/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_FLOWMAINSEQUENTIAL_HEADER_INCLUDED
#define OPM_FLOWMAINSEQUENTIAL_HEADER_INCLUDED
#include
namespace Opm
{
// The FlowMainSequential class is for a black-oil simulator using the sequential models.
template
class FlowMainSequential : public FlowMainBase, Grid, Simulator>
{
protected:
using Base = FlowMainBase, Grid, Simulator>;
using Base::eclipse_state_;
using Base::param_;
using Base::fis_solver_;
using Base::parallel_information_;
friend Base;
// ------------ Methods ------------
// Print startup message if on output rank.
void printStartupMessage()
{
if (Base::output_cout_) {
const std::string version = moduleVersionName();
std::cout << "**********************************************************************\n";
std::cout << "* *\n";
std::cout << "* This is Flow-Sequential (version " << version << ")"
<< std::string(17 - version.size(), ' ') << "*\n";
std::cout << "* *\n";
std::cout << "* Flow-Sequential is a simulator for fully implicit three-phase, *\n";
std::cout << "* black-oil flow, and is part of OPM. *\n";
std::cout << "* For more information see http://opm-project.org *\n";
std::cout << "* *\n";
std::cout << "**********************************************************************\n\n";
}
}
// Setup linear solver.
// Writes to:
// fis_solver_
// param_ (conditionally)
// The CPR solver cannot be used with the sequential model.
// Also, the interleaved solver requires the full sparsity pattern option.
void setupLinearSolver()
{
const std::string cprSolver = "cpr";
const std::string interleavedSolver = "interleaved";
const std::string directSolver = "direct";
std::string flowDefaultSolver = interleavedSolver;
if (!param_.has("solver_approach")) {
if (eclipse_state_->getSimulationConfig().useCPR()) {
flowDefaultSolver = cprSolver;
}
}
const std::string solver_approach = param_.getDefault("solver_approach", flowDefaultSolver);
if (solver_approach == cprSolver) {
OPM_THROW( std::runtime_error , "CPR solver is not ready for use with sequential simulator.");
} else if (solver_approach == interleavedSolver) {
if (!param_.has("require_full_sparsity_pattern")) {
param_.insertParameter("require_full_sparsity_pattern", "true");
}
fis_solver_.reset(new NewtonIterationBlackoilInterleaved(param_, parallel_information_));
} else if (solver_approach == directSolver) {
fis_solver_.reset(new NewtonIterationBlackoilSimple(param_, parallel_information_));
} else {
OPM_THROW( std::runtime_error , "Internal error - solver approach " << solver_approach << " not recognized.");
}
}
// Create simulator instance.
// Writes to:
// simulator_
void createSimulator()
{
// We must override the min_iter argument unless it was already supplied, to avoid requiring iteration.
if (!param_.has("min_iter")) {
param_.insertParameter("min_iter", "0");
}
// Create the simulator instance.
Base::simulator_.reset(new Simulator(Base::param_,
Base::grid_init_->grid(),
*Base::geoprops_,
*Base::fluidprops_,
Base::rock_comp_->isActive() ? Base::rock_comp_.get() : nullptr,
*Base::fis_solver_,
Base::gravity_.data(),
Base::deck_->hasKeyword("DISGAS"),
Base::deck_->hasKeyword("VAPOIL"),
Base::eclipse_state_,
*Base::output_writer_,
Base::threshold_pressures_));
}
};
} // namespace Opm
#endif // OPM_FLOWMAINSEQUENTIAL_HEADER_INCLUDED