/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { // Making these typedef to make the code more readable. typedef BlackoilPropsAdFromDeck::ADB ADB; typedef BlackoilPropsAdFromDeck::V V; typedef Eigen::Array Block; enum { Aqua = BlackoilPhases::Aqua, Liquid = BlackoilPhases::Liquid, Vapour = BlackoilPhases::Vapour }; /// Constructor wrapping an opm-core black oil interface. BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const EclipseGridParser& deck, const UnstructuredGrid& grid, const bool init_rock) { if (init_rock){ rock_.init(deck, grid); } const int samples = 0; const int region_number = 0; phase_usage_ = phaseUsageFromDeck(deck); // Surface densities. Accounting for different orders in eclipse and our code. if (deck.hasField("DENSITY")) { const std::vector& d = deck.getDENSITY().densities_[region_number]; enum { ECL_oil = 0, ECL_water = 1, ECL_gas = 2 }; if (phase_usage_.phase_used[Aqua]) { densities_[phase_usage_.phase_pos[Aqua]] = d[ECL_water]; } if (phase_usage_.phase_used[Vapour]) { densities_[phase_usage_.phase_pos[Vapour]] = d[ECL_gas]; } if (phase_usage_.phase_used[Liquid]) { densities_[phase_usage_.phase_pos[Liquid]] = d[ECL_oil]; } } else { THROW("Input is missing DENSITY\n"); } // Set the properties. props_.resize(phase_usage_.num_phases); // Water PVT if (phase_usage_.phase_used[Aqua]) { if (deck.hasField("PVTW")) { props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(deck.getPVTW().pvtw_)); } else { // Eclipse 100 default. props_[phase_usage_.phase_pos[Aqua]].reset(new SinglePvtConstCompr(0.5*Opm::prefix::centi*Opm::unit::Poise)); } } // Oil PVT if (phase_usage_.phase_used[Liquid]) { if (deck.hasField("PVDO")) { if (samples > 0) { props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDeadSpline(deck.getPVDO().pvdo_, samples)); } else { props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtDead(deck.getPVDO().pvdo_)); } } else if (deck.hasField("PVTO")) { props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtLiveOil(deck.getPVTO().pvto_)); } else if (deck.hasField("PVCDO")) { props_[phase_usage_.phase_pos[Liquid]].reset(new SinglePvtConstCompr(deck.getPVCDO().pvcdo_)); } else { THROW("Input is missing PVDO or PVTO\n"); } } // Gas PVT if (phase_usage_.phase_used[Vapour]) { if (deck.hasField("PVDG")) { if (samples > 0) { props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDeadSpline(deck.getPVDG().pvdg_, samples)); } else { props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtDead(deck.getPVDG().pvdg_)); } // } else if (deck.hasField("PVTG")) { // props_[phase_usage_.phase_pos[Vapour]].reset(new SinglePvtLiveGas(deck.getPVTG().pvtg_)); } else { THROW("Input is missing PVDG or PVTG\n"); } } SaturationPropsFromDeck* ptr = new SaturationPropsFromDeck(); satprops_.reset(ptr); ptr->init(deck, grid, -1); if (phase_usage_.num_phases != satprops_->numPhases()) { THROW("BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck() - " "Inconsistent number of phases in pvt data (" << phase_usage_.num_phases << ") and saturation-dependent function data (" << satprops_->numPhases() << ")."); } } //////////////////////////// // Rock interface // //////////////////////////// /// \return D, the number of spatial dimensions. int BlackoilPropsAdFromDeck::numDimensions() const { return rock_.numDimensions(); } /// \return N, the number of cells. int BlackoilPropsAdFromDeck::numCells() const { return rock_.numCells(); } /// \return Array of N porosity values. const double* BlackoilPropsAdFromDeck::porosity() const { return rock_.porosity(); } /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). const double* BlackoilPropsAdFromDeck::permeability() const { return rock_.permeability(); } //////////////////////////// // Fluid interface // //////////////////////////// /// \return Number of active phases (also the number of components). int