/*
Copyright 2020 OPM-OP AS
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#define BOOST_TEST_MODULE ParallelWellInfo
#include
class MPIError {
public:
/** @brief Constructor. */
MPIError(std::string s, int e) : errorstring(s), errorcode(e){}
/** @brief The error string. */
std::string errorstring;
/** @brief The mpi error code. */
int errorcode;
};
#ifdef HAVE_MPI
void MPI_err_handler(MPI_Comm *, int *err_code, ...){
char *err_string=new char[MPI_MAX_ERROR_STRING];
int err_length;
MPI_Error_string(*err_code, err_string, &err_length);
std::string s(err_string, err_length);
std::cerr << "An MPI Error ocurred:"<& p)
{
return os << "{" << p.first << " "<< p.second << "}";
}
}
namespace Opm
{
std::ostream& operator<<(std::ostream& os, const Opm::ParallelWellInfo& w)
{
return os << "{" << w.name() << " "<< w.hasLocalCells() << " "<<
w.isOwner() << "}";
}
}
BOOST_AUTO_TEST_CASE(ParallelWellComparison)
{
int argc = 0;
char** argv = nullptr;
const auto& helper = Dune::MPIHelper::instance(argc, argv);
std::vector> pairs;
if (helper.rank() == 0)
pairs = {{"Test1", true},{"Test2", true}, {"Test1", false} };
else
pairs = {{"Test1", false},{"Test2", true}, {"Test1", true} };
std::vector well_info;
well_info.assign(pairs.begin(), pairs.end());
BOOST_CHECK_EQUAL_COLLECTIONS(pairs.begin(), pairs.end(),
well_info.begin(), well_info.end());
BOOST_CHECK_EQUAL_COLLECTIONS(well_info.begin(), well_info.end(),
pairs.begin(), pairs.end());
BOOST_CHECK(well_info[0] < pairs[1]);
BOOST_CHECK(pairs[0] != well_info[1]);
BOOST_CHECK(pairs[0] < well_info[1]);
BOOST_CHECK(well_info[0] == pairs[0]);
BOOST_CHECK(well_info[0] != well_info[1]);
Opm::ParallelWellInfo well0, well1;
BOOST_CHECK(well0 == well1);
#if HAVE_MPI
BOOST_CHECK(well0.communication()==helper.getLocalCommunicator());
#endif
Opm::ParallelWellInfo well2("Test", false);
std::pair pwell={"Test", true};
BOOST_CHECK(well2 < pwell);
Opm::ParallelWellInfo well3("Test", true);
BOOST_CHECK(! (well3 < pwell));
pwell.second = false;
BOOST_CHECK(! (well3 < pwell));
if (helper.rank() == 0)
BOOST_CHECK(well_info[0].communication().size()==1);
#if HAVE_MPI
Opm::ParallelWellInfo::Communication comm{MPI_COMM_WORLD};
BOOST_CHECK(well_info[1].communication().size() == comm.size());
if (helper.rank() > 0)
{
BOOST_CHECK(well_info[2].communication().size() == comm.size()-1);
}
#endif
}
BOOST_AUTO_TEST_CASE(CommunicateAboveBelowSelf)
{
auto comm = Dune::MPIHelper::getLocalCommunicator();
Opm::CommunicateAboveBelow commAboveBelow{ comm };
for(std::size_t count=0; count < 2; ++count)
{
std::vector eclIndex = {0, 1, 2, 3, 7 , 8, 10, 11};
std::vector current(eclIndex.size());
std::transform(eclIndex.begin(), eclIndex.end(), current.begin(),
[](double v){ return 1+10.0*v;});
commAboveBelow.beginReset();
for (std::size_t i = 0; i < current.size(); ++i)
{
if (i==0)
commAboveBelow.pushBackEclIndex(-1, eclIndex[i]);
else
commAboveBelow.pushBackEclIndex(eclIndex[i-1], eclIndex[i]);
}
commAboveBelow.endReset();
auto above = commAboveBelow.communicateAbove(-10.0, current.data(), current.size());
BOOST_CHECK(above[0]==-10.0);
BOOST_CHECK(above.size() == current.size());
auto a = above.begin()+1;
std::for_each(current.begin(), current.begin() + (current.size()-1),
[&a](double v){ BOOST_CHECK(*(a++) == v);});
auto below = commAboveBelow.communicateBelow(-10.0, current.data(), current.size());
BOOST_CHECK(below.back() == -10.0);
