/* Copyright 2018 Equinor ASA. This file is part of the Open Porous Media Project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #define BOOST_TEST_MODULE WellStateFIBOTest #include "MpiFixture.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include BOOST_GLOBAL_FIXTURE(MPIFixture); struct Setup { Setup(const std::string& filename) : Setup(Opm::Parser{}.parseFile(filename)) {} Setup(const Opm::Deck& deck) : es (deck) , pu (Opm::phaseUsageFromDeck(es)) , grid (es.getInputGrid()) , python( std::make_shared() ) , sched(deck, es, python) , st(std::chrono::system_clock::from_time_t(sched.getStartTime())) { initWellPerfData(); } void initWellPerfData() { const auto& wells = sched.getWells(0); const auto& cartDims = Opm::UgGridHelpers::cartDims(*grid.c_grid()); const int* compressed_to_cartesian = Opm::UgGridHelpers::globalCell(*grid.c_grid()); std::vector cartesian_to_compressed(cartDims[0] * cartDims[1] * cartDims[2], -1); for (int ii = 0; ii < Opm::UgGridHelpers::numCells(*grid.c_grid()); ++ii) { cartesian_to_compressed[compressed_to_cartesian[ii]] = ii; } well_perf_data.resize(wells.size()); int well_index = 0; for (const auto& well : wells) { well_perf_data[well_index].clear(); well_perf_data[well_index].reserve(well.getConnections().size()); for (const auto& completion : well.getConnections()) { if (completion.state() == Opm::Connection::State::OPEN) { const int i = completion.getI(); const int j = completion.getJ(); const int k = completion.getK(); const int cart_grid_indx = i + cartDims[0] * (j + cartDims[1] * k); const int active_index = cartesian_to_compressed[cart_grid_indx]; if (active_index < 0) { const std::string msg = ("Cell with i,j,k indices " + std::to_string(i) + " " + std::to_string(j) + " " + std::to_string(k) + " not found in grid (well = " + well.name() + ")."); OPM_THROW(std::runtime_error, msg); } else { Opm::PerforationData pd; pd.cell_index = active_index; pd.connection_transmissibility_factor = completion.CF(); pd.satnum_id = completion.satTableId(); well_perf_data[well_index].push_back(pd); } } else { if (completion.state() != Opm::Connection::State::SHUT) { OPM_THROW(std::runtime_error, "Completion state: " << Opm::Connection::State2String(completion.state()) << " not handled"); } } } ++well_index; } } Opm::EclipseState es; Opm::PhaseUsage pu; Opm::GridManager grid; std::shared_ptr python; Opm::Schedule sched; Opm::SummaryState st; std::vector> well_perf_data; }; namespace { Opm::WellStateFullyImplicitBlackoil buildWellState(const Setup& setup, const std::size_t timeStep, std::vector& pinfos) { auto state = Opm::WellStateFullyImplicitBlackoil{}; const auto cpress = std::vector(setup.grid.c_grid()->number_of_cells, 100.0*Opm::unit::barsa); auto wells = setup.sched.getWells(timeStep); pinfos.resize(wells.size()); std::vector ppinfos(wells.size()); auto pw = pinfos.begin(); auto ppw = ppinfos.begin(); for (const auto& well : wells) { *pw = {well.name()}; *ppw = &(*pw); pw->communicateFirstPerforation(true); ++pw; ++ppw; } state.init(cpress, setup.sched, wells, ppinfos, timeStep, nullptr, setup.pu, setup.well_perf_data, setup.st, wells.size()); state.initWellStateMSWell(setup.sched.getWells(timeStep), setup.pu, nullptr); return state; } void setSegPress(const std::vector& wells, Opm::WellStateFullyImplicitBlackoil& wstate) { const auto nWell = wells.size(); auto& segPress = wstate.segPress(); for (auto wellID = 0*nWell; wellID < nWell; ++wellID) { const auto& well = wells[wellID]; const auto topSegIx = wstate.topSegmentIndex(wellID); const auto pressTop = 100.0 * wellID; auto* press = &segPress[topSegIx]; press[0] = pressTop; if (! well.isMultiSegment()) { continue; } const auto& segSet = well.getSegments(); const auto nSeg = segSet.size(); for (auto segID = 0*nSeg + 1; segID < nSeg; ++segID) { // One-based numbering scheme for segments. const auto segNo = segSet[segID].segmentNumber(); press[segNo - 1] = pressTop + 1.0*(segNo - 1); } } } void setSegRates(const std::vector& wells, const Opm::PhaseUsage& pu, Opm::WellStateFullyImplicitBlackoil& wstate) { const auto wat = pu.phase_used[Opm::BlackoilPhases::Aqua]; const auto iw = wat ? pu.phase_pos[Opm::BlackoilPhases::Aqua] : -1; const auto oil = pu.phase_used[Opm::BlackoilPhases::Liquid]; const auto io = oil ? pu.phase_pos[Opm::BlackoilPhases::Liquid] : -1; const auto gas = pu.phase_used[Opm::BlackoilPhases::Vapour]; const auto ig = gas ? pu.phase_pos[Opm::BlackoilPhases::Vapour] : -1; const auto np = wstate.numPhases(); const auto nWell = wells.size(); auto& segRates = wstate.segRates(); for (auto wellID = 0*nWell; wellID < nWell; ++wellID) { const auto& well = wells[wellID]; const auto topSegIx = wstate.topSegmentIndex(wellID); const auto rateTop = 