BlackoilPropsAdFromDeck::numPhases() const { return phase_usage_.num_phases; } /// \return Object describing the active phases. PhaseUsage BlackoilPropsAdFromDeck::phaseUsage() const { return phase_usage_; } // ------ Density ------ /// Densities of stock components at surface conditions. /// \return Array of 3 density values. const double* BlackoilPropsAdFromDeck::surfaceDensity() const { return densities_; } // ------ Viscosity ------ /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. V BlackoilPropsAdFromDeck::muWat(const V& pw, const Cells& cells) const { if (!phase_usage_.phase_used[Water]) { THROW("Cannot call muWat(): water phase not present."); } const int n = cells.size(); ASSERT(pw.size() == n); V mu(n); V dmudp(n); V dmudr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Water]]->mu(n, pw.data(), rs, mu.data(), dmudp.data(), dmudr.data()); return mu; } /// Oil viscosity. /// \param[in] po Array of n oil pressure values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. V BlackoilPropsAdFromDeck::muOil(const V& po, const V& rs, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { THROW("Cannot call muOil(): oil phase not present."); } const int n = cells.size(); ASSERT(po.size() == n); V mu(n); V dmudp(n); V dmudr(n); props_[phase_usage_.phase_pos[Oil]]->mu(n, po.data(), rs.data(), mu.data(), dmudp.data(), dmudr.data()); return mu; } /// Gas viscosity. /// \param[in] pg Array of n gas pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. V BlackoilPropsAdFromDeck::muGas(const V& pg, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { THROW("Cannot call muGas(): gas phase not present."); } const int n = cells.size(); ASSERT(pg.size() == n); V mu(n); V dmudp(n); V dmudr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.data(), rs, mu.data(), dmudp.data(), dmudr.data()); return mu; } /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAdFromDeck::muWat(const ADB& pw, const Cells& cells) const { if (!phase_usage_.phase_used[Water]) { THROW("Cannot call muWat(): water phase not present."); } const int n = cells.size(); ASSERT(pw.size() == n); V mu(n); V dmudp(n); V dmudr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Water]]->mu(n, pw.value().data(), rs, mu.data(), dmudp.data(), dmudr.data()); ADB::M dmudp_diag = spdiag(dmudp); const int num_blocks = pw.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dmudp_diag * pw.derivative()[block]; } return ADB::function(mu, jacs); } /// Oil viscosity. /// \param[in] po Array of n oil pressure values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAdFromDeck::muOil(const ADB& po, const ADB& rs, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { THROW("Cannot call muOil(): oil phase not present."); } const int n = cells.size(); ASSERT(po.size() == n); V mu(n); V dmudp(n); V dmudr(n); props_[phase_usage_.phase_pos[Oil]]->mu(n, po.value().data(), rs.value().data(), mu.data(), dmudp.data(), dmudr.data()); ADB::M dmudp_diag = spdiag(dmudp); ADB::M dmudr_diag = spdiag(dmudr); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dmudp_diag * po.derivative()[block] + dmudr_diag * rs.derivative()[block]; } return ADB::function(mu, jacs); } /// Gas viscosity. /// \param[in] pg Array of n gas pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAdFromDeck::muGas(const ADB& pg, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { THROW("Cannot call muGas(): gas phase not present."); } const int n = cells.size(); ASSERT(pg.value().size() == n); V mu(n); V dmudp(n); V dmudr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.value().data(), rs, mu.data(), dmudp.data(), dmudr.data()); ADB::M dmudp_diag = spdiag(dmudp); const int num_blocks = pg.