BOOST_CHECK(below.size() == current.size());
auto b = below.begin();
std::for_each(current.begin()+1, current.end(),
[&b](double v){ BOOST_CHECK(*(b++) == v);});
}
}
BOOST_AUTO_TEST_CASE(CommunicateAboveBelowSelf1)
{
auto comm = Dune::MPIHelper::getLocalCommunicator();
Opm::CommunicateAboveBelow commAboveBelow{ comm };
for(std::size_t count=0; count < 2; ++count)
{
std::vector eclIndex = {0};
std::vector current(eclIndex.size());
std::transform(eclIndex.begin(), eclIndex.end(), current.begin(),
[](double v){ return 1+10.0*v;});
commAboveBelow.beginReset();
for (std::size_t i = 0; i < current.size(); ++i)
{
if (i==0)
commAboveBelow.pushBackEclIndex(-1, eclIndex[i]);
else
commAboveBelow.pushBackEclIndex(eclIndex[i-1], eclIndex[i]);
}
commAboveBelow.endReset();
auto above = commAboveBelow.communicateAbove(-10.0, current.data(), current.size());
BOOST_CHECK(above[0]==-10.0);
BOOST_CHECK(above.size() == current.size());
auto a = above.begin()+1;
std::for_each(current.begin(), current.begin() + (current.size()-1),
[&a](double v){ BOOST_CHECK(*(a++) == v);});
auto below = commAboveBelow.communicateBelow(-10.0, current.data(), current.size());
BOOST_CHECK(below.back() == -10.0);
BOOST_CHECK(below.size() == current.size());
auto b = below.begin();
std::for_each(current.begin()+1, current.end(),
[&b](double v){ BOOST_CHECK(*(b++) == v);});
}
}
BOOST_AUTO_TEST_CASE(CommunicateAboveBelowParallel)
{
using MPIComm = typename Dune::MPIHelper::MPICommunicator;
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 7)
using Communication = Dune::Communication;
#else
using Communication = Dune::CollectiveCommunication;
#endif
auto comm = Communication(Dune::MPIHelper::getCommunicator());
Opm::CommunicateAboveBelow commAboveBelow{ comm };
for(std::size_t count=0; count < 2; ++count)
{
std::vector globalEclIndex = {0, 1, 2, 3, 7 , 8, 10, 11};
auto oldSize = globalEclIndex.size();
std::size_t globalSize = 3 * comm.size();
auto lastIndex = globalEclIndex.back();
globalEclIndex.resize(globalSize);
if ( globalSize > oldSize)
{
++lastIndex;
for(auto entry = globalEclIndex.begin() + oldSize;
entry != globalEclIndex.end(); ++entry, ++lastIndex)
{
*entry = lastIndex;
}
}
std::vector globalCurrent(globalEclIndex.size());
std::transform(globalEclIndex.begin(), globalEclIndex.end(), globalCurrent.begin(),
[](double v){ return 1+10.0*v;});
std::vector current(3);
commAboveBelow.beginReset();
for (std::size_t i = 0; i < current.size(); ++i)
{
auto gi = comm.rank() + comm.size() * i;
if (gi==0)
{
commAboveBelow.pushBackEclIndex(-1, globalEclIndex[gi]);
}
else
{
commAboveBelow.pushBackEclIndex(globalEclIndex[gi-1], globalEclIndex[gi]);
}
current[i] = globalCurrent[gi];
}
commAboveBelow.endReset();
auto above = commAboveBelow.communicateAbove(-10.0, current.data(), current.size());
if (comm.rank() == 0)
BOOST_CHECK(above[0]==-10.0);
BOOST_CHECK(above.size() == current.size());
for (std::size_t i = 0; i < current.size(); ++i)
{
auto gi = comm.rank() + comm.size() * i;
if (gi > 0)
{
BOOST_CHECK(above[i]==globalCurrent[gi-1]);
}
}
auto below = commAboveBelow.communicateBelow(-10.0, current.data(), current.size());
if (comm.rank() == comm.size() - 1)
BOOST_CHECK(below.back() == -10.0);
BOOST_CHECK(below.size() == current.size());
for (std::size_t i = 0; i < current.size(); ++i)
{
auto gi = comm.rank() + comm.size() * i;
if (gi < globalCurrent.size() - 1)
{
BOOST_CHECK(below[i]==globalCurrent[gi+1]);
}
}
}
}