/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #if HAVE_CONFIG_H #include "config.h" #endif // HAVE_CONFIG_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { void warnIfUnusedParams(const Opm::ParameterGroup& param) { if (param.anyUnused()) { std::cout << "-------------------- Unused parameters: --------------------\n"; param.displayUsage(); std::cout << "----------------------------------------------------------------" << std::endl; } } } // anon namespace // ----------------- Main program ----------------- int main(int argc, char** argv) try { using namespace Opm; std::cout << "\n================ Test program for incompressible two-phase flow ===============\n\n"; ParameterGroup param(argc, argv, false); std::cout << "--------------- Reading parameters ---------------" << std::endl; #if ! HAVE_SUITESPARSE_UMFPACK_H // This is an extra check to intercept a potentially invalid request for the // implicit transport solver as early as possible for the user. { const bool use_reorder = param.getDefault("use_reorder", true); if (!use_reorder) { OPM_THROW(std::runtime_error, "Cannot use implicit transport solver without UMFPACK. " "Either reconfigure opm-core with SuiteSparse/UMFPACK support and recompile, " "or use the reordering solver (use_reorder=true)."); } } #endif // If we have a "deck_filename", grid and props will be read from that. bool use_deck = param.has("deck_filename"); std::shared_ptr< EclipseState > eclipseState; std::unique_ptr grid; std::unique_ptr props; std::unique_ptr rock_comp; std::unique_ptr state; // bool check_well_controls = false; // int max_well_control_iterations = 0; double gravity[3] = { 0.0 }; if (use_deck) { Parser parser; ParseContext parseContext; parseContext.update(ParseContext::PARSE_MISSING_DIMS_KEYWORD, InputError::WARN); std::string deck_filename = param.get("deck_filename"); auto deck = parser.parseFile(deck_filename , parseContext); eclipseState.reset( new EclipseState(deck, parseContext)); // Grid init grid.reset(new GridManager(eclipseState->getInputGrid())); { const UnstructuredGrid& ug_grid = *(grid->c_grid()); // Rock and fluid init props.reset(new IncompPropertiesFromDeck(deck, *eclipseState, ug_grid)); state.reset( new TwophaseState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ))); // Rock compressibility. rock_comp.reset(new RockCompressibility(*eclipseState)); // Gravity. gravity[2] = deck.hasKeyword("NOGRAV") ? 0.0 : unit::gravity; // Init state variables (saturation and pressure). if (param.has("init_saturation")) { initStateBasic(ug_grid, *props, param, gravity[2], *state); } else { initStateFromDeck(ug_grid, *props, deck, gravity[2], *state); } } } else { // Grid init. const int nx = param.getDefault("nx", 100); const int ny = param.getDefault("ny", 100); const int nz = param.getDefault("nz", 1); const double dx = param.getDefault("dx", 1.0); const double dy = param.getDefault("dy", 1.0); const double dz = param.getDefault("dz", 1.0); grid.reset(new GridManager(nx, ny, nz, dx, dy, dz)); { const UnstructuredGrid& ug_grid = *(grid->c_grid()); // Rock and fluid init. props.reset(new IncompPropertiesBasic(param, ug_grid.dimensions, UgGridHelpers::numCells( ug_grid ))); state.reset( new TwophaseState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ))); // Rock compressibility. rock_comp.reset(new RockCompressibility(param)); // Gravity. gravity[2] = param.getDefault("gravity", 0.0); // Init state variables (saturation and pressure). initStateBasic(ug_grid, *props, param, gravity[2], *state); } } // Warn if gravity but no density difference. bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0); if (use_gravity) { if (props->density()[0] == props->density()[1]) { std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl; } } const double *grav = use_gravity ? &gravity[0] : 0; // Initialising src int num_cells = grid->c_grid()->number_of_cells; std::vector src(num_cells, 0.0); if (use_deck) { // Do nothing, wells will be the driving force, not source terms. } else { // Compute pore volumes, in order to enable specifying injection rate // terms of total pore volume. std::vector porevol; if (rock_comp->isActive()) { computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state->pressure(), porevol); } else { computePorevolume(*grid->c_grid(), props->porosity(), porevol); } const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0); const double default_injection = use_gravity ? 