/* Copyright 2020 Equinor ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ namespace Opm { template GasLiftSingleWell:: GasLiftSingleWell(const StdWell &std_well, const Simulator &ebos_simulator, const SummaryState &summary_state, DeferredLogger &deferred_logger, WellState &well_state, const GroupState &group_state, GasLiftGroupInfo &group_info, GLiftSyncGroups &sync_groups ) // The parent class GasLiftSingleWellGeneric contains all stuff // that is not dependent on TypeTag : GasLiftSingleWellGeneric( deferred_logger, well_state, group_state, std_well.wellEcl(), summary_state, group_info, ebos_simulator.vanguard().schedule(), ebos_simulator.episodeIndex(), sync_groups ) , ebos_simulator_{ebos_simulator} , std_well_{std_well} { const auto& gl_well = *gl_well_; if(useFixedAlq_(gl_well)) { updateWellStateAlqFixedValue_(gl_well); this->optimize_ = false; // lift gas supply is fixed } else { setAlqMaxRate_(gl_well); this->optimize_ = true; } const auto& pu = std_well_.phaseUsage(); this->oil_pos_ = pu.phase_pos[Oil]; this->gas_pos_ = pu.phase_pos[Gas]; this->water_pos_ = pu.phase_pos[Water]; // get the alq value used for this well for the previous iteration (a // nonlinear iteration in assemble() in BlackoilWellModel). // If gas lift optimization has not been applied to this well yet, the // default value is used. this->orig_alq_ = this->well_state_.getALQ(this->well_name_); if(this->optimize_) { setAlqMinRate_(gl_well); // NOTE: According to item 4 in WLIFTOPT, this value does not // have to be positive. // TODO: Does it make sense to have a negative value? this->alpha_w_ = gl_well.weight_factor(); if (this->alpha_w_ <= 0 ) { displayWarning_("Nonpositive value for alpha_w ignored"); this->alpha_w_ = 1.0; } // NOTE: According to item 6 in WLIFTOPT: // "If this value is greater than zero, the incremental gas rate will influence // the calculation of the incremental gradient and may be used // to discourage the allocation of lift gas to wells which produce more gas." // TODO: Does this mean that we should ignore this value if it // is negative? this->alpha_g_ = gl_well.inc_weight_factor(); // TODO: adhoc value.. Should we keep max_iterations_ as a safety measure // or does it not make sense to have it? this->max_iterations_ = 1000; } } /**************************************** * Private methods in alphabetical order ****************************************/ template void GasLiftSingleWell:: computeWellRates_( double bhp, std::vector &potentials, bool debug_output) const { // NOTE: If we do not clear the potentials here, it will accumulate // the new potentials to the old values.. std::fill(potentials.begin(), potentials.end(), 0.0); this->std_well_.computeWellRatesWithBhp( this->ebos_simulator_, bhp, potentials, this->deferred_logger_); if (debug_output) { const std::string msg = fmt::format("computed well potentials given bhp {}, " "oil: {}, gas: {}, water: {}", bhp, -potentials[this->oil_pos_], -potentials[this->gas_pos_], -potentials[this->water_pos_]); displayDebugMessage_(msg); } } template std::optional GasLiftSingleWell:: computeBhpAtThpLimit_(double alq) const { auto bhp_at_thp_limit = this->std_well_.computeBhpAtThpLimitProdWithAlq( this->ebos_simulator_, this->summary_state_, this->deferred_logger_, alq); if (bhp_at_thp_limit) { if (*bhp_at_thp_limit < this->controls_.bhp_limit) { const std::string msg = fmt::format( "Computed bhp ({}) from thp limit is below bhp limit ({}), (ALQ = {})." " Using bhp limit instead", *bhp_at_thp_limit, this->controls_.bhp_limit, alq); displayDebugMessage_(msg); bhp_at_thp_limit = this->controls_.bhp_limit; } //bhp_at_thp_limit = std::max(*bhp_at_thp_limit, this->controls_.bhp_limit); } else { const std::string msg = fmt::format( "Failed in getting converged bhp potential from thp limit (ALQ = {})", alq); displayDebugMessage_(msg); } return bhp_at_thp_limit; } template void GasLiftSingleWell:: setAlqMaxRate_(const GasLiftOpt::Well &well) { auto& max_alq_optional = well.max_rate(); if (max_alq_optional) { // NOTE: To prevent extrapolation of the VFP tables, any value // entered here must not exceed the largest ALQ value in the well's VFP table. this->max_alq_ = *max_alq_optional; } else { // i.e. WLIFTOPT, item 3 has been defaulted // According to the manual for WLIFTOPT, item 3: // The default value should be set to the largest ALQ // value in the well's VFP table const auto& table = std_well_.vfp_properties_->getProd()->getTable( this->controls_.vfp_table_number); const auto& alq_values = table.getALQAxis(); // Assume the alq_values are sorted in ascending order, so // the last item should be the largest value: this->max_alq_ = alq_values.back(); } } }