/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2018 IRIS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ namespace Opm { template WellInterface:: WellInterface(const Well* well, const int time_step, const Wells* wells, const ModelParameters& param, const RateConverterType& rate_converter, const int pvtRegionIdx, const int num_components) : well_ecl_(well) , current_step_(time_step) , param_(param) , rateConverter_(rate_converter) , pvtRegionIdx_(pvtRegionIdx) , num_components_(num_components) { if (!well) { OPM_THROW(std::invalid_argument, "Null pointer of Well is used to construct WellInterface"); } if (time_step < 0) { OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface"); } if (!wells) { OPM_THROW(std::invalid_argument, "Null pointer of Wells is used to construct WellInterface"); } const std::string& well_name = well->name(); // looking for the location of the well in the wells struct int index_well; for (index_well = 0; index_well < wells->number_of_wells; ++index_well) { if (well_name == std::string(wells->name[index_well])) { break; } } // should not enter the constructor if the well does not exist in the wells struct // here, just another assertion. assert(index_well != wells->number_of_wells); index_of_well_ = index_well; well_type_ = wells->type[index_well]; number_of_phases_ = wells->number_of_phases; // copying the comp_frac { comp_frac_.resize(number_of_phases_); const int index_begin = index_well * number_of_phases_; std::copy(wells->comp_frac + index_begin, wells->comp_frac + index_begin + number_of_phases_, comp_frac_.begin() ); } well_controls_ = wells->ctrls[index_well]; ref_depth_ = wells->depth_ref[index_well]; // perforations related { const int perf_index_begin = wells->well_connpos[index_well]; const int perf_index_end = wells->well_connpos[index_well + 1]; number_of_perforations_ = perf_index_end - perf_index_begin; first_perf_ = perf_index_begin; well_cells_.resize(number_of_perforations_); std::copy(wells->well_cells + perf_index_begin, wells->well_cells + perf_index_end, well_cells_.begin() ); well_index_.resize(number_of_perforations_); std::copy(wells->WI + perf_index_begin, wells->WI + perf_index_end, well_index_.begin() ); saturation_table_number_.resize(number_of_perforations_); std::copy(wells->sat_table_id + perf_index_begin, wells->sat_table_id + perf_index_end, saturation_table_number_.begin() ); } well_efficiency_factor_ = 1.0; } template void WellInterface:: init(const PhaseUsage* phase_usage_arg, const std::vector& /* depth_arg */, const double gravity_arg, const int /* num_cells */) { phase_usage_ = phase_usage_arg; gravity_ = gravity_arg; } template void WellInterface:: setVFPProperties(const VFPProperties* vfp_properties_arg) { vfp_properties_ = vfp_properties_arg; } template const std::string& WellInterface:: name() const { return well_ecl_->name(); } template WellType WellInterface:: wellType() const { return well_type_; } template WellControls* WellInterface:: wellControls() const { return well_controls_; } template const int WellInterface:: indexOfWell() const { return index_of_well_; } template bool WellInterface:: getAllowCrossFlow() const { return well_ecl_->getAllowCrossFlow(); } template void WellInterface:: setWellEfficiencyFactor(const double efficiency_factor) { well_efficiency_factor_ = efficiency_factor; } template const Well* WellInterface:: wellEcl() const { return well_ecl_; } template const PhaseUsage& WellInterface:: phaseUsage() const { assert(phase_usage_); return *phase_usage_; } template int WellInterface:: flowPhaseToEbosCompIdx( const int phaseIdx ) const { const auto& pu = phaseUsage(); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx) return Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx) return Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx); if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx) return Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx); // for other phases return the index return phaseIdx; } template int WellInterface:: ebosCompIdxToFlowCompIdx( const unsigned compIdx ) const { const auto& pu = phaseUsage(); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == compIdx) return pu.phase_pos[Water]; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx) == compIdx) return pu.phase_pos[Oil]; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx) == compIdx) return pu.phase_pos[Gas]; // for other phases return the index return compIdx; } template double WellInterface:: wsolvent() const { if (!has_solvent) { return 0.0; } WellInjectionProperties injection = well_ecl_->getInjectionProperties(current_step_); if (injection.injectorType == WellInjector::GAS) { double solvent_fraction = well_ecl_->getSolventFraction(current_step_); return solvent_fraction; } else { // Not a gas injection well => no solvent. return 0.0; } } template double WellInterface:: wpolymer() const { if (!has_polymer) { return 0.0; } WellInjectionProperties injection = well_ecl_->getInjectionProperties(current_step_); WellPolymerProperties polymer = well_ecl_->getPolymerProperties(current_step_); if (injection.injectorType == WellInjector::WATER) { const double polymer_injection_concentration = polymer.m_polymerConcentration; return polymer_injection_concentration; } else { // Not a water injection well => no polymer. return 0.0; } } template double WellInterface:: mostStrictBhpFromBhpLimits() const { double bhp; // initial bhp value, making the value not usable switch( well_type_ ) { case INJECTOR: bhp = std::numeric_limits::max(); break; case PRODUCER: bhp = -std::numeric_limits::max(); break; default: OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << name()); } // The number of the well controls/constraints const int nwc = well_controls_get_num(well_controls_); for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) { // finding a BHP constraint if (well_controls_iget_type(well_controls_, ctrl_index) == BHP) { // get the bhp constraint value, it should always be postive assummingly const double bhp_target = well_controls_iget_target(well_controls_, ctrl_index); switch(well_type_) { case INJECTOR: // using the lower bhp contraint from Injectors if (bhp_target < bhp) { bhp = bhp_target; } break; case PRODUCER: if (bhp_target > bhp) { bhp = bhp_target; } break; default: OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << name()); } // end of switch } } return bhp; } template bool WellInterface:: wellHasTHPConstraints() const { const int nwc = well_controls_get_num(well_controls_); for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) { if (well_controls_iget_type(well_controls_, ctrl_index) == THP) { return true; } } return false; } template void WellInterface:: updateWellControl(WellState& well_state, wellhelpers::WellSwitchingLogger& logger) const { const int np = number_of_phases_; const int w = index_of_well_; const int old_control_index = well_state.currentControls()[w]; // Find, for each well, if any constraints are broken. If so, // switch control to first broken constraint. WellControls* wc = well_controls_; // Loop over all controls except the current one, and also // skip any RESERVOIR_RATE controls, since we cannot // handle those. const int nwc = well_controls_get_num(wc); // the current control index int current = well_state.currentControls()[w]; int ctrl_index = 0; for (; ctrl_index < nwc; ++ctrl_index) { if (ctrl_index == current) { // This is the currently used control, so it is // used as an equation. So this is not used as an // inequality constraint, and therefore skipped. continue; } if (wellhelpers::constraintBroken( well_state.bhp(), well_state.thp(), well_state.wellRates(), w, np, well_type_, wc, ctrl_index)) { // ctrl_index will be the index of the broken constraint after the loop. break; } } if (ctrl_index != nwc) { // Constraint number ctrl_index was broken, switch to it. well_state.currentControls()[w] = ctrl_index; current = well_state.currentControls()[w]; well_controls_set_current( wc, current); } // the new well control indices after all the related updates, const int updated_control_index = well_state.currentControls()[w]; // checking whether control changed if (updated_control_index != old_control_index) { logger.wellSwitched(name(), well_controls_iget_type(wc, old_control_index), well_controls_iget_type(wc, updated_control_index)); } if (updated_control_index != old_control_index) { // || well_collection_->groupControlActive()) { updateWellStateWithTarget(well_state); } } template bool WellInterface:: checkRateEconLimits(const WellEconProductionLimits& econ_production_limits, const WellState& well_state) const { const Opm::PhaseUsage& pu = phaseUsage(); const int np = number_of_phases_; if (econ_production_limits.onMinOilRate()) { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ]; const double min_oil_rate = econ_production_limits.minOilRate(); if (std::abs(oil_rate) < min_oil_rate) { return true; } } if (econ_production_limits.onMinGasRate() ) { assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)); const double gas_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Gas ] ]; const double min_gas_rate = econ_production_limits.minGasRate(); if (std::abs(gas_rate) < min_gas_rate) { return true; } } if (econ_production_limits.onMinLiquidRate() ) { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)); const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ]; const double water_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Water ] ]; const double liquid_rate = oil_rate + water_rate; const double min_liquid_rate = econ_production_limits.minLiquidRate(); if (std::abs(liquid_rate) < min_liquid_rate) { return true; } } if (econ_production_limits.onMinReservoirFluidRate()) { OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet"); } return false; } template typename WellInterface::RatioCheckTuple WellInterface:: checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits, const WellState& well_state) const { bool water_cut_limit_violated = false; int worst_offending_completion = INVALIDCOMPLETION; double violation_extent = -1.0; const int np = number_of_phases_; const Opm::PhaseUsage& pu = phaseUsage(); const int well_number = index_of_well_; assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)); const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ]; const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ]; const double liquid_rate = oil_rate + water_rate; double water_cut; if (std::abs(liquid_rate) != 0.) { water_cut = water_rate / liquid_rate; } else { water_cut = 0.0; } const double max_water_cut_limit = econ_production_limits.maxWaterCut(); if (water_cut > max_water_cut_limit) { water_cut_limit_violated = true; } if (water_cut_limit_violated) { // need to handle the worst_offending_connection const int perf_start = first_perf_; const int perf_number = number_of_perforations_; std::vector water_cut_perf(perf_number); for (int perf = 0; perf < perf_number; ++perf) { const int i_perf = perf_start + perf; const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ]; const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ]; const double liquid_perf_rate = oil_perf_rate + water_perf_rate; if (std::abs(liquid_perf_rate) != 0.) { water_cut_perf[perf] = water_perf_rate / liquid_perf_rate; } else { water_cut_perf[perf] = 0.; } } const auto& completions = well_ecl_->getCompletions(current_step_); const auto& connections = well_ecl_->getConnections(current_step_); int complnumIdx = 0; std::vector water_cut_in_completions(completions.size(), 0.0); for (const auto& completion : completions) { int complnum = completion.first; for (int perf = 0; perf < perf_number; ++perf) { if (complnum == connections.get ( perf ).complnum) { water_cut_in_completions[complnumIdx] += water_cut_perf[perf]; } } complnumIdx++; } double max_water_cut_perf = 0.; complnumIdx = 0; for (const auto& completion : completions) { if (water_cut_in_completions[complnumIdx] > max_water_cut_perf) { worst_offending_completion = completion.first; max_water_cut_perf = water_cut_in_completions[complnumIdx]; } complnumIdx++; } assert(max_water_cut_limit != 0.); assert(worst_offending_completion != INVALIDCOMPLETION); violation_extent = max_water_cut_perf / max_water_cut_limit; } return std::make_tuple(water_cut_limit_violated, worst_offending_completion, violation_extent); } template typename WellInterface::RatioCheckTuple WellInterface:: checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits, const WellState& well_state) const { // TODO: not sure how to define the worst-offending completion when more than one // ratio related limit is violated. // The defintion used here is that we define the violation extent based on the // ratio between the value and the corresponding limit. // For each violated limit, we decide the worst-offending completion separately. // Among the worst-offending completions, we use the one has the biggest violation // extent. bool any_limit_violated = false; int worst_offending_completion = INVALIDCOMPLETION; double violation_extent = -1.0; if (econ_production_limits.onMaxWaterCut()) { const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state); bool water_cut_violated = std::get<0>(water_cut_return); if (water_cut_violated) { any_limit_violated = true; const double violation_extent_water_cut = std::get<2>(water_cut_return); if (violation_extent_water_cut > violation_extent) { violation_extent = violation_extent_water_cut; worst_offending_completion = std::get<1>(water_cut_return); } } } if (econ_production_limits.onMaxGasOilRatio()) { OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!"); } if (econ_production_limits.onMaxWaterGasRatio()) { OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!"); } if (econ_production_limits.onMaxGasLiquidRatio()) { OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!"); } if (any_limit_violated) { assert(worst_offending_completion != INVALIDCOMPLETION); assert(violation_extent > 1.); } return std::make_tuple(any_limit_violated, worst_offending_completion, violation_extent); } template void WellInterface:: updateWellTestState(const WellState& well_state, const double& simulationTime, WellTestState& wellTestState, const bool& writeMessageToOPMLog) const { // economic limits only apply for production wells. if (wellType() != PRODUCER) { return; } // flag to check if the mim oil/gas rate limit is violated bool rate_limit_violated = false; const WellEconProductionLimits& econ_production_limits = well_ecl_->getEconProductionLimits(current_step_); // if no limit is effective here, then continue to the next well if ( !econ_production_limits.onAnyEffectiveLimit() ) { return; } const std::string well_name = name(); // for the moment, we only handle rate limits, not handling potential limits // the potential limits should not be difficult to add const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit(); if (quantity_limit == WellEcon::POTN) { const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n") + std::string("All the limits will be evaluated based on RATE. "); OpmLog::warning("NOT_SUPPORTING_POTN", msg); } if (econ_production_limits.onAnyRateLimit()) { rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state); } if (rate_limit_violated) { if (econ_production_limits.endRun()) { const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n") + std::string("the program will keep running after ") + well_name + std::string(" is closed"); OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message); } if (econ_production_limits.validFollowonWell()) { OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet"); } wellTestState.addClosedWell(well_name, WellTestConfig::Reason::ECONOMIC, simulationTime); if (writeMessageToOPMLog) { if (well_ecl_->getAutomaticShutIn()) { const std::string msg = std::string("well ") + well_name + std::string(" will be shut due to rate economic limit"); OpmLog::info(msg); } else { const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to rate economic limit"); OpmLog::info(msg); } } // the well is closed, not need to check other limits return; } // checking for ratio related limits, mostly all kinds of ratio. bool ratio_limits_violated = false; RatioCheckTuple ratio_check_return; if (econ_production_limits.onAnyRatioLimit()) { ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state); ratio_limits_violated = std::get<0>(ratio_check_return); } if (ratio_limits_violated) { const WellEcon::WorkoverEnum workover = econ_production_limits.workover(); switch (workover) { case WellEcon::CON: { const int worst_offending_completion = std::get<1>(ratio_check_return); wellTestState.addClosedCompletion(well_name, worst_offending_completion, simulationTime); if (writeMessageToOPMLog) { if (worst_offending_completion < 0) { const std::string msg = std::string("Connection ") + std::to_string(- worst_offending_completion) + std::string(" for well ") + well_name + std::string(" will be closed due to economic limit"); OpmLog::info(msg); } else { const std::string msg = std::string("Completion ") + std::to_string(worst_offending_completion) + std::string(" for well ") + well_name + std::string(" will be closed due to economic limit"); OpmLog::info(msg); } } bool allCompletionsClosed = true; const auto& connections = well_ecl_->getConnections(current_step_); for (const auto& connection : connections) { if (!wellTestState.hasCompletion(name(), connection.complnum)) { allCompletionsClosed = false; } } if (allCompletionsClosed) { wellTestState.addClosedWell(well_name, WellTestConfig::Reason::ECONOMIC, simulationTime); if (writeMessageToOPMLog) { if (well_ecl_->getAutomaticShutIn()) { const std::string msg = well_name + std::string(" will be shut due to last completion closed"); OpmLog::info(msg); } else { const std::string msg = well_name + std::string(" will be stopped due to last completion closed"); OpmLog::info(msg); } } } break; } case WellEcon::WELL: { wellTestState.addClosedWell(well_name, WellTestConfig::Reason::ECONOMIC, 0); if (writeMessageToOPMLog) { if (well_ecl_->getAutomaticShutIn()) { // tell the controll that the well is closed const std::string msg = well_name + std::string(" will be shut due to ratio economic limit"); OpmLog::info(msg); } else { const std::string msg = well_name + std::string(" will be stopped due to ratio economic limit"); OpmLog::info(msg); } } break; } case WellEcon::NONE: break; default: { OpmLog::warning("NOT_SUPPORTED_WORKOVER_TYPE", "not supporting workover type " + WellEcon::WorkoverEnumToString(workover) ); } } } } template void