative to total pore volume).\n";
os << " Saturated volumes: "
<< std::setw(width) << satvol[0]/tot_porevol_init
<< std::setw(width) << satvol[1]/tot_porevol_init << std::endl;
os << " Injected volumes: "
<< std::setw(width) << injected[0]/tot_porevol_init
<< std::setw(width) << injected[1]/tot_porevol_init << std::endl;
os << " Produced volumes: "
<< std::setw(width) << produced[0]/tot_porevol_init
<< std::setw(width) << produced[1]/tot_porevol_init << std::endl;
os << " Total inj volumes: "
<< std::setw(width) << tot_injected[0]/tot_porevol_init
<< std::setw(width) << tot_injected[1]/tot_porevol_init << std::endl;
os << " Total prod volumes: "
<< std::setw(width) << tot_produced[0]/tot_porevol_init
<< std::setw(width) << tot_produced[1]/tot_porevol_init << std::endl;
os << " In-place + prod - inj: "
<< std::setw(width) << (satvol[0] + tot_produced[0] - tot_injected[0])/tot_porevol_init
<< std::setw(width) << (satvol[1] + tot_produced[1] - tot_injected[1])/tot_porevol_init << std::endl;
os << " Init - now - pr + inj: "
<< std::setw(width) << (init_satvol[0] - satvol[0] - tot_produced[0] + tot_injected[0])/tot_porevol_init
<< std::setw(width) << (init_satvol[1] - satvol[1] - tot_produced[1] + tot_injected[1])/tot_porevol_init
<< std::endl;
os.precision(8);
}
// 17.03.2016 Temporarily removed while moving functionality to opm-output
#ifdef DISABLE_OUTPUT
static void outputStateVtk(const UnstructuredGrid& grid,
const Opm::TwophaseState& state,
const int step,
const std::string& output_dir)
{
// Write data in VTK format.
std::ostringstream vtkfilename;
vtkfilename << output_dir << "/vtk_files";
boost::filesystem::path fpath(vtkfilename.str());
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
vtkfilename << "/output-" << std::setw(3) << std::setfill('0') << step << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
if (!vtkfile) {
OPM_THROW(std::runtime_error, "Failed to open " << vtkfilename.str());
}
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
Opm::writeVtkData(grid, dm, vtkfile);
}
#endif
static void outputVectorMatlab(const std::string& name,
const std::vector<int>& vec,
const int step,
const std::string& output_dir)
{
std::ostringstream fname;
fname << output_dir << "/" << name;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
}
std::copy(vec.begin(), vec.end(), std::ostream_iterator<double>(file, "\n"));
}
// 17.03.2016 Temporarily removed while moving functionality to opm-output
#ifdef DISABLE_OUTPUT
static void outputStateMatlab(const UnstructuredGrid& grid,
const Opm::TwophaseState& state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(grid, state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
boost::filesystem::path fpath = fname.str();
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
}
file.precision(15);
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
#endif
static void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
watercut.write(os);
}
static void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
wellreport.write(os);
}
static bool allNeumannBCs(const FlowBoundaryConditions* bcs)
{
if (bcs == NULL) {
return true;
} else {
return std::find(bcs->type, bcs->type + bcs->nbc, BC_PRESSURE)
== bcs->type + bcs->nbc;
}
}
static bool allRateWells(const Wells* wells)
{
if (wells == NULL) {
return true;
}
const int nw = wells->number_of_wells;
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells->ctrls[w];
if (well_controls_well_is_open( wc )) {
if (well_controls_get_current_type(wc) == BHP) {
return false;
}
}
}
return true;
}
SimulatorIncompTwophase::Impl::Impl(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity)
: use_reorder_(param.getDefault("use_reorder", true)),
use_segregation_split_(param.getDefault("use_segregation_split", false)),
grid_(grid),
props_(props),
rock_comp_props_(rock_comp_props),
wells_manager_(wells_manager),
wells_(wells_manager.c_wells()),
src_(src),
bcs_(bcs),
psolver_(grid, props, rock_comp_props, linsolver,
param.getDefault("nl_pressure_residual_tolerance", 0.0),
param.getDefault("nl_pressure_change_tolerance", 1.0),
param.getDefault("nl_pressure_maxiter", 10),
gravity, wells_manager.c_wells(), src, bcs)
{
// Initialize transport solver.
