/* Copyright 2022-2023 SINTEF AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #define BOOST_TEST_MODULE TestGpuSeqILU0 #define BOOST_TEST_NO_MAIN #include #include #include #include #include #include #include #include #include #include #include using NumericTypes = boost::mpl::list; BOOST_AUTO_TEST_CASE_TEMPLATE(TestFiniteDifference1D, T, NumericTypes) { // Here we will test a simple 1D finite difference scheme for // the Laplace equation: // // -\Delta u = f on [0,1] // // Using a central difference approximation of \Delta u, this can // be approximated by // // -(u_{i+1}-2u_i+u_{i-1})/Dx^2 = f(x_i) // // giving rise to the matrix // // -2 1 0 0 ... 0 0 // 1 -2 1 0 0 ... 0 // .... // 0 0 0 ...1 -2 1 // 0 0 0 ... 1 -2 const int N = 5; const int nonZeroes = N * 3 - 2; using M = Dune::FieldMatrix; using SpMatrix = Dune::BCRSMatrix; using Vector = Dune::BlockVector>; using GpuILU0 = Opm::gpuistl::GpuSeqILU0, Opm::gpuistl::GpuVector>; SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise); for (auto row = B.createbegin(); row != B.createend(); ++row) { // Add nonzeros for left neighbour, diagonal and right neighbour if (row.index() > 0) { row.insert(row.index() - 1); } row.insert(row.index()); if (row.index() < B.N() - 1) { row.insert(row.index() + 1); } } // This might not be the most elegant way of filling in a Dune sparse matrix, but it works. for (int i = 0; i < N; ++i) { B[i][i] = -2; if (i < N - 1) { B[i][i + 1] = 1; } if (i > 0) { B[i][i - 1] = 1; } } auto duneILU = Dune::SeqILU(B, 1.0); auto gpuILU = Opm::gpuistl::PreconditionerAdapter(std::make_shared(B, 1.0)); // check for the standard basis {e_i} // (e_i=(0,...,0, 1 (i-th place), 0, ..., 0)) for (int i = 0; i < N; ++i) { Vector inputVector(N); inputVector[i][0] = 1.0; Vector outputVectorDune(N); Vector outputVectorCuistl(N); duneILU.apply(outputVectorDune, inputVector); gpuILU.apply(outputVectorCuistl, inputVector); for (int component = 0; component < N; ++component) { BOOST_CHECK_CLOSE(outputVectorDune[component][0], outputVectorCuistl[component][0], std::numeric_limits::epsilon() * 1000); } } // Now we check that we can update the matrix. We basically just negate B B *= -1.0; auto duneILUNew = Dune::SeqILU(B, 1.0); gpuILU.update(); // check for the standard basis {e_i} // (e_i=(0,...,0, 1 (i-th place), 0, ..., 0)) for (int i = 0; i < N; ++i) { Vector inputVector(N); inputVector[i][0] = 1.0; Vector outputVectorDune(N); Vector outputVectorCuistl(N); duneILUNew.apply(outputVectorDune, inputVector); gpuILU.apply(outputVectorCuistl, inputVector); for (int component = 0; component < N; ++component) { BOOST_CHECK_CLOSE(outputVectorDune[component][0], outputVectorCuistl[component][0], std::numeric_limits::epsilon() * 1000); } } } BOOST_AUTO_TEST_CASE_TEMPLATE(TestFiniteDifferenceBlock2, T, NumericTypes) { // Here we will test a simple 1D finite difference scheme for // the Laplace equation: // // -\Delta u = f on [0,1] // // Using a central difference approximation of \Delta u, this can // be approximated by // // -(u_{i+1}-2u_i+u_{i-1})/Dx^2 = f(x_i) // // giving rise to the matrix // // -2 1 0 0 ... 0 0 // 1 -2 1 0 0 ... 0 // .... // 0 0 0 ...1 -2 1 // 0 0 0 ... 1 -2 const int N = 5; const int nonZeroes = N * 3 - 2; using M = Dune::FieldMatrix; using SpMatrix = Dune::BCRSMatrix; using Vector = Dune::BlockVector>; using GpuILU0 = Opm::gpuistl::GpuSeqILU0, Opm::gpuistl::GpuVector>; SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise); for (auto row = B.createbegin(); row != B.createend(); ++row) { row.insert(row.index()); if (row.index() < N - 1) { row.insert(row.index() + 1); } if (row.index() > 0) { row.insert(row.index() - 1); } } // This might not be the most elegant way of filling in a Dune sparse matrix, but it works. for (int i = 0; i < N; ++i) { B[i][i][0][0] = -2; B[i][i][1][1] = -2; B[i][i][0][1] = 1; B[i][i][1][0] = 1; } auto duneILU = Dune::SeqILU(B, 1.0); auto gpuILU = Opm::gpuistl::PreconditionerAdapter(std::make_shared(B, 1.0)); // check for the standard basis {e_i} // (e_i=(0,...,0, 1 (i-th place), 0, ..., 0)) for (int i = 0; i < N; ++i) { Vector inputVector(N); inputVector[i][0] = 1.0; Vector outputVectorDune(N); Vector outputVectorCuistl(N); duneILU.apply(outputVectorDune, inputVector); gpuILU.apply(outputVectorCuistl, inputVector); for (int component = 0; component < N; ++component) { BOOST_CHECK_CLOSE(outputVectorDune[component][0], outputVectorCuistl[component][0], std::numeric_limits::epsilon() * 1000); } } // Now we check that we can update the matrix. We basically just negate B B *= -1.0; auto duneILUNew = Dune::SeqILU(B, 1.0); gpuILU.update(); // check for the standard basis {e_i} // (e_i=(0,...,0, 1 (i-th place), 0, ..., 0)) for (int i = 0; i < N; ++i) { Vector inputVector(N); inputVector[i][0] = 1.0; Vector outputVectorDune(N); Vector outputVectorCuistl(N); duneILUNew.apply(outputVectorDune, inputVector); gpuILU.apply(outputVectorCuistl, inputVector); for (int component = 0; component < N; ++component) { BOOST_CHECK_CLOSE(outputVectorDune[component][0], outputVectorCuistl[component][0], std::numeric_limits::epsilon() * 1000); } } } bool init_unit_test_func() { return true; } int main(int argc, char** argv) { [[maybe_unused]] const auto& helper = Dune::MPIHelper::instance(argc, argv); boost::unit_test::unit_test_main(&init_unit_test_func, argc, argv); }