it seems like most build systems pass a -DHAVE_CONFIG_H flag to the
compiler which still causes `#if HAVE_CONFIG_H` to be false while it
clearly is supposed to be triggered.
That said, I do not really see a good reason why the inclusion of the
`config.h` file should be guarded in the first place: the file is
guaranteed to always available by proper build systems, and if it was
not included the build either breaks at the linking stage or -- at the
very least -- the runtime behavior of the resulting libraries will be
very awkward.
if PETSc is not available, the .cpp file will compile fine because it
will be reduced to be empty, but trying to include
LinearSolverPetsc.hpp in this case will result in an error.
This is quite a hack: Even though energy is not a "phase" and it is
also not considered in MaxNumPhases and pu.num_phases because this
would break a lot of assumptions in old code, it is nevertheless
assigned an "canonical index" that can be translated "active index"
via PhaseUsage::phase_pos[]. This awkwardness is needed because much
of the legacy OPM code conflates the concepts of "fluid phase" and
"conserved quantity" and fixing that issue would basically mean an
almost complete rewrite of much of the legacy code. That said, the
same statement applies to polymer and solvent, but these are currently
handled as even more second-class citizens because they are not even
given a canonical index and also cannot be translated into an active
one.
Note 1: The initialization code now always consider 3 phases.
For 2-phase cases a trivial (0) state is returned.
Note 2: The initialization code does not compute a BlackoilStats,
but instead pass the initialization object with the initial state.
inconsistent and unnecessary.
this is purely a cosmetic change, the only exception was a function with
the generic name 'split', which was renamed to splitParam to avoid confusion.
in WellsGroup::updateWellProductionTargets. The current implementation
of group control is allowed tiny over-producing of the group target
while it cause negative rate_for_group_control . When all the wells are
not under group controls, it can cause oscillation of the control mode
later.
Probably a better way is to do something when we see overproducing
happens.