if (use_reorder_) {
tsolver_.reset(new Opm::TransportSolverTwophaseReorder(grid,
props,
use_segregation_split_ ? gravity : NULL,
param.getDefault("nl_tolerance", 1e-9),
param.getDefault("nl_maxiter", 30)));
} else {
if (rock_comp_props && rock_comp_props->isActive()) {
OPM_THROW(std::runtime_error, "The implicit pressure solver cannot handle rock compressibility.");
}
if (use_segregation_split_) {
OPM_THROW(std::runtime_error, "The implicit pressure solver is not set up to use segregation splitting.");
}
std::vector<double> porevol;
computePorevolume(grid, props.porosity(), porevol);
tsolver_.reset(new Opm::TransportSolverTwophaseImplicit(grid,
props,
porevol,
gravity,
psolver_.getHalfTrans(),
param));
}
// For output.
log_ = param.getDefault("quiet", false) ? &Opm::null_stream : &std::cout;
output_ = param.getDefault("output", true);
if (output_) {
output_vtk_ = param.getDefault("output_vtk", true);
output_dir_ = param.getDefault("output_dir", std::string("output"));
// Ensure that output dir exists
boost::filesystem::path fpath(output_dir_);
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
output_interval_ = param.getDefault("output_interval", 1);
}
// Well control related init.
check_well_controls_ = param.getDefault("check_well_controls", false);
max_well_control_iterations_ = param.getDefault("max_well_control_iterations", 10);
// Transport related init.
num_transport_substeps_ = param.getDefault("num_transport_substeps", 1);
// Misc init.
const int num_cells = grid.number_of_cells;
allcells_.resize(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells_[cell] = cell;
}
}
SimulatorReport SimulatorIncompTwophase::Impl::run(SimulatorTimer& timer,
TwophaseState& state,
WellState& well_state)
{
std::vector<double> transport_src;
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch callback_timer;
double time_in_callbacks = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_satvol[2] = { 0.0 };
double satvol[2] = { 0.0 };
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
*log_ << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
std::fstream tstep_os;
if (output_) {
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
while (!timer.done()) {
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(*log_);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
#ifdef DISABLE_OUTPUT
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
#endif
}
#ifdef DISABLE_OUTPUT
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
#endif
if (use_reorder_) {
// This use of dynamic_cast is not ideal, but should be safe.
outputVectorMatlab(std::string("reorder_it"),
dynamic_cast<const TransportSolverTwophaseReorder&>(*tsolver_).getReorderIterations(),
timer.currentStepNum(), output_dir_);
}
}
SimulatorReport sreport;
// Solve pressure equation.
if (check_well_controls_) {
computeFractionalFlow(props_, allcells_, state.saturation(), fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
pressure_timer.start();
std::vector<double> initial_pressure = state.pressure();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if rock is incompressible, and
// there are no pressure conditions (bcs or wells).
// It is deemed sufficient for now to renormalize
// using geometric volume instead of pore volume.
if ((rock_comp_props_ == NULL || !rock_comp_props_->isActive())
&& allNeumannBCs(bcs_) && allRateWells(wells_)) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
}
// Stop timer and report.
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
*log_ << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
sreport.pressure_time = pt;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
*log_ << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
*log_ << "Well controls not passed, solving again." << std::endl;
} else {
*log_ << "Well conditions met." << std::endl;
}
}
} while (!well_control_passed);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
wells_, well_state.perfRates(), transport_src);
// Solve transport.
transport_timer.start();
double stepsize = timer.currentStepLength();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
*log_ << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_->solve(&initial_porevol[0], &transport_src[0], stepsize, state);
double substep_injected[2] = { 0.0 };
double substep_produced[2] = { 0.0 };
Opm::computeInjectedProduced(props_, state.saturation(), transport_src, stepsize,
substep_injected, substep_produced);
injected[0] += substep_injected[0];
injected[1] += substep_injected[1];
produced[0] += substep_produced[0];
produced[1] += substep_produced[1];
if (use_reorder_ && use_segregation_split_) {
// Again, unfortunate but safe use of dynamic_cast.
