If oscillating then the same measures have to be taken on all
processes. This was not the case before the commit. Instead only
process 0 would have adapted omegas and we have produced wrong
results.
Kudos to Atgeirr for detecting this while reading the code.
With now generic implementation of the initStateEquil in opm-core
we added the necessary grid helper functionlality for CpGrid and activated
the processing if the EQUIL keyword is there.
The average well block pressure is used instead of the well cell
pressure when the well properties are evaluated.
Temperature, rs, rv, phase conditions are still well cells values.
Perforation pressures are stored in the well state
Previously BlackoilPropsDataHandle did hold a grid for sending
and receiving that were either not used or we could prevent their
usage. Therefore this commit removes them from the class and queries
all needed information from the property objects.
These were in the anonymous namespace, which was not wrong but lead to
false-positive unused function warnings on some compilers, probably due
to being used only from within templates. This allows us to keep the
warning activated by default.
1) swatinit() is changed to setSwatInitScaling() to make it obvious that
we are modifying the props.
2) the descriptions of saturation and pc now makes more sense
3) the method is removed from the sibling class and the interface and
the type of new_props is changed from BlackoilPropsAdInterface to
BlackoilPropsAdFromDeck
5) The same modification is added to sim_fibo_ad_cp
The capillary pressure function in new_props is scaled to match the
capillary pressure function in props.
This is a temporary workaround while the simulator uses two different
property object.
Previously, we had to use two layers of overlap cells such the
innermost layer contains the rightvalues automatically (as it is
surrounded by internal edges). No we use communication to get
the correct values in the whole overlap region and one layer
suffices as it should.
With this commit we add the possibility to start with a global representation
of a simulator that is read on each process and afterwards this presentation
is redistributed among the processors together with the properties and
state data needed to initialize the simulation.
There still is no parallel well handling and no parallel output. But with the
equilibrium example of @dr-robertk and deactivated output we can already
perform parallel runs.
In the parallel simulator we will have to be able adress only poperties on
some part of the global grid. To create thos properties we need to be able
to copy the grid independant data of the properties object and resize the rest.
This commit adds a construct taking a properties object for reading and a
new number of cells to accomplish this.
During the constructor the underlying object only holds smart
pointers and an empty vector. The FullyImplicitBlackoilSolver
obtains a reference to it from the NewtInterationInterface instances.
Therefore copying boost::any and storing it by value should be cheap
and safe.