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dmudp_diag * pg.derivative()[block]; } return ADB::function(mu, jacs); } // ------ Formation volume factor (b) ------ // These methods all call the matrix() method, after which the variable // (also) called 'matrix' contains, in each row, the A = RB^{-1} matrix for // a cell. For three-phase black oil: // A = [ bw 0 0 // 0 bo 0 // 0 b0*rs bw ] // Where b = B^{-1}. // Therefore, we extract the correct diagonal element, and are done. // When we need the derivatives (w.r.t. p, since we don't do w.r.t. rs), // we also get the following derivative matrix: // A = [ dbw 0 0 // 0 dbo 0 // 0 db0*rs dbw ] // Again, we just extract a diagonal element. /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. V BlackoilPropsAdFromDeck::bWat(const V& pw, const Cells& cells) const { if (!phase_usage_.phase_used[Water]) { THROW("Cannot call bWat(): water phase not present."); } const int n = cells.size(); ASSERT(pw.size() == n); V b(n); V dbdp(n); V dbdr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Water]]->b(n, pw.data(), rs, b.data(), dbdp.data(), dbdr.data()); return b; } /// Oil formation volume factor. /// \param[in] po Array of n oil pressure values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. V BlackoilPropsAdFromDeck::bOil(const V& po, const V& rs, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { THROW("Cannot call bOil(): oil phase not present."); } const int n = cells.size(); ASSERT(po.size() == n); V b(n); V dbdp(n); V dbdr(n); props_[phase_usage_.phase_pos[Oil]]->b(n, po.data(), rs.data(), b.data(), dbdp.data(), dbdr.data()); return b; } /// Gas formation volume factor. /// \param[in] pg Array of n gas pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. V BlackoilPropsAdFromDeck::bGas(const V& pg, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { THROW("Cannot call bGas(): gas phase not present."); } const int n = cells.size(); ASSERT(pg.size() == n); V b(n); V dbdp(n); V dbdr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Gas]]->b(n, pg.data(), rs, b.data(), dbdp.data(), dbdr.data()); return b; } /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAdFromDeck::bWat(const ADB& pw, const Cells& cells) const { if (!phase_usage_.phase_used[Water]) { THROW("Cannot call muWat(): water phase not present."); } const int n = cells.size(); ASSERT(pw.size() == n); V b(n); V dbdp(n); V dbdr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Water]]->b(n, pw.value().data(), rs, b.data(), dbdp.data(), dbdr.data()); ADB::M dbdp_diag = spdiag(dbdp); const int num_blocks = pw.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dbdp_diag * pw.derivative()[block]; } return ADB::function(b, jacs); } /// Oil formation volume factor. /// \param[in] po Array of n oil pressure values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAdFromDeck::bOil(const ADB& po, const ADB& rs, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { THROW("Cannot call muOil(): oil phase not present."); } const int n = cells.size(); ASSERT(po.size() == n); V b(n); V dbdp(n); V dbdr(n); props_[phase_usage_.phase_pos[Oil]]->b(n, po.value().data(), rs.value().data(), b.data(), dbdp.data(), dbdr.data()); ADB::M dbdp_diag = spdiag(dbdp); ADB::M dbdr_diag = spdiag(dbdr); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dbdp_diag * po.derivative()[block] + dbdr_diag * rs.derivative()[block]; } return ADB::function(b, jacs); } /// Gas formation volume factor. /// \param[in] pg Array of n gas pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAdFromDeck::bGas(const ADB& pg, const Cells& cells) const { if (!phase_usage_.phase_used[Gas]) { THROW("Cannot call muGas(): gas phase not present."); } const int n = cells.size(); ASSERT(pg.size() == n); V b(n); V dbdp(n); V dbdr(n); const double* rs = 0; props_[phase_usage_.phase_pos[Gas]]->b(n, pg.value().data(), rs, b.data(), dbdp.data(), dbdr.data()); ADB::M dbdp_diag = spdiag(dbdp); const int num_blocks = pg.