// Possible solution: refactor gravity solver to its own class.
dynamic_cast<TransportSolverTwophaseReorder&>(*tsolver_)
.solveGravity(&initial_porevol[0], stepsize, state);
}
watercut.push(timer.simulationTimeElapsed() + timer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells_) {
wellreport.push(props_, *wells_, state.saturation(),
timer.simulationTimeElapsed() + timer.currentStepLength(),
well_state.bhp(), well_state.perfRates());
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
sreport.transport_time = tt;
*log_ << "Transport solver took: " << tt << " seconds." << std::endl;
ttime += tt;
// Report volume balances.
Opm::computeSaturatedVol(porevol, state.saturation(), satvol);
tot_injected[0] += injected[0];
tot_injected[1] += injected[1];
tot_produced[0] += produced[0];
tot_produced[1] += produced[1];
reportVolumes(*log_, satvol, tot_porevol_init,
tot_injected, tot_produced,
injected, produced,
init_satvol);
sreport.total_time = step_timer.secsSinceStart();
if (output_) {
sreport.reportParam(tstep_os);
}
// advance the timer to the end of the timestep *before* notifying
// the client that the timestep is done
++timer;
// notify all clients that we are done with the timestep
callback_timer.start ();
timestep_completed_.signal ();
callback_timer.stop ();
time_in_callbacks += callback_timer.secsSinceStart ();
}
if (output_) {
if (output_vtk_) {
#ifdef DISABLE_OUTPUT
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
#endif
}
#ifdef DISABLE_OUTPUT
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
#endif
if (use_reorder_) {
// This use of dynamic_cast is not ideal, but should be safe.
outputVectorMatlab(std::string("reorder_it"),
dynamic_cast<const TransportSolverTwophaseReorder&>(*tsolver_).getReorderIterations(),
timer.currentStepNum(), output_dir_);
}
outputWaterCut(watercut, output_dir_);
if (wells_) {
outputWellReport(wellreport, output_dir_);
}
tstep_os.close();
}
total_timer.stop();
SimulatorReport report;
report.pressure_time = ptime;
report.transport_time = ttime;
report.total_time = total_timer.secsSinceStart() - time_in_callbacks;
return report;
}
} // namespace Opm

View File

@ -0,0 +1,144 @@
/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIMULATORINCOMPTWOPHASE_HEADER_INCLUDED
#define OPM_SIMULATORINCOMPTWOPHASE_HEADER_INCLUDED
#include <memory>
#include <vector>
#include <iostream>
struct UnstructuredGrid;
struct Wells;
struct FlowBoundaryConditions;
namespace Opm
{
namespace parameter { class ParameterGroup; }
class IncompPropertiesInterface;
class RockCompressibility;
class WellsManager;
class LinearSolverInterface;
class SimulatorTimer;
class TwophaseState;
class WellState;
struct SimulatorReport;
struct Event;
/// Class collecting all necessary components for a two-phase simulation.
class SimulatorIncompTwophase
{
public:
/// Initialise from parameters and objects to observe.
/// \param[in] param parameters, this class accepts the following:
/// parameter (default) effect
/// -----------------------------------------------------------
/// output (true) write output to files?
/// output_dir ("output") output directoty
/// output_interval (1) output every nth step
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
/// nl_maxiter (30) max nonlinear iterations in transport
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
/// num_transport_substeps (1) number of transport steps per pressure step
/// use_segregation_split (false) solve for gravity segregation (if false,
/// segregation is ignored).
