mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-26 21:36:25 -06:00
removing the duplication of calculateReservoirEquilibrium
in the aquifer models.
This commit is contained in:
parent
91ec74dffc
commit
fd3287cdd3
@ -82,7 +82,7 @@ protected:
|
||||
auto globalCellIdx = ugrid.globalCell();
|
||||
|
||||
// We hack the cell depth values for now. We can actually get it from elementcontext pos
|
||||
this->cell_depth_.resize(this->size(), aquct_data_.d0);
|
||||
this->cell_depth_.resize(this->size(), this->aquiferDepth());
|
||||
this->alphai_.resize(this->size(), 1.0);
|
||||
this->faceArea_connected_.resize(this->size(), 0.0);
|
||||
|
||||
@ -165,7 +165,7 @@ protected:
|
||||
inline Scalar dpai(int idx)
|
||||
{
|
||||
Scalar dp = this->pa0_
|
||||
+ this->rhow_.at(idx).value() * this->gravity_() * (this->cell_depth_.at(idx) - aquct_data_.d0)
|
||||
+ this->rhow_.at(idx).value() * this->gravity_() * (this->cell_depth_.at(idx) - this->aquiferDepth())
|
||||
- this->pressure_previous_.at(idx);
|
||||
return dp;
|
||||
}
|
||||
@ -207,7 +207,7 @@ protected:
|
||||
int pvttableIdx = aquct_data_.pvttableID - 1;
|
||||
this->rhow_.resize(this->size(), 0.);
|
||||
if (!aquct_data_.p0.first) {
|
||||
this->pa0_ = calculateReservoirEquilibrium();
|
||||
this->pa0_ = this->calculateReservoirEquilibrium();
|
||||
} else {
|
||||
this->pa0_ = aquct_data_.p0.second;
|
||||
}
|
||||
@ -232,43 +232,9 @@ protected:
|
||||
mu_w_ = mu_w_aquifer.value();
|
||||
}
|
||||
|
||||
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
|
||||
// TODO: this function can be moved to the Inteface class, since it is the same for both Aquifer models
|
||||
inline Scalar calculateReservoirEquilibrium() override
|
||||
virtual Scalar aquiferDepth() const override
|
||||
{
|
||||
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
|
||||
std::vector<Scalar> pw_aquifer;
|
||||
Scalar water_pressure_reservoir;
|
||||
|
||||
ElementContext elemCtx(this->ebos_simulator_);
|
||||
const auto& gridView = this->ebos_simulator_.gridView();
|
||||
auto elemIt = gridView.template begin</*codim=*/0>();
|
||||
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
const auto& elem = *elemIt;
|
||||
elemCtx.updatePrimaryStencil(elem);
|
||||
|
||||
size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
int idx = this->cellToConnectionIdx_[cellIdx];
|
||||
if (idx < 0)
|
||||
continue;
|
||||
|
||||
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
||||
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
const auto& fs = iq0.fluidState();
|
||||
|
||||
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
|
||||
this->rhow_[idx] = fs.density(waterPhaseIdx);
|
||||
pw_aquifer.push_back(
|
||||
(water_pressure_reservoir
|
||||
- this->rhow_[idx].value() * this->gravity_() * (this->cell_depth_[idx] - aquct_data_.d0))
|
||||
* this->alphai_[idx]);
|
||||
}
|
||||
|
||||
// We take the average of the calculated equilibrium pressures.