1000.0 * wellID; if (wat) { segRates[np*topSegIx + iw] = rateTop; } if (oil) { segRates[np*topSegIx + io] = rateTop; } if (gas) { segRates[np*topSegIx + ig] = rateTop; } if (! well.isMultiSegment()) { continue; } const auto& segSet = well.getSegments(); const auto nSeg = segSet.size(); for (auto segID = 0*nSeg + 1; segID < nSeg; ++segID) { // One-based numbering scheme for segments. const auto segNo = segSet[segID].segmentNumber(); auto* rates = &segRates[(topSegIx + segNo - 1) * np]; if (wat) { rates[iw] = rateTop + 100.0*(segNo - 1); } if (oil) { rates[io] = rateTop + 200.0*(segNo - 1); } if (gas) { rates[ig] = rateTop + 400.0*(segNo - 1); } } } } } // Anonymous BOOST_AUTO_TEST_SUITE(Segment) // --------------------------------------------------------------------- BOOST_AUTO_TEST_CASE(Linearisation) { const Setup setup{ "msw.data" }; const auto tstep = std::size_t{0}; std::vector pinfos; const auto wstate = buildWellState(setup, tstep, pinfos); BOOST_CHECK_EQUAL(wstate.numSegment(), 6 + 1); const auto& wells = setup.sched.getWellsatEnd(); BOOST_CHECK_EQUAL(wells.size(), 2); const auto prod01_first = wells[0].name() == "PROD01"; BOOST_CHECK_EQUAL(wstate.topSegmentIndex(0), 0); BOOST_CHECK_EQUAL(wstate.topSegmentIndex(1), prod01_first ? 6 : 1); } // --------------------------------------------------------------------- BOOST_AUTO_TEST_CASE(Pressure) { const Setup setup{ "msw.data" }; const auto tstep = std::size_t{0}; std::vector pinfos; auto wstate = buildWellState(setup, tstep, pinfos); const auto& wells = setup.sched.getWells(tstep); const auto prod01_first = wells[0].name() == "PROD01"; setSegPress(wells, wstate); const auto rpt = wstate.report(setup.pu, setup.grid.c_grid()->global_cell); { const auto& xw = rpt.at("INJE01"); BOOST_CHECK_EQUAL(xw.segments.size(), 1); // Top Segment const auto& xseg = xw.segments.at(1); BOOST_CHECK_EQUAL(xseg.segNumber, 1); const auto pres_idx = Opm::data::SegmentPressures::Value::Pressure; BOOST_CHECK_CLOSE(xseg.pressures[pres_idx], prod01_first ? 100.0 : 0.0, 1.0e-10); } { const auto expect_nSeg = 6; const auto& xw = rpt.at("PROD01"); BOOST_CHECK_EQUAL(xw.segments.size(), expect_nSeg); const auto pressTop = prod01_first ? 0.0 : 100.0; for (auto segID = 0; segID < expect_nSeg; ++segID) { const auto& xseg = xw.segments.at(segID + 1); BOOST_CHECK_EQUAL(xseg.segNumber, segID + 1); const auto pres_idx = Opm::data::SegmentPressures::Value::Pressure; BOOST_CHECK_CLOSE(xseg.pressures[pres_idx], pressTop + 1.0*segID, 1.0e-10); } } } // --------------------------------------------------------------------- BOOST_AUTO_TEST_CASE(Rates) { const Setup setup{ "msw.data" }; const auto tstep = std::size_t{0}; std::vector pinfos; auto wstate = buildWellState(setup, tstep, pinfos); const auto wells = setup.sched.getWells(tstep); const auto prod01_first = wells[0].name() == "PROD01"; const auto& pu = setup.pu; setSegRates(wells, pu, wstate); const auto rpt = wstate.report(pu, setup.grid.c_grid()->global_cell); const auto wat = pu.phase_used[Opm::BlackoilPhases::Aqua]; const auto oil = pu.phase_used[Opm::BlackoilPhases::Liquid]; const auto gas = pu.phase_used[Opm::BlackoilPhases::Vapour]; BOOST_CHECK(wat && oil && gas); { const auto rateTop = prod01_first ? 1000.0 : 0.0; const auto& xw = rpt.at("INJE01"); BOOST_CHECK_EQUAL(xw.segments.size(), 1); // Top Segment const auto& xseg = xw.segments.at(1); BOOST_CHECK_EQUAL(xseg.segNumber, 1); BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::wat), rateTop, 1.0e-10); BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::oil), rateTop, 1.0e-10); BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::gas), rateTop, 1.0e-10); } { const auto expect_nSeg = 6; const auto& xw = rpt.at("PROD01"); BOOST_CHECK_EQUAL(xw.segments.size(), expect_nSeg); const auto rateTop = prod01_first ? 0.0 : 1000.0; for (auto segNum = 1; segNum <= expect_nSeg; ++segNum) { const auto& xseg = xw.segments.at(segNum); BOOST_CHECK_EQUAL(xseg.segNumber, segNum); BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::wat), rateTop + 100.0*(segNum - 1), 1.0e-10); BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::oil), rateTop + 200.0*(segNum - 1), 1.0e-10); BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::gas), rateTop + 400.0*(segNum - 1), 1.0e-10); } } } // --------------------------------------------------------------------- BOOST_AUTO_TEST_CASE(STOP_well) { /* This test verifies that the perforation pressures is correctly initialized also for wells in the STOP state. */ const Setup setup{ "wells_manager_data_wellSTOP.data" }; std::vector pinfos; auto wstate = buildWellState(setup, 0, pinfos); for (const auto& p : wstate.perfPress()) BOOST_CHECK(p > 0); } BOOST_AUTO_TEST_SUITE_END()