///
/// \param[in] grid grid data structure
/// \param[in] props fluid and rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] well_manager well manager, may manage no (null) wells
/// \param[in] src source terms
/// \param[in] bcs boundary conditions, treat as all noflow if null
/// \param[in] linsolver linear solver
/// \param[in] gravity if non-null, gravity vector
SimulatorIncompTwophase(const parameter::ParameterGroup& param,
const UnstructuredGrid& grid,
const IncompPropertiesInterface& props,
const RockCompressibility* rock_comp_props,
WellsManager& wells_manager,
const std::vector<double>& src,
const FlowBoundaryConditions* bcs,
LinearSolverInterface& linsolver,
const double* gravity);
/// Run the simulation.
/// This will run succesive timesteps until timer.done() is true. It will
/// modify the reservoir and well states.
/// \param[in,out] timer governs the requested reporting timesteps
/// \param[in,out] state state of reservoir: pressure, fluxes
/// \param[in,out] well_state state of wells: bhp, perforation rates
/// \return simulation report, with timing data
SimulatorReport run(SimulatorTimer& timer,
TwophaseState& state,
WellState& well_state);
/// Event that is signaled every time the simulator has completed a
/// a timestep.
///
/// Register a callback with this event to do processing at the end
/// of every timestep, for instance to do reporting.
///
/// \note
/// If you want to know the current timestep, the callback must
/// also monitor the timer object which was passed to run().
///
/// \example
/// \code{.cpp}
/// struct Foo {
/// void bar () { cout << "Called!" << endl; }
/// };
///
/// SimulatorIncompTwophase sim (...);
/// Foo f;
/// sim.timestep_completed ().add <Foo, &Foo::bar> (f);
/// sim.run (...);
/// \endcode
///
/// \note
/// Registered callbacks should call the sync() method before
/// accessing the state that was passed into the run() method.
///
/// \see Opm::SimulatorIncompTwophase::sync
Event& timestep_completed ();
/// Notify the simulator that a callback has an interest in reading
/// for reporting purposes the contents of the state argument that
/// was passed to the run() method. The simulator will then flush
/// any internal state which is currently not reflected in it.
///
/// \note
/// This should only be called from within a notification which has
/// been setup with timestep_completed(). Avoid calling this method
/// outside of run().
///
/// \see Opm::SimulatorIncompTwophase::run,
/// Opm::SimulatorIncompTwophase::timestep_completed
void sync ();
private:
struct Impl;
// Using shared_ptr instead of unique_ptr since unique_ptr requires complete type for Impl.
std::shared_ptr<Impl> pimpl_;
};
} // namespace Opm
#endif // OPM_SIMULATORINCOMPTWOPHASE_HEADER_INCLUDED

View File

@ -0,0 +1,413 @@
/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_THRESHOLDPRESSURES_HEADER_INCLUDED
#define OPM_THRESHOLDPRESSURES_HEADER_INCLUDED
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <vector>
#include <opm/parser/eclipse/EclipseState/SimulationConfig/SimulationConfig.hpp>
#include <opm/parser/eclipse/EclipseState/SimulationConfig/ThresholdPressure.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/NNC.hpp>
namespace Opm
{
/// \brief Compute the maximum gravity corrected pressure difference of all
/// equilibration regions given a reservoir state.
/// \tparam Grid Type of grid object (UnstructuredGrid or CpGrid).
/// \param[out] maxDp The resulting pressure difference between equilibration regions
/// \param[in] deck Input deck, EQLOPTS and THPRES are accessed from it.
/// \param[in] eclipseState Processed eclipse state, EQLNUM is accessed from it.
/// \param[in] grid The grid to which the thresholds apply.