|
||||
const Scalar sum_alpha = std::accumulate(this->alphai_.begin(), this->alphai_.end(), 0.);
|
||||
const Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.) / sum_alpha;
|
||||
return aquifer_pres_avg;
|
||||
return aquct_data_.d0;
|
||||
}
|
||||
}; // class AquiferCarterTracy
|
||||
} // namespace Opm
|
||||
|
@ -84,7 +84,7 @@ protected:
|
||||
|
||||
|
||||
// We hack the cell depth values for now. We can actually get it from elementcontext pos
|
||||
this->cell_depth_.resize(this->size(), aqufetp_data_.d0);
|
||||
this->cell_depth_.resize(this->size(), this->aquiferDepth());
|
||||
this->alphai_.resize(this->size(), 1.0);
|
||||
this->faceArea_connected_.resize(this->size(), 0.0);
|
||||
|
||||
@ -171,7 +171,7 @@ protected:
|
||||
inline Eval dpai(int idx)
|
||||
{
|
||||
const Eval dp = aquifer_pressure_ - this->pressure_current_.at(idx)
|
||||
+ this->rhow_[idx] * this->gravity_() * (this->cell_depth_[idx] - aqufetp_data_.d0);
|
||||
+ this->rhow_[idx] * this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth());
|
||||
return dp;
|
||||
}
|
||||
|
||||
@ -204,47 +204,16 @@ protected:
|
||||
}
|
||||
|
||||
if (!aqufetp_data_.p0.first) {
|
||||
this->pa0_ = calculateReservoirEquilibrium();
|
||||
this->pa0_ = this->calculateReservoirEquilibrium();
|
||||
} else {
|
||||
this->pa0_ = aqufetp_data_.p0.second;
|
||||
}
|
||||
aquifer_pressure_ = this->pa0_;
|
||||
}
|
||||
|
||||
inline Scalar calculateReservoirEquilibrium() override
|
||||
virtual Scalar aquiferDepth() const override
|
||||
{
|
||||
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
|
||||
std::vector<Scalar> pw_aquifer;
|
||||
Scalar water_pressure_reservoir;
|
||||
|
||||
ElementContext elemCtx(this->ebos_simulator_);
|
||||
const auto& gridView = this->ebos_simulator_.gridView();
|
||||
auto elemIt = gridView.template begin</*codim=*/0>();
|
||||
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
const auto& elem = *elemIt;
|
||||
elemCtx.updatePrimaryStencil(elem);
|
||||
size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
int idx = this->cellToConnectionIdx_[cellIdx];
|
||||
if (idx < 0)
|
||||
continue;
|
||||
|
||||
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
||||
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
const auto& fs = iq0.fluidState();
|
||||
|
||||
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
|
||||
this->rhow_[idx] = fs.density(waterPhaseIdx);
|
||||
pw_aquifer.push_back(
|
||||
(water_pressure_reservoir
|
||||
- this->rhow_[idx].value() * this->gravity_() * (this->cell_depth_[idx] - aqufetp_data_.d0))
|
||||
* this->alphai_[idx]);
|
||||
}
|
||||
|
||||
// We take the average of the calculated equilibrium pressures.
|
||||
const Scalar sum_alpha = std::accumulate(this->alphai_.begin(), this->alphai_.end(), 0.);
|
||||
const Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.) / sum_alpha;
|
||||
return aquifer_pres_avg;
|
||||
return aqufetp_data_.d0;
|
||||
}
|
||||
}; // Class AquiferFetkovich
|
||||
} // namespace Opm
|
||||
|
@ -261,7 +261,46 @@ protected:
|
||||
|
||||
virtual void calculateAquiferConstants() = 0;
|
||||
|
||||
virtual Scalar calculateReservoirEquilibrium() = 0;
|
||||
virtual Scalar aquiferDepth() const = 0;
|
||||
|
||||
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
|
||||
virtual Scalar calculateReservoirEquilibrium()
|
||||
{
|
||||
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
|
||||
std::vector<Scalar> pw_aquifer;
|
||||
Scalar water_pressure_reservoir;
|
||||
|
||||
ElementContext elemCtx(this->ebos_simulator_);
|
||||
const auto& gridView = this->ebos_simulator_.gridView();
|
||||
auto elemIt = gridView.template begin</*codim=*/0>();
|
||||
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
const auto& elem = *elemIt;
|
||||
elemCtx.updatePrimaryStencil(elem);
|
||||
|
||||
size_t cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
int idx = this->cellToConnectionIdx_[cellIdx];
|
||||
if (idx < 0)
|
||||
continue;
|
||||
|
||||
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
||||
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
||||
const auto& fs = iq0.fluidState();
|
||||
|
||||
water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
|
||||
this->rhow_[idx] = fs.density(waterPhaseIdx);
|
||||
pw_aquifer.push_back(
|
||||
(water_pressure_reservoir
|
||||
- this->rhow_[idx].value() * this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth()))
|
||||
* this->alphai_[idx]);
|
||||
}
|
||||
|
||||
// We take the average of the calculated equilibrium pressures.
|
||||
const Scalar sum_alpha = std::accumulate(this->alphai_.begin(), this->alphai_.end(), 0.);
|
||||
const Scalar aquifer_pres_avg = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), 0.) / sum_alpha;
|
||||
return aquifer_pres_avg;
|
||||
}
|
||||
|
||||
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
|
||||
};
|
||||
} // namespace Opm
|
||||
|
Loading…
Reference in New Issue
Block a user