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dbdp_diag * pg.derivative()[block]; } return ADB::function(b, jacs); } // ------ Rs bubble point curve ------ /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. V BlackoilPropsAdFromDeck::rsMax(const V& po, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { THROW("Cannot call rsMax(): oil phase not present."); } const int n = cells.size(); ASSERT(po.size() == n); V rbub(n); V drbubdp(n); props_[Oil]->rbub(n, po.data(), rbub.data(), drbubdp.data()); return rbub; } /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. ADB BlackoilPropsAdFromDeck::rsMax(const ADB& po, const Cells& cells) const { if (!phase_usage_.phase_used[Oil]) { THROW("Cannot call rsMax(): oil phase not present."); } const int n = cells.size(); ASSERT(po.size() == n); V rbub(n); V drbubdp(n); props_[Oil]->rbub(n, po.value().data(), rbub.data(), drbubdp.data()); ADB::M drbubdp_diag = spdiag(drbubdp); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = drbubdp_diag * po.derivative()[block]; } return ADB::function(rbub, jacs); } // ------ Relative permeability ------ /// Relative permeabilities for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n relperm values, /// containing krw, kro, krg. Use PhaseIndex for indexing into the result. std::vector BlackoilPropsAdFromDeck::relperm(const V& sw, const V& so, const V& sg, const Cells& cells) const { const int n = cells.size(); const int np = numPhases(); Block s_all(n, np); if (phase_usage_.phase_used[Water]) { ASSERT(sw.size() == n); s_all.col(phase_usage_.phase_pos[Water]) = sw; } if (phase_usage_.phase_used[Oil]) { ASSERT(so.size() == n); s_all.col(phase_usage_.phase_pos[Oil]) = so; } if (phase_usage_.phase_used[Gas]) { ASSERT(sg.size() == n); s_all.col(phase_usage_.phase_pos[Gas]) = sg; } Block kr(n, np); satprops_->relperm(n, s_all.data(), cells.data(), kr.data(), 0); std::vector relperms; relperms.reserve(3); for (int phase = 0; phase < 3; ++phase) { if (phase_usage_.phase_used[phase]) { relperms.emplace_back(kr.col(phase_usage_.phase_pos[phase])); } else { relperms.emplace_back(); } } return relperms; } /// Relative permeabilities for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n relperm values, /// containing krw, kro, krg. Use PhaseIndex for indexing into the result. std::vector BlackoilPropsAdFromDeck::relperm(const ADB& sw, const ADB& so, const ADB& sg, const Cells& cells) const { const int n = cells.size(); const int np = numPhases(); Block s_all(n, np); if (phase_usage_.phase_used[Water]) { ASSERT(sw.value().size() == n); s_all.col(phase_usage_.phase_pos[Water]) = sw.value(); } if (phase_usage_.phase_used[Oil]) { ASSERT(so.value().size() == n); s_all.col(phase_usage_.phase_pos[Oil]) = so.value(); } else { THROW("BlackoilPropsAdFromDeck::relperm() assumes oil phase is active."); } if (phase_usage_.phase_used[Gas]) { ASSERT(sg.value().size() == n); s_all.col(phase_usage_.phase_pos[Gas]) = sg.value(); } Block kr(n, np); Block dkr(n, np*np); satprops_->relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data()); const int num_blocks = so.numBlocks(); std::vector relperms; relperms.reserve(3); typedef const ADB* ADBPtr; ADBPtr s[3] = { &sw, &so, &sg }; for (int phase1 = 0; phase1 < 3; ++phase1) { if (phase_usage_.phase_used[phase1]) { const int phase1_pos = phase_usage_.phase_pos[phase1]; std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols()); } for (int phase2 = 0; phase2 < 3; ++phase2) { if (!phase_usage_.phase_used[phase2]) { continue; } const int phase2_pos = phase_usage_.phase_pos[phase2]; // Assemble dkr1/ds2. const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm() ADB::M dkr1_ds2_diag = spdiag(dkr.col(column)); for (int block = 0; block < num_blocks; ++block) { jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block]; } } relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs)); } else { relperms.emplace_back(ADB::null()); } } return relperms; } } // namespace Opm