0.0 : 0.1; const double flow_per_sec = param.getDefault("injected_porevolumes_per_day", default_injection) *tot_porevol_init/unit::day; src[0] = flow_per_sec; src[num_cells - 1] = -flow_per_sec; } // Boundary conditions. FlowBCManager bcs; if (param.getDefault("use_pside", false)) { int pside = param.get("pside"); double pside_pressure = param.get("pside_pressure"); bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure); } // Linear solver. LinearSolverFactory linsolver(param); // Write parameters used for later reference. bool output = param.getDefault("output", true); std::ofstream epoch_os; std::string output_dir; if (output) { output_dir = param.getDefault("output_dir", std::string("output")); ensureDirectoryExists(output_dir); std::string filename = output_dir + "/epoch_timing.param"; epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out); // open file to clean it. The file is appended to in SimulatorTwophase filename = output_dir + "/step_timing.param"; std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out); step_os.close(); param.writeParam(output_dir + "/simulation.param"); } SimulatorReport rep; if (!use_deck) { std::cout << "\n\n================ Starting main simulation loop ===============\n" << " (number of report steps: 1)\n\n" << std::flush; // Simple simulation without a deck. WellsManager wells; // no wells. SimulatorIncompTwophase simulator(param, *grid->c_grid(), *props, rock_comp->isActive() ? rock_comp.get() : 0, wells, src, bcs.c_bcs(), linsolver, grav); SimulatorTimer simtimer; simtimer.init(param); warnIfUnusedParams(param); WellState well_state; well_state.init(0, *state); rep = simulator.run(simtimer, *state, well_state); } else { // With a deck, we may have more epochs etc. const auto& timeMap = eclipseState->getSchedule().getTimeMap(); std::cout << "\n\n================ Starting main simulation loop ===============\n" << " (number of report steps: " << timeMap.numTimesteps() << ")\n\n" << std::flush; WellState well_state; int step = 0; SimulatorTimer simtimer; // Use timer for last epoch to obtain total time. simtimer.init(timeMap); const double total_time = simtimer.totalTime(); // for (size_t reportStepIdx = 0; reportStepIdx < timeMap->numTimesteps(); ++reportStepIdx) { size_t reportStepIdx = 0; // Only handle a single, unchanging well setup. { // Update the timer. simtimer.setCurrentStepNum(step); simtimer.setTotalTime(total_time); // Report on start of report step. // std::cout << "\n\n-------------- Starting report step " << reportStepIdx << " --------------" // << "\n (number of time steps: " // << simtimer.numSteps() - step << ")\n\n" << std::flush; // Create new wells, well_state WellsManager wells(*eclipseState , reportStepIdx , *grid->c_grid()); // @@@ HACK: we should really make a new well state and // properly transfer old well state to it every report step, // since number of wells may change etc. if (reportStepIdx == 0) { well_state.init(wells.c_wells(), *state); } // Create and run simulator. SimulatorIncompTwophase simulator(param, *grid->c_grid(), *props, rock_comp->isActive() ? rock_comp.get() : 0, wells, src, bcs.c_bcs(), linsolver, grav); if (reportStepIdx == 0) { warnIfUnusedParams(param); } SimulatorReport epoch_rep = simulator.run(simtimer, *state, well_state); if (output) { epoch_rep.reportParam(epoch_os); } // Update total timing report and remember step number. rep += epoch_rep; step = simtimer.currentStepNum(); } } std::cout << "\n\n================ End of simulation ===============\n\n"; rep.report(std::cout); if (output) { std::string filename = output_dir + "/walltime.param"; std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out); rep.reportParam(tot_os); } } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }