the performance summary at the end of a Norne run which are printed by
`flow_ebos` now looks like this on my machine:
```
Total time (seconds): 773.757
Solver time (seconds): 753.349
Assembly time (seconds): 377.218 (Failed: 23.537; 6.23965%)
Linear solve time (seconds): 352.022 (Failed: 23.2757; 6.61201%)
Update time (seconds): 16.3658 (Failed: 1.13149; 6.91375%)
Output write time (seconds): 22.5991
Overall Well Iterations: 870 (Failed: 35; 4.02299%)
Overall Linearizations: 2098 (Failed: 136; 6.48236%)
Overall Newton Iterations: 1756 (Failed: 136; 7.74487%)
Overall Linear Iterations: 26572 (Failed: 1786; 6.72136%)
```
for the flow_legacy family, nothing changes.
Previously the substep summary reports were cumulative, misleading the user.
Also, made output a little more compact and readable, ensuring numbers line up
unless unusually many digits are needed for times and iteration counts.
needed as substep summary reports requires FIP data to be available.
add calculation of this data if output is requested and summary
config holds relevant keywords.
Previously, we also called it when the full time step was done.
As the simulator writes that information anyway and we cannot call
it a sub step, we omit the final write in the adaptive time stepper.
-- avoid using eof()
-- add comments
-- no longer assumes two lines of comments.
-- revert change to default value for timestep.initial_step_length
-- make contructer explicit
-- pass reference
A new timestepper that reads timesteps from a file generated using
ecl_summary "DECK" TIME
and applies it to the simulator
Also a parameter timestep.initial_step_length (default 1 day) is added
to controll the frist timestep.
- use time stepping algorithm pid instead of pid + iter
Adjusting the time-steps on the number of linear iterations does
currently not give any improvents on the time-stepping.
- Change the pid tolerance. The time-stepper will take longer time-steps
and thus reduce the simulation time significantly. The Norne and the SPE
results does not degrade
- Less aggressive reduction of time-steps after convergence problems