With this commit the WellsManager will check the status of completions
before adding them to the internal struct wells
datastructure. Completions can be in the four states:
OPEN, SHUT, AUTO, POPN
Completions with state == SHUT will be ignored, wheras the wellsmanager
will throw if the states AUTO or POPN are encountered. The WELOPEN
keyword can also have the value 'STOP'; for completions that is
translated to 'SHUT' by Schedule object.
Rename the the meaning for shut as whats used in Eclipse.
STOP: Well stopped off above the formation. I.e. allow for flow in the
well.
SHUT: Well completely isolated from the formation. The well is removed
from the well list.
The old test was simply wrong: it computed the M-distance and compared
to the grid radius, which becomes dependent on the scaling of the
metric M. The corrected test in isClose() depends on the anisotropy
ratio of M and the grid radius.
Note that this patch does not introduce any real temperature
dependence but only changes the APIs for the viscosity and for the
density related methods. Note that I also don't like the fact that
this requires so many changes to so many files, but with the current
design of the property classes I cannot see a way to avoid this...
There were to identical if statements and the second one was followed
by an else branch. While in this case (if statement just throws) it is not
a bug, this commit cleans up one of the if statements.
gcc warned about the following
/home/mblatt/src/dune/opm/opm-core/opm/core/wells/WellsManager.cpp: In function ‘std::array<long unsigned int, 3ul> WellsManagerDetail::directionIndices(Opm::CompletionDirection::DirectionEnum)’:
/home/mblatt/src/dune/opm/opm-core/opm/core/wells/WellsManager.cpp:191: warning: control reaches end of non-void function
To calm it I introduced a throw clause after the switch statements. Thus adding a new
enum value will raise a warning on smart compilers, hopefully.
- satfuncStandard: Unscaled curves, using standard version of the
Gwseg model.
- satfuncEPSBase: Unscaled curves, but using the EPS version of
the Gwseg model. There are some differences between this and the
standard version of Gwseg for derivatives at critical saturations.
The scheme for calculating the derivatives should be discussed.
(Will file a separate issue on this.)
- satfuncEPS_A: Scaled curves. Scaling parameters specified via
SWL family.
- satfuncEPS_B: Scaled curves. Scaling parameters identical to _A
but this time specified via the ENPTVD table. Test currently
suspended due problems with eclipse-state.
- satfuncEPS_C: Scaled curves. Scaling parameters identical to _A
but this time specified via Norne-like syntax (EQUALS, COPY etc.).