it is for WellCollection, which is logically wrong. It should be done in
the group level, while things will be different for multi-level groups.
The current implementation basically works for current needs, that we
only have one group.
forced and only_group basically mean two opposite things. Having both of
them in the same context will be really confusing and error-prone.
And also, we do not do anything forcedly. We do things base on what
setup tells us to do.
Only_group may not be the final name, while deinitely a better one than
forced.
For the WellModel from the simulator to use. Not decided totally,
well_collection might need to be updated during the simualtion due
to the update the target of wells.
Current understanding. Two ways might prevent to return the guide_rate here
1. preventing the well from group control with keyword WGRUPCON
2. the well violating some limits and working under limits. We do not have strategy
to handle this situation yet.
Very hacky way here. The logic of the code is that only
a well is specified under GRUP control, it is under group
control. Which is not the case observed from the result.
From the result, if we specify group control with GCONPROD
and WCONPROD for a well, it looks like the well will be
under group control. TODO: make the logic correct here
instead of using `false` here.
since the unit code within opm-parser is now a drop-in replacement,
this simplifies things and make them less error-prone.
unfortunately, this requires quite a few PRs. (most are pretty
trivial, though.)
This reverts commit 09205dfa074af24b381595d02c15e799523ddb2b.
We cannot use the index as it might change for a well between different
report steps. Unfortunately the only persistent way to identify wells
over all report steps in the schedule seems to be the well name.
Before this commit we tried to compute whether a well is represented on
the processor using the grid information. Due to the overlap region and
possible completion on deactivated cells of the global grid this is not
even possible. E.g. we cannot distinguish whether a completion is just
not represented on the domain of a process or the corresponding cell is
not active in the simulation.
With this commit we refactor to passing the well manager an explicit
list of name of wells that should be completely neglected. This information
can easily by computed after the loadbalancer has computed partitions.
when well is closed due to rate economic limits, based on the auto
shut-in configuration, the well can be STOP or SHUT.
When well is closed due to all the connections are closed, it should be
SHUT.
- Handle shut wells
- Use the groups control type to determine which phase to calculate
the guide rates from. i.e for a ORAT controlled group, calculate the
guide rates from the oil phase well potentials etc.
The default guide rates are caculated using the well potentials.
The well potentials are calculated in the simulator and given as input
to the wellsManager.
Several files stopped compiling due to relying on opm-parser headers
doing includes. From opm-parser PR-656
https://github.com/OPM/opm-parser/pull/656 this assumption is no longer
valid.
This should prevent misunderstandings about what the
well_index_on_proc is. It is not the well_index according to
the eclipse state (on open wells count) but the index of the
wells that are stored on this process' domain.
In the parallel run there are cases where wells perforate cells
that are neighbors of overlap/halo cells. On other process only
parts of the well are seen as perforations. These wells should be
ignored there. While the well was indeed ignored, the perforations
found where mistakenly added to the well found due not clearing the
wellperf_data[well_index]. This commit now does this clearing and
results in the right handling of wells for e.g. SPE9.
This PR adds allow_cf to the wells structure that determine whether
crossflow is allowed or not. An extra argument is added to addWell(..)
to specify the allow_cf flag.
While hopefully not a bug it raises an exception with gcc's
libc debugging mode. Therefore we resort to using C++11's
std::vector::data instead.
The exception was rosen when running SPE9 in parallel.
calculations
The dz calculated in WellDetails::getCubeDim is not correct in cases
where the face centroid of the horizontal faces is located above or
below the face centroid or the vertical faces. The cell thickness in
EclipseGrid, calculated using the Z-coordinates, is therefore used
instead.
If on one process a well completion is next to border then
it might also be stored in the neighbor process. Still not
all the completions of the well are known to the neighbor.
This breaks the previous assumption that for each well all
completions must belong to the partition of the process.
Therefore with this commit we allow wells that only have a
part of their completions assigned to the partition of the process.
This wells are deactivated under the assumption that they must
exist completely on another process due to the partitioning.
Previously well with just some shut completions errorneously triggered an
exception in parallel runs. This is fixed with this commit.
Due to the logic shut completions will always be marked as existing
on a process. (Initially all completions are marked as found. For
each open completion we check whether the cartesian index belongs to
the local grid. If that is not the case we mark it as not found).
Therefore we now check whether the found number of completions
is either the number of shut completions or the number of all completions.
In the former case the well is not stored on this process, and in the latter
case it is. In other cases we throw an exception.
gcc-4.7.2 (Debian 4.7.2-5) complained about:
"‘for’ loop initial declarations are only allowed in C99 mode
note: use option -std=c99 or -std=gnu99 to compile your code"
when seeing a loop like
for(int i=0; i<end; ++i)
This is fixed by moving the declaration before the for loop with
this commit. Altenatively, we could use the above option.
Previously, we used the setStatus method to set wells that do not
exist on the local grid to SHUT. Or at least this is what I thought
that ```well.setStatus(timestep, SHUT)```. Unfortunately, my
assumption was wrong. This was revealed while testing a parallel run
with SPE9 that threw an expeption about "Elements must be added in
weakly increasing order" in Opm::DynamicState::add(int, T). Seems like
the method name is a bit misleading.
As it turns out the WellManager has its own complete list of active
wells (shut wells are simply left out). Therefore we can use this
behaviour to our advantage: With this commit we not only exclude shut
wells from the list, but also the ones that do not exist on the local
grid. We even get rid of an ugly const_cast.
Currently, I have running a parallel SPE9 test that has not yet
aborted.
In a parallel run each process only knows a part of the grid. Nevertheless
it does hold the complete well information. To resolve this the WellsManager
must be able to handle this case.
With this commit its constructor gets a flag indicating whether this is
a parallel run. If it is, then it does not throw if a well has cells that
are not present on the local part of the grid. Nevertheless it will check
that either all or none of the cells of a well are stored in the local part
of the grid.
Wells with no perforated cells on the local will still be present but set to SHUT.
With this commit the WellsManager will check the status of completions
before adding them to the internal struct wells
datastructure. Completions can be in the four states:
OPEN, SHUT, AUTO, POPN
Completions with state == SHUT will be ignored, wheras the wellsmanager
will throw if the states AUTO or POPN are encountered. The WELOPEN
keyword can also have the value 'STOP'; for completions that is
translated to 'SHUT' by Schedule object.
Rename the the meaning for shut as whats used in Eclipse.
STOP: Well stopped off above the formation. I.e. allow for flow in the
well.
SHUT: Well completely isolated from the formation. The well is removed
from the well list.
There were to identical if statements and the second one was followed
by an else branch. While in this case (if statement just throws) it is not
a bug, this commit cleans up one of the if statements.
gcc warned about the following
/home/mblatt/src/dune/opm/opm-core/opm/core/wells/WellsManager.cpp: In function ‘std::array<long unsigned int, 3ul> WellsManagerDetail::directionIndices(Opm::CompletionDirection::DirectionEnum)’:
/home/mblatt/src/dune/opm/opm-core/opm/core/wells/WellsManager.cpp:191: warning: control reaches end of non-void function
To calm it I introduced a throw clause after the switch statements. Thus adding a new
enum value will raise a warning on smart compilers, hopefully.
Shut wells are not added to the well list and the well index should
therefore not be increased when well control is set. This is similar to
whats is done for shut wells in createWellsFromSpecs.
Shut wells are not added to the well list and thus not considered in the
simulator.
The shut well test in test_wellsmanager is modified to assert this
behaviour.
BUG: This change provokes an assert in the EclipeWriter as number of
wells in wellstate is different from number of wells in the schedule.