WellInterface:: computeRepRadiusPerfLength(const Grid& grid, const std::map& cartesian_to_compressed) { const int* cart_dims = Opm::UgGridHelpers::cartDims(grid); auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid); auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid); const int nperf = number_of_perforations_; perf_rep_radius_.clear(); perf_length_.clear(); bore_diameters_.clear(); perf_rep_radius_.reserve(nperf); perf_length_.reserve(nperf); bore_diameters_.reserve(nperf); // COMPDAT handling const auto& connectionSet = well_ecl_->getConnections(current_step_); for (size_t c=0; c::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx); if (cgit == cartesian_to_compressed.end()) { OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' ' << k << " not found in grid (well = " << name() << ')'); } const int cell = cgit->second; { double radius = 0.5*connection.getDiameter(); if (radius <= 0.0) { radius = 0.5*unit::feet; OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius); } const std::array cubical = WellsManagerDetail::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell); double re; // area equivalent radius of the grid block double perf_length; // the length of the well perforation switch (connection.dir) { case Opm::WellCompletion::DirectionEnum::X: re = std::sqrt(cubical[1] * cubical[2] / M_PI); perf_length = cubical[0]; break; case Opm::WellCompletion::DirectionEnum::Y: re = std::sqrt(cubical[0] * cubical[2] / M_PI); perf_length = cubical[1]; break; case Opm::WellCompletion::DirectionEnum::Z: re = std::sqrt(cubical[0] * cubical[1] / M_PI); perf_length = cubical[2]; break; default: OPM_THROW(std::runtime_error, " Dirtecion of well is not supported "); } const double repR = std::sqrt(re * radius); perf_rep_radius_.push_back(repR); perf_length_.push_back(perf_length); bore_diameters_.push_back(2. * radius); } } } } template double WellInterface::scalingFactor(const int phaseIdx) const { const WellControls* wc = well_controls_; const double* distr = well_controls_get_current_distr(wc); if (well_controls_get_current_type(wc) == RESERVOIR_RATE) { if (has_solvent && phaseIdx == contiSolventEqIdx ) { typedef Ewoms::BlackOilSolventModule SolventModule; double coeff = 0; rateConverter_.template calcCoeffSolvent(0, pvtRegionIdx_, coeff); return coeff; } // TODO: use the rateConverter here as well. return distr[phaseIdx]; } const auto& pu = phaseUsage(); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx) return 1.0; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx) return 1.0; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx) return 0.01; if (has_solvent && phaseIdx == contiSolventEqIdx ) return 0.01; // we should not come this far assert(false); return 1.0; } template void WellInterface::calculateReservoirRates(WellState& well_state) const { const int fipreg = 0; // not considering the region for now const int np = number_of_phases_; std::vector surface_rates(np, 0.0); const int well_rate_index = np * index_of_well_; for (int p = 0; p < np; ++p) { surface_rates[p] = well_state.wellRates()[well_rate_index + p]; } std::vector voidage_rates(np, 0.0); rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates); for (int p = 0; p < np; ++p) { well_state.wellReservoirRates()[well_rate_index + p] = voidage_rates[p]; } } template void WellInterface::closeCompletions(WellTestState& wellTestState) { const auto& connections = well_ecl_->getConnections(current_step_); int perfIdx = 0; for (const auto& connection : connections) { if (wellTestState.hasCompletion(name(), connection.complnum)) { well_index_[perfIdx] = 0.0; } perfIdx++; } } template void WellInterface::solveWellForTesting(Simulator& ebosSimulator, WellState& well_state, const std::vector& B_avg, bool terminal_output) { const int max_iter = param_.max_welleq_iter_; int it = 0; const double dt = 1.0; //not used for the well tests bool converged; WellState well_state0 = well_state; do { assembleWellEq(ebosSimulator, dt, well_state, true); ConvergenceReport report; report = getWellConvergence(B_avg); converged = report.converged; if (converged) { break; } ++it; solveEqAndUpdateWellState(well_state); wellhelpers::WellSwitchingLogger logger; updateWellControl(well_state, logger); initPrimaryVariablesEvaluation(); } while (it < max_iter); if (converged) { if ( terminal_output ) { OpmLog::debug("WellTest: Well equation for well " + name() + " solution gets converged with " + std::to_string(it) + " iterations"); } } else { if ( terminal_output ) { OpmLog::debug("WellTest: Well equation for well" +name() + " solution failed in getting converged with " + std::to_string(it) + " iterations"); } } } }