/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace
{
void warnIfUnusedParams(const Opm::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
std::cout << "\n================ Test program for incompressible two-phase flow ===============\n\n";
ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
#if ! HAVE_SUITESPARSE_UMFPACK_H
// This is an extra check to intercept a potentially invalid request for the
// implicit transport solver as early as possible for the user.
{
const bool use_reorder = param.getDefault("use_reorder", true);
if (!use_reorder) {
OPM_THROW(std::runtime_error, "Cannot use implicit transport solver without UMFPACK. "
"Either reconfigure opm-core with SuiteSparse/UMFPACK support and recompile, "
"or use the reordering solver (use_reorder=true).");
}
}
#endif
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
std::shared_ptr< EclipseState > eclipseState;
std::unique_ptr grid;
std::unique_ptr props;
std::unique_ptr rock_comp;
std::unique_ptr state;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
Parser parser;
ParseContext parseContext;
parseContext.update(ParseContext::PARSE_MISSING_DIMS_KEYWORD, InputError::WARN);
std::string deck_filename = param.get("deck_filename");
auto deck = parser.parseFile(deck_filename , parseContext);
eclipseState.reset( new EclipseState(deck, parseContext));
// Grid init
grid.reset(new GridManager(eclipseState->getInputGrid()));
{
const UnstructuredGrid& ug_grid = *(grid->c_grid());
// Rock and fluid init
props.reset(new IncompPropertiesFromDeck(deck, *eclipseState, ug_grid));
state.reset( new TwophaseState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid )));
// Rock compressibility.
rock_comp.reset(new RockCompressibility(*eclipseState));
// Gravity.
gravity[2] = deck.hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(ug_grid, *props, param, gravity[2], *state);
} else {
initStateFromDeck(ug_grid, *props, deck, gravity[2], *state);
}
}
} else {
// Grid init.
const int nx = param.getDefault("nx", 100);
const int ny = param.getDefault("ny", 100);
const int nz = param.getDefault("nz", 1);
const double dx = param.getDefault("dx", 1.0);
const double dy = param.getDefault("dy", 1.0);
const double dz = param.getDefault("dz", 1.0);
grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
{
const UnstructuredGrid& ug_grid = *(grid->c_grid());
// Rock and fluid init.
props.reset(new IncompPropertiesBasic(param, ug_grid.dimensions, UgGridHelpers::numCells( ug_grid )));
state.reset( new TwophaseState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid )));
// Rock compressibility.
rock_comp.reset(new RockCompressibility(param));
// Gravity.
gravity[2] = param.getDefault("gravity", 0.0);
// Init state variables (saturation and pressure).
initStateBasic(ug_grid, *props, param, gravity[2], *state);
}
}
// Warn if gravity but no density difference.
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
if (use_gravity) {
if (props->density()[0] == props->density()[1]) {
std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
}
}
const double *grav = use_gravity ? &gravity[0] : 0;
// Initialising src
int num_cells = grid->c_grid()->number_of_cells;
std::vector src(num_cells, 0.0);
if (use_deck) {
// Do nothing, wells will be the driving force, not source terms.
} else {
// Compute pore volumes, in order to enable specifying injection rate
// terms of total pore volume.
std::vector porevol;
if (rock_comp->isActive()) {
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state->pressure(), porevol);
} else {
computePorevolume(*grid->c_grid(), props->porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault("injected_porevolumes_per_day", default_injection)
*tot_porevol_init/unit::day;
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
// Boundary conditions.
FlowBCManager bcs;
if (param.getDefault("use_pside", false)) {
int pside = param.get("pside");
double pside_pressure = param.get("pside_pressure");
bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
}
// Linear solver.
LinearSolverFactory linsolver(param);
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
std::ofstream epoch_os;
std::string output_dir;
if (output) {
output_dir =
param.getDefault("output_dir", std::string("output"));
ensureDirectoryExists(output_dir);
std::string filename = output_dir + "/epoch_timing.param";
epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
// open file to clean it. The file is appended to in SimulatorTwophase
filename = output_dir + "/step_timing.param";
std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
step_os.close();
param.writeParam(output_dir + "/simulation.param");
}
SimulatorReport rep;
if (!use_deck) {
std::cout << "\n\n================ Starting main simulation loop ===============\n"
<< " (number of report steps: 1)\n\n" << std::flush;
// Simple simulation without a deck.
WellsManager wells; // no wells.
SimulatorIncompTwophase simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells,
src,
bcs.c_bcs(),
linsolver,
grav);
SimulatorTimer simtimer;
simtimer.init(param);
warnIfUnusedParams(param);
WellState well_state;
well_state.init(0, *state);
rep = simulator.run(simtimer, *state, well_state);
} else {
// With a deck, we may have more epochs etc.
const auto& timeMap = eclipseState->getSchedule().getTimeMap();
std::cout << "\n\n================ Starting main simulation loop ===============\n"
<< " (number of report steps: "
<< timeMap.numTimesteps() << ")\n\n" << std::flush;
WellState well_state;
int step = 0;
SimulatorTimer simtimer;
// Use timer for last epoch to obtain total time.
simtimer.init(timeMap);
const double total_time = simtimer.totalTime();
// for (size_t reportStepIdx = 0; reportStepIdx < timeMap->numTimesteps(); ++reportStepIdx) {
size_t reportStepIdx = 0; // Only handle a single, unchanging well setup.
{
// Update the timer.
simtimer.setCurrentStepNum(step);
simtimer.setTotalTime(total_time);
// Report on start of report step.
// std::cout << "\n\n-------------- Starting report step " << reportStepIdx << " --------------"
// << "\n (number of time steps: "
// << simtimer.numSteps() - step << ")\n\n" << std::flush;
// Create new wells, well_state
WellsManager wells(*eclipseState , reportStepIdx , *grid->c_grid());
// @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every report step,
// since number of wells may change etc.
if (reportStepIdx == 0) {
well_state.init(wells.c_wells(), *state);
}
// Create and run simulator.
SimulatorIncompTwophase simulator(param,
*grid->c_grid(),
*props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells,
src,
bcs.c_bcs(),
linsolver,
grav);
if (reportStepIdx == 0) {
warnIfUnusedParams(param);
}
SimulatorReport epoch_rep = simulator.run(simtimer, *state, well_state);
if (output) {
epoch_rep.reportParam(epoch_os);
}
// Update total timing report and remember step number.
rep += epoch_rep;
step = simtimer.currentStepNum();
}
}
std::cout << "\n\n================ End of simulation ===============\n\n";
rep.report(std::cout);
if (output) {
std::string filename = output_dir + "/walltime.param";
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
rep.reportParam(tot_os);
}
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}