/// \param[in] initialState The state of the reservoir
/// \param[in] props The object which calculates fluid properties
/// \param[in] gravity The gravity constant
template <class Grid>
void computeMaxDp(std::map<std::pair<int, int>, double>& maxDp,
const DeckConstPtr& deck,
EclipseStateConstPtr eclipseState,
const Grid& grid,
const BlackoilState& initialState,
const BlackoilPropertiesFromDeck& props,
const double gravity)
{
const PhaseUsage& pu = props.phaseUsage();
std::shared_ptr<const GridProperty<int>> eqlnum = eclipseState->getIntGridProperty("EQLNUM");
const auto& eqlnumData = eqlnum->getData();
const int numPhases = initialState.numPhases();
const int numCells = UgGridHelpers::numCells(grid);
const int numPvtRegions = deck->getKeyword("TABDIMS").getRecord(0).getItem("NTPVT").get< int >(0);
// retrieve the minimum (residual!?) and the maximum saturations for all cells
std::vector<double> minSat(numPhases*numCells);
std::vector<double> maxSat(numPhases*numCells);
std::vector<int> allCells(numCells);
for (int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
allCells[cellIdx] = cellIdx;
}
props.satRange(numCells, allCells.data(), minSat.data(), maxSat.data());
// retrieve the surface densities
std::vector<std::vector<double> > surfaceDensity(numPvtRegions);
const auto& densityKw = deck->getKeyword("DENSITY");
for (int regionIdx = 0; regionIdx < numPvtRegions; ++regionIdx) {
surfaceDensity[regionIdx].resize(numPhases);
if (pu.phase_used[BlackoilPhases::Aqua]) {
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
surfaceDensity[regionIdx][wpos] =
densityKw.getRecord(regionIdx).getItem("WATER").getSIDouble(0);
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
surfaceDensity[regionIdx][opos] =
densityKw.getRecord(regionIdx).getItem("OIL").getSIDouble(0);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
surfaceDensity[regionIdx][gpos] =
densityKw.getRecord(regionIdx).getItem("GAS").getSIDouble(0);
}
}
// retrieve the PVT region of each cell. note that we need c++ instead of
// Fortran indices.
const int* gc = UgGridHelpers::globalCell(grid);
std::vector<int> pvtRegion(numCells);
const auto& cartPvtRegion = eclipseState->getIntGridProperty("PVTNUM")->getData();
for (int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
const int cartCellIdx = gc ? gc[cellIdx] : cellIdx;
pvtRegion[cellIdx] = std::max(0, cartPvtRegion[cartCellIdx] - 1);
}
// compute the initial "phase presence" of each cell (required to calculate
// the inverse formation volume factors
std::vector<PhasePresence> cond(numCells);
for (int cellIdx = 0; cellIdx < numCells; ++cellIdx) {
const double sw = initialState.saturation()[numPhases*cellIdx + pu.phase_pos[BlackoilPhases::Aqua]];
const double so = initialState.saturation()[numPhases*cellIdx + pu.phase_pos[BlackoilPhases::Liquid]];
const double sg = initialState.saturation()[numPhases*cellIdx + pu.phase_pos[BlackoilPhases::Vapour]];
if (pu.phase_used[BlackoilPhases::Aqua] && sw > 0.0) {
cond[cellIdx].setFreeWater();
}
if (pu.phase_used[BlackoilPhases::Liquid] && so > 0.0) {
cond[cellIdx].setFreeOil();
}
if (pu.phase_used[BlackoilPhases::Vapour] && sg > 0.0) {
cond[cellIdx].setFreeGas();
}
}
// calculate the initial fluid densities for the gravity correction.
std::vector<std::vector<double>> rho(numPhases);
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
rho[phaseIdx].resize(numCells);
}
// compute the capillary pressures of the active phases
std::vector<double> capPress(numCells*numPhases);
std::vector<int> cellIdxArray(numCells);
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
cellIdxArray[cellIdx] = cellIdx;
}
props.capPress(numCells, initialState.saturation().data(), cellIdxArray.data(), capPress.data(), NULL);
// compute the absolute pressure of each active phase: for some reason, E100
// defines the capillary pressure for the water phase as p_o - p_w while it
// uses p_g - p_o for the gas phase. (it would be more consistent to use the
// oil pressure as reference for both the other phases.) probably this is
// done to always have a positive number for the capillary pressure (as long
// as the medium is hydrophilic)
std::vector<std::vector<double> > phasePressure(numPhases);
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
phasePressure[phaseIdx].resize(numCells);
}
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
// we currently hard-code the oil phase as the reference phase!
