The B matrix is basically a component-wise multiplication
with a vector followed by a parallel reduction. We do that
reduction to all ranks computing for the well to save the
broadcast when applying C^T.
Previously, we exported an unordered map containing all names of
wells that are not present in the local part of the grid.
As we envision to have wells that are distributed across multiple
processors, this information does not seem to be enough. We need
to be able to set up communication for each well. To do this we need
to find out who handles perforations of each well.
We now export a full list of well name together with a boolean
indicating whether it perforates local cells (vector of pair of string
and bool).
Before this we had a set of external*_ variabales (unique_ptrs), a set of
internal_*_ variables (unique_ptrs) and another set of pointers that
point to the pointers actually used. That seemed a bit much. With this
commit skip the internal variables and use unique_ptrs for all
others. In the constructor either the external*_ gets moved or the
objects are directly created as unique_ptrs.
We resort to consistently use unique_ptrs in EclBaseVanguard for
the data read from ECL files or set externally. This means that
during the simulation EclBaseVanguard owns this data and not Main
or the ebos setup functions. This ownership transfer becomes
transparent due to std::move.
This came up when trying to fix the parallel runs of ebos and during
that removing some code duplication.
Without this, rank 0 gets an empty case name, resulting in
buggy VTK output with filenames containing the genereric stem
"sim" rather than the case name as stem.
`NEW_PROP_TAG` is now a definition and not just a declaration.
Eliminate superfluous declarations, include headers with definitions.
Make one necessary forward declaration explicit.
They are attached to the cells as well and are now distributed
during CpGrid::loadBalance. Due to this change we also rename
FieldPropsDataHandle to PropsCentroidsDataHandle.
This at least slightly improves the old design. In that design the
subclass had no own constructor but inherited the one of the base class.
That base class constructor called certain subclass
functions (createGrids_, filterConnections_, updateOutputDir_, and
finalizeInit_)that would initialize raw pointers of the
subclass. Hence subclasses where not allowed to have non-pod members
and those used later (e.g. deleted in the destructor) had to be
initialized in these functions.
The new (still ugly) design introduces constructors into the
subclasses and skips inheriting constructors. Now one must call a base
class function classImplementationInit which will still call the
functions createGrids_, filterConnections_, updateOutputDir_, and
finalizeInit_, but at least at this point the baseclass is fully
constructed and the subclass is constructed as much as
possible/needed (non-pod types will be initialized now.)