/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 NTNU
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_NONLINEARSOLVER_IMPL_HEADER_INCLUDED
#define OPM_NONLINEARSOLVER_IMPL_HEADER_INCLUDED
#include
namespace Opm
{
template
NonlinearSolver::NonlinearSolver(const SolverParameters& param,
std::unique_ptr model_arg)
: param_(param),
model_(std::move(model_arg)),
nonlinearIterations_(0),
linearIterations_(0),
wellIterations_(0),
nonlinearIterationsLast_(0),
linearIterationsLast_(0),
wellIterationsLast_(0)
{
if (!model_) {
OPM_THROW(std::logic_error, "Must provide a non-null model argument for NonlinearSolver.");
}
}
template
int NonlinearSolver::nonlinearIterations() const
{
return nonlinearIterations_;
}
template
int NonlinearSolver::linearIterations() const
{
return linearIterations_;
}
template
int NonlinearSolver::wellIterations() const
{
return wellIterations_;
}
template
const PhysicalModel& NonlinearSolver::model() const
{
return *model_;
}
template
PhysicalModel& NonlinearSolver::model()
{
return *model_;
}
template
int NonlinearSolver::nonlinearIterationsLastStep() const
{
return nonlinearIterationsLast_;
}
template
int NonlinearSolver::linearIterationsLastStep() const
{
return linearIterationsLast_;
}
template
int NonlinearSolver::wellIterationsLastStep() const
{
return wellIterationsLast_;
}
template
int
NonlinearSolver::
step(const double dt,
ReservoirState& reservoir_state,
WellState& well_state)
{
return step(dt, reservoir_state, well_state, reservoir_state, well_state);
}
template
int
NonlinearSolver::
step(const double dt,
const ReservoirState& initial_reservoir_state,
const WellState& initial_well_state,
ReservoirState& reservoir_state,
WellState& well_state)
{
// Do model-specific once-per-step calculations.
model_->prepareStep(dt, initial_reservoir_state, initial_well_state);
int iteration = 0;
// Let the model do one nonlinear iteration.
// Set up for main solver loop.
int linIters = 0;
bool converged = false;
int wellIters = 0;
// ---------- Main nonlinear solver loop ----------
do {
// Do the nonlinear step. If we are in a converged state, the
// model will usually do an early return without an expensive
// solve, unless the minIter() count has not been reached yet.
IterationReport report = model_->nonlinearIteration(iteration, dt, *this, reservoir_state, well_state);
if (report.failed) {
OPM_THROW(Opm::NumericalProblem, "Failed to complete a nonlinear iteration.");
}
converged = report.converged;
linIters += report.linear_iterations;
wellIters += report.well_iterations;
++iteration;
} while ( (!converged && (iteration <= maxIter())) || (iteration <= minIter()));
if (!converged) {
if (model_->terminalOutputEnabled()) {
std::cerr << "WARNING: Failed to compute converged solution in " << iteration - 1 << " iterations." << std::endl;
}
return -1; // -1 indicates that the solver has to be restarted
}
linearIterations_ += linIters;
nonlinearIterations_ += iteration - 1; // Since the last one will always be trivial.
wellIterations_ += wellIters;
linearIterationsLast_ = linIters;
nonlinearIterationsLast_ = iteration;
wellIterationsLast_ = wellIters;
// Do model-specific post-step actions.
model_->afterStep(dt, reservoir_state, well_state);
return linIters;
}
template
void NonlinearSolver::SolverParameters::
reset()
{
// default values for the solver parameters
relax_type_ = DAMPEN;
relax_max_ = 0.5;
relax_increment_ = 0.1;
relax_rel_tol_ = 0.2;
max_iter_ = 15;
min_iter_ = 1;
}
template
NonlinearSolver::SolverParameters::
SolverParameters()
{
// set default values
reset();
}
template
NonlinearSolver::SolverParameters::
SolverParameters( const parameter::ParameterGroup& param )
{
// set default values
reset();
// overload with given parameters
relax_max_ = param.getDefault("relax_max", relax_max_);
max_iter_ = param.getDefault("max_iter", max_iter_);
min_iter_ = param.getDefault("min_iter", min_iter_);
std::string relaxation_type = param.getDefault("relax_type", std::string("dampen"));
if (relaxation_type == "dampen") {
relax_type_ = DAMPEN;
} else if (relaxation_type == "sor") {
relax_type_ = SOR;
} else {
OPM_THROW(std::runtime_error, "Unknown Relaxtion Type " << relaxation_type);
}
}
template
void
NonlinearSolver::detectOscillations(const std::vector>& residual_history,
const int it,
bool& oscillate, bool& stagnate) const
{
// The detection of oscillation in two primary variable results in the report of the detection
// of oscillation for the solver.
// Only the saturations are used for oscillation detection for the black oil model.
// Stagnate is not used for any treatment here.
if ( it < 2 ) {
oscillate = false;
stagnate = false;
return;
}
stagnate = true;
int oscillatePhase = 0;
const std::vector& F0 = residual_history[it];
const std::vector& F1 = residual_history[it - 1];
const std::vector& F2 = residual_history[it - 2];
for (int p= 0; p < model_->numPhases(); ++p){
const double d1 = std::abs((F0[p] - F2[p]) / F0[p]);
const double d2 = std::abs((F0[p] - F1[p]) / F0[p]);
oscillatePhase += (d1 < relaxRelTol()) && (relaxRelTol() < d2);
// Process is 'stagnate' unless at least one phase
// exhibits significant residual change.
stagnate = (stagnate && !(std::abs((F1[p] - F2[p]) / F2[p]) > 1.0e-3));
}
oscillate = (oscillatePhase > 1);
}
template
void
NonlinearSolver::stabilizeNonlinearUpdate(V& dx, V& dxOld, const double omega) const
{
// The dxOld is updated with dx.
// If omega is equal to 1., no relaxtion will be appiled.
const V tempDxOld = dxOld;
dxOld = dx;
switch (relaxType()) {
case DAMPEN:
if (omega == 1.) {
return;
}
dx = dx*omega;
return;
case SOR:
if (omega == 1.) {
return;
}
dx = dx*omega + (1.-omega)*tempDxOld;
return;
default:
OPM_THROW(std::runtime_error, "Can only handle DAMPEN and SOR relaxation type.");
}
return;
}
} // namespace Opm
#endif // OPM_FULLYIMPLICITSOLVER_IMPL_HEADER_INCLUDED