assert(pu.phase_used[BlackoilPhases::Liquid]);
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
phasePressure[opos][cellIdx] = initialState.pressure()[cellIdx];
if (pu.phase_used[BlackoilPhases::Aqua]) {
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
phasePressure[wpos][cellIdx] =
initialState.pressure()[cellIdx]
+ (capPress[cellIdx*numPhases + opos] - capPress[cellIdx*numPhases + wpos]);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
phasePressure[gpos][cellIdx] =
initialState.pressure()[cellIdx]
+ (capPress[cellIdx*numPhases + gpos] - capPress[cellIdx*numPhases + opos]);
}
}
// calculate the densities of the active phases for each cell
if (pu.phase_used[BlackoilPhases::Aqua]) {
const int wpos = pu.phase_pos[BlackoilPhases::Aqua];
const auto& pvtw = props.waterPvt();
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
int pvtRegionIdx = pvtRegion[cellIdx];
double T = initialState.temperature()[cellIdx];
double p = initialState.pressure()[cellIdx];
double b = pvtw.inverseFormationVolumeFactor(pvtRegionIdx, T, p);
rho[wpos][cellIdx] = surfaceDensity[pvtRegionIdx][wpos]*b;
}
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int opos = pu.phase_pos[BlackoilPhases::Liquid];
const auto& pvto = props.oilPvt();
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
int pvtRegionIdx = pvtRegion[cellIdx];
double T = initialState.temperature()[cellIdx];
double p = initialState.pressure()[cellIdx];
double Rs = initialState.gasoilratio()[cellIdx];
double RsSat = pvto.saturatedGasDissolutionFactor(pvtRegionIdx, T, p);
if (Rs >= RsSat) {
double b = pvto.saturatedInverseFormationVolumeFactor(pvtRegionIdx, T, p);
rho[opos][cellIdx] = surfaceDensity[pvtRegionIdx][opos]*b;
}
else {
double b = pvto.inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rs);
rho[opos][cellIdx] = surfaceDensity[pvtRegionIdx][opos]*b;
if (pu.phase_used[BlackoilPhases::Vapour]) {
int gpos = pu.phase_pos[BlackoilPhases::Vapour];
rho[opos][cellIdx] += surfaceDensity[pvtRegionIdx][gpos]*Rs*b;
}
}
}
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
const int gpos = pu.phase_pos[BlackoilPhases::Vapour];
const auto& pvtg = props.gasPvt();
for (int cellIdx = 0; cellIdx < numCells; ++ cellIdx) {
int pvtRegionIdx = pvtRegion[cellIdx];
double T = initialState.temperature()[cellIdx];
double p = initialState.pressure()[cellIdx];
double Rv = initialState.rv()[cellIdx];
double RvSat = pvtg.saturatedOilVaporizationFactor(pvtRegionIdx, T, p);
if (Rv >= RvSat) {
double b = pvtg.saturatedInverseFormationVolumeFactor(pvtRegionIdx, T, p);
rho[gpos][cellIdx] = surfaceDensity[pvtRegionIdx][gpos]*b;
}
else {
double b = pvtg.inverseFormationVolumeFactor(pvtRegionIdx, T, p, Rv);
rho[gpos][cellIdx] = surfaceDensity[pvtRegionIdx][gpos]*b;
if (pu.phase_used[BlackoilPhases::Liquid]) {
int opos = pu.phase_pos[BlackoilPhases::Liquid];
rho[gpos][cellIdx] += surfaceDensity[pvtRegionIdx][opos]*Rv*b;
}
}
}
}
// Calculate the maximum pressure potential difference between all PVT region
// transitions of the initial solution.
const int num_faces = UgGridHelpers::numFaces(grid);
const auto& fc = UgGridHelpers::faceCells(grid);
for (int face = 0; face < num_faces; ++face) {
const int c1 = fc(face, 0);
const int c2 = fc(face, 1);
if (c1 < 0 || c2 < 0) {
// Boundary face, skip this.
continue;
}
const int gc1 = (gc == 0) ? c1 : gc[c1];
const int gc2 = (gc == 0) ? c2 : gc[c2];
const int eq1 = eqlnumData[gc1];
const int eq2 = eqlnumData[gc2];
if (eq1 == eq2) {
// not an equilibration region boundary. skip this.
