/*
Copyright 2019 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2023 Equinor
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#define BOOST_TEST_MODULE OPM_test_rocsparseSolver
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
class HIPInitException : public std::logic_error
{
public:
HIPInitException(std::string msg) : logic_error(msg){};
};
template
using Matrix = Dune::BCRSMatrix>;
template
using Vector = Dune::BlockVector>;
template
void readLinearSystem(const std::string& matrix_filename, const std::string& rhs_filename, Matrix& matrix, Vector& rhs)
{
{
std::ifstream mfile(matrix_filename);
if (!mfile) {
throw std::runtime_error("Could not read matrix file");
}
readMatrixMarket(matrix, mfile);
}
{
std::ifstream rhsfile(rhs_filename);
if (!rhsfile) {
throw std::runtime_error("Could not read rhs file");
}
readMatrixMarket(rhs, rhsfile);
}
}
template
Dune::BlockVector>
getDuneSolution(Matrix& matrix, Vector& rhs)
{
Dune::InverseOperatorResult result;
Vector x(rhs.size());
typedef Dune::MatrixAdapter,Vector,Vector > Operator;
Operator fop(matrix);
double relaxation = 0.9;
Dune::SeqILU,Vector,Vector > prec(matrix, relaxation);
double reduction = 1e-2;
int maxit = 10;
int verbosity = 0;
Dune::BiCGSTABSolver > solver(fop, prec, reduction, maxit, verbosity);
solver.apply(x, rhs, result);
return x;
}
template
void
createBridge(const boost::property_tree::ptree& prm, std::unique_ptr, Vector, bz> >& bridge)
{
const int linear_solver_verbosity = prm.get("verbosity");
const int maxit = prm.get("maxiter");
const double tolerance = prm.get("tol");
const bool opencl_ilu_parallel(true);
const int platformID = 0;
const int deviceID = 0;
const std::string accelerator_mode("rocsparse");
const std::string linsolver("ilu0");
try {
bridge = std::make_unique, Vector, bz> >(accelerator_mode,
linear_solver_verbosity,
maxit,
tolerance,
platformID,
deviceID,
opencl_ilu_parallel,
linsolver);
} catch (const std::logic_error& error) {
BOOST_WARN_MESSAGE(true, error.what());
if (strstr(error.what(), "HIP Error: could not get device") != nullptr)
throw HIPInitException(error.what());
else
throw error;
}
}
template
Dune::BlockVector>
testRocsparseSolver(std::unique_ptr, Vector, bz> >& bridge, Matrix& matrix, Vector& rhs)
{
Dune::InverseOperatorResult result;
Vector x(rhs.size());
auto wellContribs = Opm::WellContributions::create("rocsparse", true);
auto mat2 = matrix; // deep copy to make sure nnz values are in contiguous memory
// matrix created by readMatrixMarket() did not have contiguous memory
bridge->solve_system(&mat2, &mat2, /*numJacobiBlocks=*/0, rhs, *wellContribs, result);
bridge->get_result(x);
return x;
}
template
Dune::BlockVector>
testRocsparseSolverJacobi(std::unique_ptr, Vector, bz> >& bridge, Matrix& matrix, Vector& rhs)
{
Dune::InverseOperatorResult result;
Vector x(rhs.size());
auto wellContribs = Opm::WellContributions::create("rocsparse", true);
auto mat2 = matrix; // deep copy to make sure nnz values are in contiguous memory
// matrix created by readMatrixMarket() did not have contiguous memory
auto mat3 = matrix; // another deep copy, to make sure Jacobi matrix memory is different
// the sparsity pattern and values are actually the same
bridge->solve_system(&mat2, &mat3, /*numJacobiBlocks=*/2, rhs, *wellContribs, result);
bridge->get_result(x);
return x;
}
namespace pt = boost::property_tree;
void test3(const pt::ptree& prm)
{
const int bz = 3;
Matrix matrix;
Vector rhs;
readLinearSystem("matr33.txt", "rhs3.txt", matrix, rhs);
Vector rhs2 = rhs; // deep copy, getDuneSolution() changes values in rhs vector
auto duneSolution = getDuneSolution(matrix, rhs);
// create bridge twice, because rocsparseSolver allocates memory for
// the jacobi matrix if passed, during the first solve_system() call
// if not present, no memory is allocated, and subsequent calls
// with a jacobi matrix will cause nans
{
std::unique_ptr, Vector, bz> > bridge;
createBridge(prm, bridge); // create bridge with rocsparseSolver
// test rocsparseSolver without Jacobi matrix
auto sol = testRocsparseSolver(bridge, matrix, rhs2);
BOOST_REQUIRE_EQUAL(sol.size(), duneSolution.size());
for (size_t i = 0; i < sol.size(); ++i) {
for (int row = 0; row < bz; ++row) {
BOOST_CHECK_CLOSE(sol[i][row], duneSolution[i][row], 1e-3);
}
}
}
{
std::unique_ptr, Vector, bz> > bridge;
createBridge(prm, bridge); // create bridge with rocsparseSolver
// test rocsparseSolver with Jacobi matrix
auto solJacobi = testRocsparseSolverJacobi(bridge, matrix, rhs2);
BOOST_REQUIRE_EQUAL(solJacobi.size(), duneSolution.size());
for (size_t i = 0; i < solJacobi.size(); ++i) {
for (int row = 0; row < bz; ++row) {
BOOST_CHECK_CLOSE(solJacobi[i][row], duneSolution[i][row], 1e-3);
}
}
}
}
BOOST_AUTO_TEST_CASE(TestRocsparseSolver)
{
pt::ptree prm;
// Read parameters.
{
std::ifstream file("options_flexiblesolver.json");
pt::read_json(file, prm);
}
try {
// Test with 3x3 block solvers.
test3(prm);
} catch(const HIPInitException& ) {
BOOST_ERROR("Problem with initializing HIP.");
}
}