continue;
}
// update the maximum pressure potential difference between the two
// regions
const auto barrierId = std::make_pair(eq1, eq2);
if (maxDp.count(barrierId) == 0) {
maxDp[barrierId] = 0.0;
}
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
const double z1 = UgGridHelpers::cellCenterDepth(grid, c1);
const double z2 = UgGridHelpers::cellCenterDepth(grid, c2);
const double zAvg = (z1 + z2)/2; // average depth
const double rhoAvg = (rho[phaseIdx][c1] + rho[phaseIdx][c2])/2;
const double s1 = initialState.saturation()[numPhases*c1 + phaseIdx];
const double s2 = initialState.saturation()[numPhases*c2 + phaseIdx];
const double sResid1 = minSat[numPhases*c1 + phaseIdx];
const double sResid2 = minSat[numPhases*c2 + phaseIdx];
// compute gravity corrected pressure potentials at the average depth
const double p1 = phasePressure[phaseIdx][c1] + rhoAvg*gravity*(zAvg - z1);
const double p2 = phasePressure[phaseIdx][c2] + rhoAvg*gravity*(zAvg - z2);
if ((p1 > p2 && s1 > sResid1) || (p2 > p1 && s2 > sResid2))
maxDp[barrierId] = std::max(maxDp[barrierId], std::abs(p1 - p2));
}
}
}
/// \brief Get a vector of pressure thresholds from EclipseState.
/// This function looks at EQLOPTS, THPRES and EQLNUM to determine
/// pressure thresholds. It does not consider the case where the
/// threshold values are defaulted, in which case they should be
/// determined from the initial, equilibrated simulation state.
/// \tparam Grid Type of grid object (UnstructuredGrid or CpGrid).
/// \param[in] deck Input deck, EQLOPTS and THPRES are accessed from it.
/// \param[in] eclipseState Processed eclipse state, EQLNUM is accessed from it.
/// \param[in] maxDp The maximum gravity corrected pressure differences between
/// the equilibration regions.
/// \param[in] grid The grid to which the thresholds apply.
/// \return A vector of pressure thresholds, one
/// for each face in the grid. A value
/// of zero means no threshold for that
/// particular face. An empty vector is
/// returned if there is no THPRES
/// feature used in the deck.
template <class Grid>
std::vector<double> thresholdPressures(const DeckConstPtr& /* deck */,
EclipseStateConstPtr eclipseState,
const Grid& grid,
const std::map<std::pair<int, int>, double>& maxDp)
{
SimulationConfigConstPtr simulationConfig = eclipseState->getSimulationConfig();
std::vector<double> thpres_vals;
if (simulationConfig->hasThresholdPressure()) {
std::shared_ptr<const ThresholdPressure> thresholdPressure = simulationConfig->getThresholdPressure();
std::shared_ptr<const GridProperty<int>> eqlnum = eclipseState->getIntGridProperty("EQLNUM");
const auto& eqlnumData = eqlnum->getData();
// Set threshold pressure values for each cell face.
const int num_faces = UgGridHelpers::numFaces(grid);
const auto& fc = UgGridHelpers::faceCells(grid);
const int* gc = UgGridHelpers::globalCell(grid);
thpres_vals.resize(num_faces, 0.0);
for (int face = 0; face < num_faces; ++face) {
const int c1 = fc(face, 0);
const int c2 = fc(face, 1);
if (c1 < 0 || c2 < 0) {
// Boundary face, skip it.
continue;
}
const int gc1 = (gc == 0) ? c1 : gc[c1];
const int gc2 = (gc == 0) ? c2 : gc[c2];
const int eq1 = eqlnumData[gc1];
const int eq2 = eqlnumData[gc2];
if (thresholdPressure->hasRegionBarrier(eq1,eq2)) {
if (thresholdPressure->hasThresholdPressure(eq1,eq2)) {
thpres_vals[face] = thresholdPressure->getThresholdPressure(eq1,eq2);
}
else {
// set the threshold pressure for faces of PVT regions where the third item
// has been defaulted to the maximum pressure potential difference between
// these regions
const auto barrierId = std::make_pair(eq1, eq2);
thpres_vals[face] = maxDp.at(barrierId);
}
}
}
}
return thpres_vals;
}
/// \brief Get a vector of pressure thresholds from either EclipseState
/// or maxDp (for defaulted values) for all Non-neighbour connections (NNCs).
/// \param[in] nnc The NNCs,
/// \param[in] eclipseState Processed eclipse state, EQLNUM is accessed from it.
/// \param[in] maxDp The maximum gravity corrected pressure differences between
/// the equilibration regions.
/// \return A vector of pressure thresholds, one
/// for each NNC in the grid. A value
/// of zero means no threshold for that
/// particular connection. An empty vector is
/// returned if there is no THPRES
/// feature used in the deck.
std::vector<double> thresholdPressuresNNC(EclipseStateConstPtr eclipseState,
const NNC& nnc,
const std::map<std::pair<int, int>, double>& maxDp)
{
SimulationConfigConstPtr simulationConfig = eclipseState->getSimulationConfig();
std::vector<double> thpres_vals;
if (simulationConfig->hasThresholdPressure()) {
std::shared_ptr<const ThresholdPressure> thresholdPressure = simulationConfig->getThresholdPressure();
std::shared_ptr<const GridProperty<int>> eqlnum = eclipseState->getIntGridProperty("EQLNUM");
auto eqlnumData = eqlnum->getData();
// Set values for each NNC
thpres_vals.resize(nnc.numNNC(), 0.0);
for (size_t i = 0 ; i < nnc.numNNC(); ++i) {
const int gc1 = nnc.nncdata()[i].cell1;
const int gc2 = nnc.nncdata()[i].cell2;
const int eq1 = eqlnumData[gc1];
const int eq2 = eqlnumData[gc2];
if (thresholdPressure->hasRegionBarrier(eq1,eq2)) {
if (thresholdPressure->hasThresholdPressure(eq1,eq2)) {
thpres_vals[i] = thresholdPressure->getThresholdPressure(eq1,eq2);
} else {
// set the threshold pressure for NNC of PVT regions where the third item
// has been defaulted to the maximum pressure potential difference between
// these regions
const auto barrierId = std::make_pair(eq1, eq2);
thpres_vals[i] = maxDp.at(barrierId);
}
}
}
}
return thpres_vals;
}
}
#endif // OPM_THRESHOLDPRESSURES_HEADER_INCLUDED

View File

@ -0,0 +1,56 @@
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/core/grid.h>
#include <opm/core/grid/cornerpoint_grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/simulators/thresholdPressures.hpp> // Note: the GridHelpers must be included before this (to make overloads available)
static DeckPtr createDeckSimConfig() {
const std::string& inputStr = "RUNSPEC\n"
"EQLOPTS\n"
"THPRES /\n "
"DIMENS\n"
"10 3 4 /\n"
"\n"
"GRID\n"
"REGIONS\n"
"EQLNUM\n"
"10*1 10*2 100*3 /\n "
"\n"
"SOLUTION\n"
"THPRES\n"
"1 2 12.0/\n"
"1 3 5.0/\n"
"2 3 7.0/\n"
"/\n"
"\n";
ParserPtr parser(new Parser());
return parser->parseString(inputStr, ParseContext()) ;
}
/*
The main purpose of this is to get the code in
thresholdPressures.hpp to compile; it currently has no users in the
opm-core codebase.
*/
BOOST_AUTO_TEST_CASE(CreateSimulationConfig) {
ParseContext parseContext;
typedef UnstructuredGrid Grid;
DeckPtr deck = createDeckSimConfig();
EclipseState state(deck, parseContext);
EclipseGridConstPtr eclipseGrid = state.getEclipseGrid();
std::vector<double> porv = eclipseState->getDoubleGridProperty("PORV")->getData();
GridManager gridManager( eclipseState->getEclipseGrid(), porv );
const Grid& grid = *(gridManager.c_grid());
std::vector<double> threshold_pressures = thresholdPressures(parseContext, eclipseState, grid);
BOOST_CHECK( threshold_pressures.size() > 0 );
}